Text S1: Supporting Information

Combinatorial clustering of residue position subsets predicts inhibitor affinity across the human kinome
Drew H. Bryant, Mark Moll, Paul Finn, and Lydia E. Kavraki

Kinome dataset preparation: eukaryotic protein kinase alignment

In the case of the ePKs, both the non-TKs (PFAM:Pkinase) and TKs (PFAM:Pkinase_Tyr) were combined into a single, comprehensive structural dataset in order to provide structural coverage for the full kinase family tree. However, determining an appropriate residue position correspondence between the TK and non-TK family alignments requires an additional alignment step, in order to relate columns from the TK alignment to columns of the non-TK alignment. Several approaches for obtaining a consistent and high-quality alignment between the TKs and non-TKs were considered, such as profile-profile alignment and structure-based alignment.

To provide a structure-based solution to determining a high-quality residue position correspondence between the TKs and non-TKs, matt [1] (version 1.00) was selected due to its ability to focus the alignment on regions of structural similarity (e.g., the ATP binding site) while disregarding regions with low structural similarity (e.g., C-terminal region). The kinase domain of non-TKs and TKs was then aligned using MATT by structural superposition of a pair of representative structures (PDB:3HEC and PDB:2PL0, respectively), that had both been co-crystallized with the same atp binding site inhibitor (imatinib). The alignment RMSD of the common core region (220 residues) identified by MATT was $2.156 \AA$; the RMSD of the bound imatinib molecules was $1.736 \AA$. The matt alignment is shown for the binding site residue positions analyzed here in Figure S 1 ; the C_{α} RMSD of the 27 binding site residues shown is $1.169 \AA$. The aligned computed by matt is shown below.

```
Core Residues: 220
Core RMSD: 2.156
3HEC:A R--------------------PTFYRQELNKTIWEVPERYQNLSPVGSGGAYG-----SVC 39 (A)
2PLO:A -GSHMQTQKPQKPWWEDEWEVP-------------RETLKLVERLG-----AGQFGEVW 260 (B)
3HEC:A AAFDTKTGLRVAVKKLSRPFQSII--HAKRTYRELRLLKHMKHENVIGLLDVFTPARSLE 97 (A)
2PLO:A MGYYNG-HTKVAVKSLKQ--G---SMSPDAFLAEANLMKQLQHQRLVRLYAVVTQ----- }309\mathrm{ (B)
3HEC:A EFNDVYLVTHLM-GADLNNIVKC---QKLTDDHVQFLIYQILRGLKYIHSADIIHRDLKP 153 (A)
2PLO:A --EPIYIITEYMENGSLVDFLKTPSGIKLTINKLLDMAAQIAEGMAFIEERNYIHRDLRA 367 (B)
3HEC:A SNLAVNEDCELKILDFGLARHTDDEMTGYVA---------------------TRWYRAPEIM 194 (A)
2PLO:A ANILVSDTLSCKIADF---------------GLARLIEDNEYTAREGAKFPIKWTAPEAI 412 (B)
3HEC:A LNWMHYNQTVDIWSVGCIMAELLTG-RTLF--PGTDHIDQLKLI--LRLVGTPGAELLKK 249 (A)
2PLO:A NYGT-FTIKSDVWSFGILLTEIVTHGRIPYPGMTNP--EVIQNLERGYR------------ 458 (B)
3HEC:A ISSESARNYIQSLTQMPKMNFA-NVFIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYF 308 (A)
2PLO:A ----------------------MVRPDNCPEELYQLMRLCWKERPEDRPTFDYLRSV-LE 495 (B)
3HEC:A AQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPP--------------- }352\mathrm{ (A)
2PLO:A D------------------------------------------FFTATEGQYQPQP 509 (B)
```


References

1. Menke M, Berger B, Cowen L (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4: e10.
