Supplement

Derivation of Variance tracking

For the derivation oEq. (70), letq be a random variable distributed according to a Beta-Distion
with parameterg andb
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Letw = log ¢, thanw is distributed as follows:
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In order to calculat&|w] andE[w?] we use the moment-generating function6i)
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The first and the second derivative f,, read
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SinceE[w] = M/, (0) andE[w?] = M/ (0) we get
Efw] = ¢(a) —d(a+b)
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which can be simplified using the approximatiafs) ~ log(z) andy: (z) ~ < to
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Adaptation to changing input distributions

In this computer experiment() output neurons learned implicit generative models for iesagf hand-
written digits from the MNIST database. The same procedurericoding the images by spike trains as in
Fig. 6 was used. Initially, only images representing thétsligand3 were presented, and the WTA circuit
learned accurate probabilistic models for these imageter AB0 seconds of learning, the input distribu-
tion was changed, and a third class of inputs, images of hatteivdigits4, was introduced. Through the
adaptive learning rate frorg. (71), thez; neurons spontaneously reorganized, and two output neurons
changed their internal models to represent the new didit the end, an accurate generative model for all

three types of input images was learned.
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Figure S1:Spontaneous reorganization of the ensemble of internal models when the input distribution p*(y)
changes. A: Time course of conditional entropy when after 100 s new, previousgeen samples of images of
handwritten digits 4 were added to samples of handwritten digits O aBd\B/eight vectors of the 10 output neurons
after 100 s of learning (before the change of the input distributi@h)Spontaneous reorganization of these weight
vectors after further 100 s. The weight vectors of two output neutpiigve developed internal models for two ways
of writing the (new) digit 4. Encoding of handwritten digits from MNIST bylsptrainsy is as in Fig. 6. The adaptive

learning rate irEq. (71) was used for this experiment.
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Simulation Parameters

All simulations were carried out in MATLAB, with a simulatictime step of 1 ms. The time constant

of the OU process that modeled background synaptic inputssetto 5 ms, its variance to 2500.

Simulationsfor Fig. 3:

Input generation:

For each input image pixels were drawn over a 28 x 28 array tmenof 4 symmetrical Gaussians with
o2 = 10 and centers at (14,8), (16,22), (9,15), (20,14), with maxkiprobability 0.3 for any pixel to be
drawn (causing high variability of samples from the samesS&n). In addition any pixel was drawn with
probability 0.03 (added noise).

When an output neurog; fired, on average only 8% of the input neurong; had fired during the
preceding 10 ms (the time window for potentiation accordmthe STDP rule irEq. (5). Hence for over
90% of the pixels no spike was received within that time windomnireither one of the two neuropsthat
encoded the value of this pixel by population coding. Theesponding average activity level of all input

synapses was at 0.182.
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Figure S2: Generalization capability of the output neurons from Fig. 7 for time-warped variation of the input
patterns. A, B: Another test input presented to the circuit from Fig. 7. The noise-dddxtspike patterns are now
compressed or stretched from 50 ms to a random length between 2B@mas1 Such time-warped versions of these
patterns had never been presented during learning via STOP. Firing probabilities and spike outputs of the same
6 output neurons as in Fig. 7. They demonstrate that the emergerimiligtion ability of these 6 output neurons

automatically generalizes to time-warped input patterns (embedded in&) .nois

In the variation with superimposed background oscillaian20 Hz the firing rates of input neuroms
did not rise, but the average synaptic activity level at timetof an output spike rose to 0.215, an increase
of around18%. This leads to an increased learning rate.

The mean (offset),, of the OU-noise was set to 200, the initial valdg,, of lateral inhibition (caused
by a firing of az-neuron) was set to 3000, its resting valug,;, to 550. For the version with background
oscillations (at 20 Hz) the amplitude of the oscillation wasto 500 (mean = 0), and the phase was shifted

by 5 ms for thez-neurons A;,,;, = 3000, O, = 650.

Simulation for Fig. 5:

tou = 1000, Ay, = 3000, Oy, = 550.



Simulation for Fig. 4

In Figs. 4 A-C pre- and post-synaptic neurons were forcedréodi frequencies of, 20, and40 Hz
with different time delays. The weight was kept fixedvat= 3.5 for ¢ = ¢=5, and the learning rate was
kept fixed at) = 0.5. For Fig. 4D we simulated a pre-synaptic burst consistirtg gifikes with 20 ms time
difference, and a post-synaptic burst of 4 spikes, also #6tims time difference. The starting points of
these bursts were shifted relative to each other. We kepéight fixed atw = 3.5 for ¢ = ¢~°, and the
learning rate fixed a = 0.1, and added up the resulting weight changes for all 4 pospgiynspikes.

Simulation for Fig. 6:

Hou = 250, Ainh = 2000, Oinn = 400.

Simulation for Fig. 7 and Suppl. Fig. S2:

fow = 250, Ainp = 1500, Ozp, = 1000.

Simulation for Suppl. Fig. S1:

Liow = 250, Ainn = 2700, Oznp = 400.



