
Table S7. Model parameters optimized for microaerobic conditions. “Reaction #s” are the numbers of the reactions governed by the rate 

parameter, and correspond to the numbering in Tables S2–S3, and Text S1. Allowed parameter ranges (defined by “Min.” and “Max.”) were chosen 

to encompass the value(s) obtained or calculated from literature, unless otherwise noted. “Optimal” are the parameter values from the optimization 

yielding the lowest SSR between the predicted and experimentally-measured [NO•] curve for wild-type E. coli treated with DPTA under 

microaerobic (35 µM O2) conditions. Confidence intervals (C.I.) are provided for parameters that were informed by the optimization, and were 

calculated as the range of optimal parameter values obtained for the top 10% of optimization outcomes (those with the lowest SSR values). 
# Parameter Parameter description/reaction involved Reaction #s Min. Max. Optimal C.I. Units Ref. 

1 kNONOate NO• release from chemical donor 128 4.8 × 10−5 3.9 × 10−4 9.60 × 10−5 9.60 × 10−5– 

1.84 × 10−4 

s−1 [1]a 

2 kLaNO• NO• transfer to the gas phase 129 0.001 0.05 2.10 × 10−2 (2.10–3.91) × 10−2 s−1 b 

3 kNO•-O2 NO• autoxidation 1 9.0 × 105 2.4 × 106 9.02 × 105 -- M−2s−1 [2] 

4 kNO•-[Fe-S] [Fe-S] nitrosylation by NO• 85,86 1.0 × 104 1.0 × 108 1.92 × 107 -- M−2s−1 [3] 

5 kDNIC-rem DNIC removal from protein 87,89 1 100 62.7 -- M−1s−1 [4] 

6 kDNIC-bind DNIC binding to apoprotein 88,90 1 100 59.0 -- M−1s−1 [4] 

7 kDNIC-deg O2-mediated DNIC degradation 91 0.1 100 83.7 -- M−1s−1 [5] 

8 kIscU-load-Fe IscA-mediated Fe2+ transfer to IscU 92,93 2.5 × 10−3 2.5 1.68 -- s−1 [6] 

9 KIscU-load-S,Cys IscS-mediated S transfer from Cys to IscU 151,152 1.0 × 10−6 1.0 × 10−4 3.42 × 10−5 -- M [7] 

10 KIscU-load-S,IscU IscS-mediated S transfer from Cys to IscU 151,152 1.0 × 10−6 1.0 × 10−4 1.66 × 10−5 -- M [7,8] 

11 kIscU-2Fe2S-insert,cat IscU-mediated [2Fe-2S] insertion into apoprotein 153,154 1.0 × 10−4 0.1 7.24 × 10−2 -- s−1 [9] 

12 KIscU-2Fe2S-insert,P2Fe2S(apo) IscU-mediated [2Fe-2S] insertion into apoprotein 153,154 1.0 × 10−6 1.0 × 10−4 7.38 × 10−6 -- M [9] 

13 kIscU-4Fe4S-insert IscU-mediated [4Fe-4S] insertion into apoprotein 94 1 500 398 -- M−1s−1 [10] 

14 kdN-deam N2O3-mediated DNA base deamination 95–97 1.0 × 103 1.0 × 106 6.53 × 103 -- M−1s−1 [11] 

15 KdX-excis,DNA(dX) Excision of xanthine from DNA 155 1.0 × 10−8 1.0 × 10−6 6.70 × 10−7 -- M [12] 

16 KdI-excis,DNA(dI) Excision of hypoxanthine from DNA 156 1.0 × 10−8 1.0 × 10−6 8.49 × 10−7 -- M [13] 

17 KdU-excis,DNA(dU) Excision of uracil from DNA 157 1.0 × 10−8 1.0 × 10−6 6.15 × 10−7 -- M [14] 

18 kHmp,NO•-on Hmp detoxification; NO• binding to Hmp-Fe2+ 110,113,118 4.0 × 106 2.6 × 107 4.29 × 106 (4.29–8.07) × 106 M−1s−1 [15] 

19 kHmp,NO•-ox Hmp detoxification; NO• binding to Hmp-Fe2+-O2 103,108,125 9.6 × 108 2.4 × 109 1.79 × 109 -- M−1s−1 [15] 

20 kHmp-exp,max Hmp expression (maximum rate) 177 2.0 × 10−10 2.0 × 10−8 1.55 × 10−8 (1.12–2.00) × 10−8 M∙s−1 c 

21 KHmp-exp,NO• Hmp expression (regulatory NO• interaction) 177 1.0 × 10−8 1.0 × 10−5 1.59 × 10−6 8.19 × 10−8– 

2.06 × 10−6 

M 
d 

22 kNorV-exp,max NorV expression (maximum rate) 178 2.0 × 10−10 2.0 × 10−8 2.75 × 10−9 9.58 × 10−10– 

