The emergence of environmental homeostasis in complex ecosystems: Supporting Information 2

James G. Dyke*, Iain S. Weaver

School of Electronics and Computer Science, University of Southampton, University Road, Southampton, SO17 1BJ

* email: jd4@ecs.soton.ac.uk

Computation of the total biotic force becomes computationally expensive for large K, typically necessary for interesting behaviour in a higher dimensional environment. To overcome this, the limit $K \rightarrow \infty$ is taken, where the function $\boldsymbol{F}(\boldsymbol{E})$ may be represented by its covariance.

Firstly, we devise a spatial grid of n points in the space of environmental variables where we aim to sample the function $\boldsymbol{F}(\boldsymbol{E})$, and will interpolate between. The exact value of n should be chosen carefully as a trade-off between the quality of representation of $\boldsymbol{F}(\boldsymbol{E})$, and the computational cost (and memory requirement) of the matrix decomposition, which scales as $\mathcal{O}\left(n^{2}\right)$. The spatial grid $\boldsymbol{\xi}$ and corresponding function samples, \boldsymbol{Z}, are illustrated by Figure S 2 and can be written as

$$
\boldsymbol{\xi}=\left(\begin{array}{c}
\boldsymbol{E}_{1} \tag{1}\\
\boldsymbol{E}_{2} \\
\vdots \\
\boldsymbol{E}_{n}
\end{array}\right) \quad \boldsymbol{Z}=\left(\begin{array}{c}
\boldsymbol{F}\left(\boldsymbol{E}_{1}\right) \\
\boldsymbol{F}\left(\boldsymbol{E}_{2}\right) \\
\vdots \\
\boldsymbol{F}\left(\boldsymbol{E}_{n}\right)
\end{array}\right)
$$

Next, the covariance of $\boldsymbol{F}(\boldsymbol{E})$ between each element of $\boldsymbol{\xi}$ is computed in the so-called covariance matrix.

$$
\boldsymbol{C}=\left(\begin{array}{cccc}
k\left(\boldsymbol{E}_{1}, \boldsymbol{E}_{1}\right) & k\left(\boldsymbol{E}_{2}, \boldsymbol{E}_{1}\right) & \cdots & k\left(\boldsymbol{E}_{n}, \boldsymbol{E}_{1}\right) \tag{2}\\
k\left(\boldsymbol{E}_{1}, \boldsymbol{E}_{2}\right) & k\left(\boldsymbol{E}_{2}, \boldsymbol{E}_{2}\right) & \cdots & k\left(\boldsymbol{E}_{n}, \boldsymbol{E}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(\boldsymbol{E}_{1}, \boldsymbol{E}_{n}\right) & k\left(\boldsymbol{E}_{2}, \boldsymbol{E}_{n}\right) & \cdots & k\left(\boldsymbol{E}_{n}, \boldsymbol{E}_{n}\right)
\end{array}\right)
$$

The bulk of the computation is in the Cholesky decomposition of \boldsymbol{C}, that is finding the matrix \boldsymbol{A} where

$$
\begin{equation*}
\boldsymbol{C}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \tag{3}
\end{equation*}
$$

Importantly, while very costly to compute, calculation of \boldsymbol{A} is deterministic and need only be carried out once in order to produce a large number of different functions $\boldsymbol{F}(\boldsymbol{E})$ for numerical validation.

Finally, a matrix \boldsymbol{W} of independent random values is generated corresponding to each of the n grid points and the N environmental variables,

$$
\begin{gather*}
F_{1} \\
F_{2} \tag{4}\\
\boldsymbol{W}=\left(\begin{array}{cccc}
w_{1,1} & w_{2,1} & \ldots & F_{N} \\
w_{1,2} & w_{2,2} & \ldots & w_{N, 2} \\
\vdots & \vdots & \ddots & \vdots \\
w_{1, n} & w_{1, n} & \ldots & w_{N, n}
\end{array}\right) \begin{array}{c}
\boldsymbol{\xi}_{1} \\
\boldsymbol{\xi}_{2} \\
\vdots \\
\boldsymbol{\xi}_{n}
\end{array}
\end{gather*}
$$

and the sampling points \boldsymbol{Z} are computed by the vector product of \boldsymbol{A} with \boldsymbol{W}. The function $\boldsymbol{F}(\boldsymbol{E})$ is found by basic interpolation between grid points, illustrated by Figure S2.

$$
\begin{equation*}
\boldsymbol{Z}=\boldsymbol{A} \cdot \boldsymbol{W} \tag{5}
\end{equation*}
$$

