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Supplementary Text

A: Cost Function

Here, we provide the details of the cost function f(~p) which quantifies for every given

parameter set ~p the deviations of the corresponding solution of equation (1)-(6) in the

main text from the experimental findings 1-5 (see section Modeling the AtGRP7-AtGRP8

Interlocked Feedback Loops of the main text).

Similarly as in [1–6] we adopt an optimization technique based on a cost function of

the form

f := fTLD
+ fTLL

+ fLC + fφ + fA + f∆ + f∇ + ft1/2 . (1)

While all quantities in this equation are functions of ~p, we henceforth omit those arguments

~p for the sake of simplicity. After solving the equations (1)-(6) for 27 days (14 days under

12h:12h LD and 13 days under LL conditions) as described in the main text, we neglected

the first 236h in LD and the first 48h in LL as transients and applied the cost function to

the remaining parts of the solutions. Accordingly, throughout this section 〈•〉LD and 〈•〉LL

from now on denote the statistical average of a given feature • which repeatedly occurs

within the considered time intervals [236h, 336h] and [384h, 648h], respectively. The stan-

dard deviations σ[•]LD and σ[•]LL as well as the coefficients of variation CV[•]LD := σ[•]LD

〈•〉LD

and CV[•]LL := σ[•]LL

〈•〉LL
of a given property • are defined analogously. In the following we

will discuss each single term on the right hand side of equation (1) in detail.

fTLD
& fTLL

- Synchronized Oscillations 1: AtGRP7 and AtGRP8 mRNA adopt

circadian oscillations in all diurnal data sets studied for wild type plants. We therefore

require that they adopt the same period as the core oscillator both under LD and LL

conditions.

The corresponding cost function term for the LD condition is defined as

fTLD
:=

∑
i∈{7,8}

(
∆TLD,i

δTLD

)2

, (2)

contributing a value smaller than unity if the deviation ∆TLD,i := 〈TCore〉LD − 〈TSlave〉LD,i

of the slave oscillator’s averaged period 〈TSlave〉LD,i from the averaged core oscillator’s
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period 〈TCore〉LD is smaller than three minutes, i.e. δTLD := 0.05h. The index i = 7

accounts for the period of AtGRP7 mRNA and i = 8 for that of AtGRP8 mRNA.

The core oscillator period 〈TCore〉LD is determined by the time difference between two

successive maxima of the LHY/CCA1 protein oscillations PL(t). Likewise we define the

periods 〈TSlave〉LD,i of AtGRP7 and AtGRP8 mRNA oscillations as the time difference

between two consecutive maxima of the AtGRP7 and AtGRP8 mRNA concentrations

Mi(t), respectively. Solutions Mi(t) showing monotonic behavior or only one maximum

in the studied time span (t ∈ [236h, 336h] or t ∈ [384h, 648h]) are sorted out and not

further investigated, while e.g. chaotic or damped oscillations are still admitted.

Similarly, the cost function term for the LL condition is defined as

fTLL
:=

∑
i∈{7,8}

(
∆TLL,i

δTLL

)2

(3)

with δTLL = 0.05h.

fLC - Synchronized Oscillations 2: Our circadian core oscillator model gives rise to

periodic oscillations of PL(t) under 12h:12h LD as well as LL conditions [7]. We therefore

require that the slave oscillator should also periodically oscillate under both circumstances.

Similarly as in [1–3] we thus define

fLC :=
∑

K∈{M,P}

∑
i∈{7,8}

[
CV [Kmax

i ]LD

0.05
+

CV [Kmax
i ]LL

0.05
+

CV [φKi
]LD

0.05

]
(4)

to quantify the entrainment of the slave oscillator by the core oscillator under LD and

LL conditions. The first term gives a contribution smaller than unity if the relative

variability around its mean value in LD of the concentration maxima Kmax
i of a given

oscillating variable Ki is smaller than 5%. Likewise, the second term accounts for the LL

conditions and the third term for the variability of the phases φKi
(see main text, section

“Comparison with Experimental Results and Predictions”) among successive LD-cycles.

In summary the term (4) thus penalizes significant variations in phase or height of the

oscillation maxima (e.g. chaotic solutions or damped oscillations) while the terms (2) and

(3) impose the periodicity of the core oscillator to the slave.
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fφ - Experimentally observed Phases: The model of our core oscillator was opti-

mized for 12h:12h LD experimental entrainment conditions [7]. We therefore used the

data sets from the DIURNAL data bank experimentally obtained under those 12h:12h

LD conditions as well. The phase of the AtGRP7 mRNA oscillations was estimated as

φexp
M7

= zt 10h [8]. The AtGRP8 mRNA oscillations precede those of AtGRP7 by two

hours [8], similar to what was found in studies for other entrainment conditions [8, 9], so

we set φexp
M8

= zt 8h. There is, to the best of our knowledge, no published data on AtGRP7

or AtGRP8 protein concentrations for 12h:12h LD entrainment conditions. In [10] one

can find data on protein concentrations under 8h:16h LD entrainment conditions which

revealed that AtGRP7 protein peaks approximately four hours after its mRNA. We used

this as a gross approximation also under 12h:12h LD conditions and set φexp
P7

= φexp
M7

+ 4h

and φexp
P8

= φexp
M8

+ 4h, respectively.

