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We begin analysis by deriving the covariance function of the total biotic force F in terms of the biotic
response functions α(E). The following analysis is much simpler under the approximation that the
function F (E) is stationary, which assumes the limit R � σE where the statistics of F (E) are uniform
within the essential range. In reality, close to the edges of the essential range the amplitude of F (E) is
reduced due to lower total biotic abundance. A consequence of this approximation is that the covariance
of Fi(E), ki(E,E

′), is also stationary, and depends only on the distance |E −E′| = ∆E

ki(∆E) =

〈
K∑

n,m=1

ωi,nωi,mαn(E)αm(E + ∆E)

〉
. (1)

At this point, we can exploit the absence of correlations first between individual biotic components, and
then between the weights ω, and the biotic abundance. The first observation leads us to conclude the
off-diagonal terms, where i 6= j, do not contribute to the covariance. The second enables us to separate
the expectation values of ω and α, giving

ki(∆E) = Kσ2
ω 〈α(E)α(E + ∆E)〉 . (2)

where σ2
ω is the variance of the random variable ω. The right side of this equation can be identified simply

as the covariance of the individual biotic activity functions. This result illustrates that the covariance
of the summed functions share the functional form of the individual functions of which it is comprised.
The characteristic length is independent of the value of K and therefore the propensity for F to form
homeostatic stable points is unaffected by the the biotic complexity of the model.

Next, we aim to derive an expression for the expected number of homeostatic fixed points within the
essential range. We begin by stating that a fixed point in Fi(E) occurs in a small interval of E if its sign
changes across the interval - a sign change from negative to positive would be unstable, while positive to
negative results in a homeostatic stable point. Labelling the interval ε, this condition can be expressed

Fi(E)Fi(E + ε) < 0 (3)

and the expected number of such points in the unit interval, n0, is found from a product of indicator
functions of the form of Equation (3)

n0 =

〈
N∏
i=1

1

ε
[Fi(E)Fi(E + ε) < 0]

〉
. (4)

We have used square brackets [. . .] to denote the indicator function

[Fi(E)Fi(E + ε) < 0] =

{
0 Fi(E) and Fi(E + ε) have same sign

1 Fi(E) and Fi(E + ε) opposite sign
(5)

The expectation of an indicator function may be interpreted as the probability of its contents being true,
and the product of several therefore gives the probability of many conditions being met simultaneously.
Each term in the product may be treated independently due to the independence between the biotic
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effects on the different environmental variables Fi and Fj . The problem is therefore reduced to finding
the value of the series of N expectation values. Expanding for small ε gives

p =

〈[
Fi(E)2 < −εFi(E)F ′i (E)

]〉
(6)

where F ′i (E) is used to indicate the derivative of Fi(E) in the ε̂ direction

F ′i (E) ≡ ∇ε̂Fi(E).

To find the expectation value of this indicator function, we need to know how Fi(E) and F ′i (E) are
distributed. Rather than suffer any loss of generality, we make three important observations;

(i) at any point in E within the essential range, Fi(E) is a sum of independent contributions from the
biotic elements. Therefore, by the central limit theorem, each point follows a Gaussian distribution.

(ii) this distribution has a mean of zero as previously stated. There is no tendency for positive or
negative feedback between the biota and environment.

(iii) Fi(E) and F ′i (E) to be uncorrelated as a consequence of our independent parameters µ and ω.

The problem is now dramatically reduced, we need only find the variance of the Gaussian random variables
Fi(E) and F ′i (E), labelled σ2

F and σ2
F ′ respectively. Having already determined the covariance of Fi(E)

in Equation S1:1, the variance therefore may be written as

σ2
F = ki(0). (7)

We can write a similar expression for Fi(E), and remove the directional derivative from the expectation
value to give

σ2
F ′ =

〈
F ′(E)F ′(E′)

〉∣∣
E=E′

= ∇E,ε̂∇E′,ε̂ki(E −E′)
∣∣
E=E′

= −k′′i (0). (8)

Next, we substitute Equations (7) and (8) into Equation (6)

p =

∫∫ [
Fi(E)2 < −εFi(E)F ′i (E)

]
P (Fi)P (F ′i )dFidF

′
i (9)

where P (Fi) and P (F ′i ) are the Gaussian distributions

P (Fi) =
1√

2πσF
exp

(
− F 2

i

2σ2
F

)
, (10)

P (F ′i ) =
1√

2πσF ′
exp

(
− F ′i

2

2σ2
F ′

)
. (11)

After a change of variable, Fi

σF
→ x and

F ′
i

σF ′
→ x′, we can exploit spherical symmetry in x and x′,

illustrated in Figure S1.

p =

∫∫ [
x2σF < −εx x′σF ′

] e− x2

2

√
2π

e−
x′2
2

√
2π

dxdx′ (12)
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We need only find the fraction of the x x′ plane for which x2σF < −εx x′σF ′ . We therefore find the
expectation of the indicator function to be

p =
1

π
atan

(
ε
σF ′

σF

)
(13)

which can be expanded to first order for small ε, and substituted into Equation (4) to give

n0 =
(p
ε

)N
=

(
1

π

√
−k
′′(0)

k(0)

)N
, (14)

which is consistent with [1, Theorem 4.1.1] for the case of a one-dimensional mode. Counter to intuition,
as the number of environmental variables increases the number of stable fixed points within the essen-
tial range of the model may increase exponentially, rather than vanishing to zero providing there is a
sufficiently wide essential range.
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