
Supplement

Derivation of Variance tracking

For the derivation ofEq. (70), letq be a random variable distributed according to a Beta-Distribution

with parametersa andb

p(q) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1 . (S.1)

Letw = log q, thanw is distributed as follows:

p(w) =
Γ(a+ b)

Γ(a)Γ(b)
(ew)a(1− ew)b−1 (S.2)

In order to calculateE[w] andE[w2] we use the moment-generating function ofp(w)

Mw(s) =

∫ 0

−∞

eswp(w)dw = (S.3)

=
Γ(a+ b)

Γ(a)Γ(b)

∫ 0

−∞

(ew)a+s(1− ew)b−1dw = (S.4)

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ s)Γ(b)

Γ(a+ b+ s)
=

Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)
. (S.5)

The first and the second derivative ofMw read

M ′

w
(s) =

Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)
(ψ(a+ s)− ψ(a+ b)) (S.6)

M ′′

w
(s) =

Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)

(

(ψ(a+ s)− ψ(a+ b))
2
+ ψ1(a+ s)− ψ1(a+ b+ s)

)

. (S.7)

SinceE[w] =M ′

w
(0) andE[w2] =M ′′

w
(0) we get

E[w] = ψ(a)− ψ(a+ b)

E[w2] = E[w]2 + ψ1(a)− ψ1(a+ b)

which can be simplified using the approximationsψ(x) ≈ log(x) andψ1(x) ≈
1

x
to

E[w] ≈ log
a

a+ b
E[w2] ≈

1

a
+

1

a+ b
(S.8)

Adaptation to changing input distributions

In this computer experiment,10 output neurons learned implicit generative models for images of hand-

written digits from the MNIST database. The same procedure for encoding the images by spike trains as in

Fig. 6 was used. Initially, only images representing the digits 0 and3 were presented, and the WTA circuit

learned accurate probabilistic models for these images. After 100 seconds of learning, the input distribu-

tion was changed, and a third class of inputs, images of handwritten digits4, was introduced. Through the

adaptive learning rate fromEq. (71), thezk neurons spontaneously reorganized, and two output neurons

changed their internal models to represent the new digit4. In the end, an accurate generative model for all

three types of input images was learned.
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Figure S1:Spontaneous reorganization of the ensemble of internal models when the input distribution p
∗(y)

changes. A: Time course of conditional entropy when after 100 s new, previously unseen samples of images of

handwritten digits 4 were added to samples of handwritten digits 0 and 3.B: Weight vectors of the 10 output neurons

after 100 s of learning (before the change of the input distribution).C: Spontaneous reorganization of these weight

vectors after further 100 s. The weight vectors of two output neuronszk have developed internal models for two ways

of writing the (new) digit 4. Encoding of handwritten digits from MNIST by spike trainsy is as in Fig. 6. The adaptive

learning rate inEq.(71) was used for this experiment.

Invariance to Time-Warping

Simulation Parameters

All simulations were carried out in MATLAB, with a simulation time step of 1 ms. The time constant

of the OU process that modeled background synaptic inputs was set to 5 ms, its variance to 2500.

Simulations for Fig. 3:

Input generation:

For each input image pixels were drawn over a 28 x 28 array fromone of 4 symmetrical Gaussians with

σ2 = 10 and centers at (14,8), (16,22), (9,15), (20,14), with maximal probability 0.3 for any pixel to be

drawn (causing high variability of samples from the same Gaussian). In addition any pixel was drawn with

probability 0.03 (added noise).

When an output neuronzk fired, on average only 8.6% of the input neuronsyi had fired during the

preceding 10 ms (the time window for potentiation accordingto the STDP rule inEq. (5). Hence for over

90% of the pixels no spike was received within that time window from either one of the two neuronsyi that

encoded the value of this pixel by population coding. The corresponding average activity level of all input

synapses was at 0.182.
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Figure S2: Generalization capability of the output neurons from Fig. 7 for time-warped variation of the input

patterns. A, B: Another test input presented to the circuit from Fig. 7. The noise-embedded spike patterns are now

compressed or stretched from 50 ms to a random length between 25 and 100 ms. Such time-warped versions of these

patterns had never been presented during learning via STDP.C, D: Firing probabilities and spike outputs of the same

6 output neurons as in Fig. 7. They demonstrate that the emergent discrimination ability of these 6 output neurons

automatically generalizes to time-warped input patterns (embedded into noise).

In the variation with superimposed background oscillations at 20 Hz the firing rates of input neuronsyi

did not rise, but the average synaptic activity level at the time of an output spike rose to 0.215, an increase

of around18%. This leads to an increased learning rate.

The mean (offset)µou of the OU-noise was set to 200, the initial valueAinh of lateral inhibition (caused

by a firing of az-neuron) was set to 3000, its resting valueOinh to 550. For the version with background

oscillations (at 20 Hz) the amplitude of the oscillation wasset to 500 (mean = 0), and the phase was shifted

by 5 ms for thez-neurons,Ainh = 3000,Oinh = 650.

Simulation for Fig. 5:

µou = 1000, Ainh = 3000, Oinh = 550.
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Simulation for Fig. 4:

In Figs. 4 A-C pre- and post-synaptic neurons were forced to fire at frequencies of1, 20, and40 Hz

with different time delays. The weight was kept fixed atw = 3.5 for c = e−5, and the learning rate was

kept fixed atη = 0.5. For Fig. 4D we simulated a pre-synaptic burst consisting of5 spikes with 20 ms time

difference, and a post-synaptic burst of 4 spikes, also with20 ms time difference. The starting points of

these bursts were shifted relative to each other. We kept theweight fixed atw = 3.5 for c = e−5, and the

learning rate fixed atη = 0.1, and added up the resulting weight changes for all 4 postsynaptic spikes.

Simulation for Fig. 6:

µou = 250, Ainh = 2000, Oinh = 400.

Simulation for Fig. 7 and Suppl. Fig. S2:

µou = 250, Ainh = 1500, Oinh = 1000.

Simulation for Suppl. Fig. S1:

µou = 250, Ainh = 2700, Oinh = 400.
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