fφ then contains four summands and reads as

fφ :=
∑

K∈{M,P}

∑
i∈{7,8}

(〈φKi
〉LD − φexp

Ki

δφKi

)2

, (5)

where the different reliability of the data is reflected by our error tolerances δφM7 =

δφM8 = 0.5h and δφP7 = δφP8 = 1.0h, respectively.

fA - Amplitude: In view of [8] we expect that the mRNAs and proteins of AtGRP7 and

AtGRP8 exhibit concentrations (number of molecules per volume within the pertinent cell

compartment) which are very roughly speaking of the same order of magnitude as the

concentrations ML(t) and PL(t) of LHY/CCA1. Therefore we defined the summand fA

related to the amplitude A of the oscillations as

fA :=
∑

K∈{M,P}

∑
i∈{7,8}

g(A), (6)

where g(A) is depicted in Figure S10. This function g(A) has been obtained according to

the following considerations: Starting with the Ansatz

g(A) :=

(
cmin

2AKi

)2

+ (2AKi
cmax)4 , (7)
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the parameters cmin and cmax were chosen so as to generate g(A) values smaller than one

for all peak-trough-values 2A within the heuristically predetermined range between 0.3

and 2.0, resulting in cmin ≈ 0.30, cmax ≈ 2.01.

f∆ & f∇ - Waveform: Next we turn to the waveform of the experimentally observed

AtGRP7 and AtGRP8 mRNA as well as protein oscillations. Experimental time traces

of AtGRP7 and AtGRP8 mRNA show non-sinusoidal behavior [8, 10]. After being at its

trough value, AtGRP7 and AtGRP8 mRNA quickly recovers, typically within four hours,

to its maximal value, and needs a slightly longer time to reach its trough value again,

creating nevertheless sharp mRNA peaks. Experimentally observed AtGRP7 protein time

traces [10], anti-phasic to its mRNA, are much broader and stay at their trough value

much shorter. Similarly as in [1–3] we thus define

f∆ :=
∑
i∈{7,8}

∑
τM∈{−4h,6h}

(
2/3〈Mmax

i )〉LD

〈Mmax
i −Mmax+τM

i 〉LD

)2

+
∑
i∈{7,8}

∑
τM∈{−4h,6h}

(
2/3〈Mmax

i 〉LL

〈Mmax
i −Mmax+τM

i 〉LL

)2

+
∑

τP∈{−12h,8h}

(
2/3〈Pmax

7 〉LL

〈Pmax
7 − Pmax+τP

7 〉LL

)2

, (8)

where Mmax+τM
i denotes the Mi concentration τM hours before or after its concentration

maximum and likewise for Pmax+τP
7 . Generally speaking f∆ thus penalizes solutions that

do not show the experimentally observed sharp mRNA peak and broad protein peak,

respectively. More precisely the first term on the right hand side of equation (8) con-

tributes a value smaller than unity for solutions of the M7(t) and M8(t) oscillations in

LD conditions that drop at least by 2/3 of their maximum value within 4 hours before

and 6 hours after the respective peak time, and larger than unity otherwise. The second

term works in the same manner for LL conditions. Each summand of the third term

similarly contributes a value smaller than unity for solutions of the P7(t) oscillations in

LL conditions, that drop at least by 2/3 of their maximum value within 12 hours before

and 8 hours after the respective peak time, consistent with the broad protein oscillations

observed in [10].

The term f∇ in (1) accounts for the trough-broadness of the AtGRP7 and AtGRP8
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mRNA oscillations in LL conditions and is defined as

f∇ :=
∑
i∈{7,8}

(
∇i −∇exp

i

δ∇

)2

. (9)

Here ∇7 is defined as the time the AtGRP7 mRNA concentration exceeds its minimal

value by less than 10 per cent of the peak-trough-difference and similarly for ∇8. The

corresponding experimental quantities ∇exp
i are quite noisy, ranging from 8 [8] to 12 [10]

hours. We therefore set ∇exp
i = 10h and δ∇ = 2h.

ft1/2 - Half-Life: In experiments measuring the AtGRP7 mRNA half-life [11,12], plants

were grown under 16h:8h LD long-day entrainment conditions and were transferred to

a medium supplemented with 150µg ml−1 cordycepin, two hours before expecting the

mRNA peak, in order to suppress transcription. Afterwards, the mRNA abundance was

measured with one-hour time intervals, observing that the mRNA is reduced to 50% of

its original amount within 3-4 hours. We therefore set texp
1/2 = 3.5h with an error tolerance

of δt1/2 = 0.5h. We followed the experimental protocol in our simulations exactly. First,

we inhibited the transcription of AtGRP7 and AtGRP8 in the model by setting v7 and

v8 in equations (1) and (4) of the main text to zero. Since the production of AtGRP7

mRNA depends on the normal splicing of its pre-mRNA and since its degradation kinetics

are of Michaelis-Menten type, its half-life will depend on the systems initial conditions.

