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Negatively autoregulating genes in yeast, Drosophila and humans

Below we list the known instances of autoregulating genes in yeast (Table S1), Drosophila (Table

S2) and humans (Table S3), their functions, any documented co-regulatory interactions and the

chromosome the gene is found on. Autoregulating genes are determined from systematic datasets

on the regulatory interactions of the individual species [1, 2, 3, 4, 5, 6] and autoregulation is

considered to be negative (or positive) on the basis of direct evidence or if a transcription factor is

known to have a predominantly repressing (or activating) regulatory function based on its entry in

the TRANSFAC database [6]. Where transcription factors are known to have both an activating and

a repressing regulatory function, and no direct evidence on the type of autoregulation is available,

the gene is listed as having “Dual” autoregulation. Dual autoregulation accounts for 2 instances

in S. cerevisiae, 1 instance in Drosophila and 3 instances in humans. Where it is not known (on

the basis of TRANSFAC) whether a transcription factor has a repressing or activating regulatory

function, the type of autoregulation is listed as “Not specified”. Such unspecified autoregulation

accounts for 1 instance in S. cerevisiae, 6 instances in Drosophila and 4 instances in humans.
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The impact of variation in other parameters on the evolution of

autoregulatory binding sites

Our study of the evolution of autoregulating transcription factor binding sites focuses on the evo-

lution of binding site strength, determined by the dissociation constant K. However our model

includes a number of other parameters, which we estimate on the basis of empirical data in our

simulations and in the numerical analysis of our model (Figs. 2-4, main text). In the following

sections we investigate the impact on these results of varying the slope of the autoregulatory re-

pression function, φ(p), the background rate of transcription, kl and the rate of mRNA and protein

degradation γr and γp.

Varying the slope of the repression function

The repression function φ(p) given in Eqs. 1 has a Michaelis-Menten-like form, which describes a

single binding site. A more general form of φ(p) is given by a Hill function

φ(p) =
k0

1 +
� p
K

�n

where higher values of n correspond to a repression function with a steeper slope. Such a function

corresponds to the case in which TFs bind cooperatively to n different binding sites, with K

interpreted as the geometric mean of the individual binding strengths across the sites. To test the

generality of our results in the main text we look at the invasibility of mutations that increase

binding strength (decrease K) for values of n > 1 (i.e for repression functions with steeper slopes).

The results are shown in Fig. S1. These show that increasing the slope of φ(p) tends to decrease



the range of available mutations to K that escape the effects of under-dominance, compared to the

case where n = 1 (Fig. 2, main text). Therefore we conclude that autoregulation which is described

by a steeper repression function cannot escape the effects of under-dominance.

We also investigate whether mutations that increase the Hill coefficient give rise to faster response

times. Increasing the Hill coefficient may be interpreted as adding another autoregulatory binding

site in the presence of cooperativity. Remarkably we find a similar pattern to that observed for the

dissociation constant (Fig. S2): when binding strength is weak, mutations that increase n lead to

faster response times, but when binding strength is strong, mutations that increase n tend to lead

to slower response times. Thus mutations to n do not provide a way to circumvent the effects of

under-dominance.

Variation in the background rate of transcription

Variation in the rate of background transcription, kl changes the optimal binding site strength for

which response time is fastest (see Appendix). In order to investigate the effects of variation in

the background rate of transcription on the evolution of stronger autoregulation, we varied kl by

three orders of magnitude. Fig. 2b of the main text shows the invasibility of mutants in diploids

for kl/k0 = 10−3. Fig. S3 shows that variation in kl by an order of magnitude above or below

this value has little effect on the invasibility of mutants with � > 1, but can substantially alter the

invasibility of mutants with small effect (� < 1), due to the position of the optimum value Kopt for

which response time is fastest being varied.



Variation in protein and mRNA degradation rates

Variation in protein degradation rates offer an alternative method to negative autoregulation for

decreasing the response time of genes to perturbation. Indeed, regulated degradation is used widely

throughout eukaryotes for his purpose [7]. To determine whether variation in the rates of mRNA or

protein degradation alter the ability of diploids to evolve negative autoregulataion for this purpose,

we ran molecular simulations for a range of degradation rates. The results are shown in Fig. S4.

We have plotted the percentage change in the response time for mutant heterozygotes and mutant

homozygotes, using different protein degradation rates, γ∗p . Fig. S4 shows that although increasing

or decreasing protein degradation rates lead to faster or slower response times, they do not prevent

mutations that increase the strength of negative autoregulation being deleterious. Thus variation

in protein degradation rates do not offer a way for autoregulatory binding sites to escape the effects

of under-dominance.

Changing the definition of response time

We have defined response time as the time to return to 90% of equilibrium expression. Clearly we

could have chosen a different cut-off. To show that this does not alter our results Fig. S5 reproduces

Fig. 2 with response time defined as the time to regurn to 99% of equilibrium expression.
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