1.82 × 10−8 

M∙s−1 
c 

23 KNorV-exp,NO• NorV expression (regulatory NO• interaction) 178 1.0 × 10−8 1.0 × 10−5 2.79 × 10−7 2.79 × 10−7– 

9.59 × 10−6 

M 
d 

24 kNorV-O2 O2-mediated NorV inactivation 146,147 10 1000 66.8 66.8–748 M−1s−1 [16] 

25 kNrfA-exp,max NrfA expression (maximum rate) 179 2.0 × 10−10 2.0 × 10−8 8.06 × 10−9 -- M∙s−1 c 

26 KNrfA-exp,NO2− NrfA expression (regulatory NO2
− interaction) 179 1.0 × 10−6 1.0 × 10−3 5.02 × 10−4 -- M e 

27 KNrfA-exp,O2 NrfA expression (regulatory O2 interaction) 179 1.0 × 10−12 1.0 × 10−10 5.14 × 10−11 -- M e 

28 [Cys]0 Initial concentration of cysteine -- 5.0 × 10−5 2.0 × 10−4 1.15 × 10−4 -- M [17,18] 

29 [Trxred]0 Initial concentration of reduced thioredoxin -- 5.0 × 10−6 5.0 × 10−5 3.39 × 10−5 -- M [19,20] 

30 [IscU]0 Initial concentration of IscU -- 1.0 × 10−8 1.0 × 10−5 2.98 × 10−6 -- M [7,21] 

31 [IscS]0 Initial concentration of IscS -- 1.0 × 10−8 1.0 × 10−5 4.35 × 10−6 -- M [7,21] 

32 [P2Fe2S(holo)]0 Initial concentration of holo [2Fe-2S] proteins -- 1.0 × 10−6 1.0 × 10−4 2.40 × 10−5 -- M [22,23] 

33 [P4Fe4S(holo)]0 Initial concentration of holo [4Fe-4S] proteins -- 5.0 × 10−5 5.0 × 10−4 8.82 × 10−5 -- M [22,23] 

34 [LigA]0 Initial concentration of DNA ligase -- 1.0 × 10−8 1.0 × 10−5 9.38 × 10−8 -- M [24] 



35 [PolI]0 Initial concentration of DNA polymerase -- 1.0 × 10−8 1.0 × 10−5 9.54 × 10−6 -- M [24] 

36 [DNA(dN)]0 Initial concentration of DNA bases (dA,dC,dG) -- 0.001 0.1 6.46 × 10−2 -- M [23] 

37 [Xth]0 Initial concentration of DNA exonuclease III -- 1.0 × 10−9 1.0 × 10−6 7.58 × 10−7 -- M [25] 

38 [GS-FDH]0 Initial concentration of GSH-dependent FDH -- 1.0 × 10−8 1.0 × 10−5 4.89 × 10−6 -- M f 

39 [AlkA]0 Initial concentration of DNA glycosylase (dX, dI) -- 1.0 × 10−9 1.0 × 10−6 8.21 × 10−7 -- M [25] 

40 [Ung]0 Initial concentration of DNA glycosylase (dU) -- 1.0 × 10−9 1.0 × 10−6 5.30 × 10−7 -- M [25] 

41 [Cyo]0 Initial concentration of cytochrome bo -- 1.0 × 10−8 1.0 × 10−5 8.41 × 10−6 -- M [25] 

42 [Cyd]0 Initial concentration of cytochrome bd -- 1.0 × 10−8 1.0 × 10−5 6.29 × 10−6 -- M [25] 

a. Range chosen based on typical half-lives reported for DPTA NONOate at 37°C [1]. 

b. Range selected based on the parameter value determined in our experimental system under aerobic conditions, without N2 bubbling (4.74 × 10−3 s−1). The bubbling was expected 

to increase the rate of NO• transfer to the gas phase, so the upper bound was chosen to be an order of magnitude greater than the value measured in the non-bubbling system. 

c. The maximum protein expression rates for Hmp, NorV, and NrfA were not found in literature. The allowed parameter range was chosen based on the maximum expression rates 

reported for a number of enzymes in the work of Kotte et al [26]. Values were converted from the reported units of gprotein/gDW∙s to M∙s−1 assuming a cell density of 448 gDW/L 

[23], and ranged from approximately 2 × 10−10 (Acs) to 2 × 10−8 M∙s−1 (PfkA). 

d. The allowed range for the NO• binding constant governing Hmp and NorV expression was chosen based on the reported physiological concentrations of NO• existing in the nM 

to µM range [27,28]. 

e. The NO2
− binding constant governing NrfA expression was allowed to vary in the µM range, while the O2 inhibition constant was assumed to be much lower, given that NrfA 

expression is primarily anaerobic [29,30]. 

f. Concentration was not found in literature, and therefore allowed a wide range, spanning values typically found for other enzymes in the model. 
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