This initial concentrations of the slave oscillator were set, in analogy to experiments, to

the values two hours before the maximum of the AtGRP7 mRNA oscillation is expected

within the last entrainment cycle, i.e. for t ∈ [312h, 336h]. Given these initial conditions,

we solved the resulting equations for a maximal time of τmax = 16h and define the half-life

t1/2 as the time a given concentration needs to decline to the half of its initial value (see

Figure S3 A/B). The summand ft1/2 then reads as

ft1/2 =

(
t1/2 − texp

1/2

δt1/2

)2

. (10)

In case the system did not decay to half of the initial AtGRP7 mRNA concentration

within τmax = 16h, we set t1/2 = τmax, therefore defining a maximal contribution to the

cost function fmax
t1/2

=
(

16h−3.5h
0.5h

)2
= 625.
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As there is no experimental data available on the half-life of AtGRP8 mRNA, the

cost-function lacks a corresponding term. In [12] the half-life of the alternatively spliced

mRNA of AtGRP7 was estimated as 0.5h. Since this alternatively spliced mRNA was

not assumed to be able of producing functional protein, it will therefore not feed back

to the system described by equations (1)-(6) in the main text and a corresponding cost

function-term can therefore be neglected.

B: The One-Component Posttranscriptional Feedback Loop

According to equations (1)-(6) in the main text, the single posttranscriptional AtGRP7

feedback loop model without interlocking to AtGRP8 (which is equivalent to setting the

parameter γ7,2 to zero) reads as

Ṙ7(t) =
v7

1−
(
PL(t)
h7

)i7 − (γ7,1P7(t) + δ7)R7(t) (11)

Ṁ7(t) =δ7R7(t)− m7,1M7(t)

k7,1 +M7(t)
(12)

Ṗ7(t) =ξ7M7(t)− m7,2P7(t)

k7,2 + P7(t)
. (13)

In the undriven case (PL(t) = 0 for all t), the steady state concentrations ~x? = (R?
7,M

?
7 , P

?
7 )T

fulfilling the fixed point conditions ~̇x|~x? = 0 are

P ?,±
7 =±

√
v7δ7ξ7k7,1k7,2

γ7,1m7,1m7,2

+ α2 − α (14)

M?,±
7 =

m7,2P
?,±
7

ξ7(k7,2 + P ?,±
7 )

(15)

R?,±
7 =

m7,1M
?,±
7

δ7(k7,1 +M?,±
7 )

, (16)

where we introduced the abbreviation

α =
1

2

δ7m7,1m7,2 − v7δ7ξ7k7,1 − v7δ7m7,2

γ7,1m7,1m7,2

. (17)
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P ?,+
7 is always positive and P ?,−

7 is always negative if we assume that all kinetic parameters

are positive. R?,+
7 and M?,+

7 are then also positive and the sign of R?,−
7 and M?,−

7 can be

either positive or negative depending on the values of k7,1 and k7,2, respectively. However

this analysis shows that the system is not able to show bistability in the positive regime

for any parameterization where the kinetic constants are assumed to be positive.

C: Search for Self-Sustained Oscillations

We tried to find self-sustained autonomous oscillation in our decoupled slave oscillator

system, i.e. PL(t) = 0 in equations (1)-(6) of the main text, by modifying the kinetic

parameters of Table 1 without changing our model itself. To this end we searched for

autonomous oscillations in the neighborhood of the parameter set in Table 1 by means

of a gradient descent method that drives the real part of the complex conjugated pair

of eigenvalues of the dynamical fixed point across the imaginary axis, corresponding to

a Hopf bifurcation of the fixed point into a periodic solution. Remarkably enough, this

algorithm indeed generated self-sustaining oscillations (see Figure 7 B of the main text) by

only changing the protein degradation rates m7,2 and m8,2, while leaving all other kinetic

parameters unchanged. The period of these oscillations is mainly determined by the

protein degradation rate m7,2 of AtGRP7, exhibiting a decreasing period with increasing

m7,2, but still remaining below the experimentally observed circadian periodicity. In doing

so, we restricted our search to a sufficiently small neighborhood of the reference parameter

set from Table 1 in order to maintain a reasonably good agreement with the experimental

facts 1-5 from section Parameter Estimation of the main text. However, even within this

neighborhood all parameter sets exhibiting oscillations actually disagreed already quite

notably from the experimental facts 1-5 (see section Parameter Estimation of the main

text).

D: Search for Noise-Induced Oscillations

Following [13,14] we model concentration fluctuations by adding noise in equations (1)-(6)

of the main text, i.e. equation (7) of the main text now takes the form

ẋk(t) = gk (t, ~x(t), ~p) + σxk(t)ζk(t), (18)
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where σ quantifies the noise strengths and ζk(t) are independent, delta-correlated Gaus-

sian white noises of zero mean. The noisy dynamics (18) were tackled by using XPPAUT

(Version 6.11). Figure 7 C demonstrates the possibility of noise-induced self-sustained

oscillations for suitable noise strengths σ. For the specific σ value from Figure 7 C a spec-

tral analysis reveals a main peak around T ≈ 21.4 h, a period close to the experimentally

observed circadian rhythmicity.
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