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Text S2: Supporting Information
Combinatorial clustering of residue position subsets predicts inhibitor affinity across the
human kinome
Drew H. Bryant, Mark Moll, Paul Finn, and Lydia E. Kavraki

1 Pfam+EC benchmark experiments

After introducing the Pfam binding site dataset automatically constructed to benchmark ccorps, we will
introduce three distinct results of the method. First, we will discuss the accuracy of ccorps in predicting
EC classifications in a large-scale, cross-fold validation experiment. Second, we will demonstrate that
hpcs are capable of distinguishing structures with differing EC classifications and that multiple hpcs can
exist for a given EC class. We conclude this section with a discussion of the identification of specificity
determining positions from hpcs.

The procedure implemented to automatically generate the Pfam binding site alignment dataset is
outlined in Section 1.2. The two inputs to ccorps are a structure alignment and a set of corresponding
annotation labels (one label per structure). First, ccorps computes structural clusterings combinatorially
across all 3-position subsets of the binding site positions in order to search for structural features that
distinguish binding sites with different annotation labels. For each specificity determining structural
feature that is identified the positions responsible for the specificity are tallied, as described in the
section Selecting HPCs in the main text. The alignment positions are finally ranked by their frequency
of appearance in specificity-determining structural features.

1.1 EC Annotation labels

For each protein structure in a family, several different annotation labels are generated based upon the 4
tiers of EC classification. For example, a given structure with an EC classification of the form A.B.C.D

can be labeled for each tier of the EC as A.B.C.D, A.B.C.∗, A.B.∗.∗, or A.∗.∗.∗. The 4-tiered label
(A.B.C.D) provides a more precise functional label than the 1-tiered version (A.∗.∗.∗). The objective is
to predict all 4 EC labels for structures with unknown EC classification.

1.2 Automated binding site definition

All alignments used in this work were derived from Pfam msa s [1]. A Pfam msa provides an alignment
of homologous protein domains. For each aligned domain in an msa, the UniProt [2] ID is retrieved from
the Pfam alignment and all PDB [3] structures corresponding to the given UniProt ID are mapped to
the domain sequence. The Pfam msa alignment column positions define the mapping of residue positions
across all structures for a protein family.

1.2.1 Selecting binding site positions

For each aligned structure that contains one or more non-protein molecules (distinguished by hetatm
records) with ≥ 30 atoms, the largest available molecule was identified and assumed to be a ligand. For
each ligated structure, all residues having at least one atom within 5Å of one or more ligand atoms were
selected as potential binding site residues. These binding site residues were then mapped to columns
within the Pfam msa. A count is kept for the number of times each msa column was mapped to a residue
in a ligated structure. After tabulating msa column mapping counts across all ligated structures, only
msa columns that were mapped to binding site residues in ≥ 5 instances were retained.



2

1.2.2 Identifying a dense sub-alignment

Next, it is necessary to remove gaps from the input alignment so that all pairwise comparisons of binding
site positions are consistent, as outlined in the section Calculating feature vectors in the main text.
When gaps appear in the aligned binding site column positions, either the entire column position must
be eliminated from further analysis or all protein structures having a gap at the alignment position must
be eliminated. This “densification” procedure of removing either a gapped row (protein structure) or
gapped column (alignment site position) is repeated until only a fully “dense” (non-gapped) sub-matrix
remains. In the resulting dense sub-matrix, all remaining protein structures have a residue at all remaining
alignment positions.

Finding the largest dense sub-matrix in the alignment as outlined above is equivalent to finding a
maximal edge biclique in a bipartite graph. Given a graph G = (V1 + V2, E), alignment positions are
vertices in V1 and protein structures are vertices in V2. Each non-gapped position for a protein vi ∈ V1
at a position vj ∈ V2 in the alignment is the edge E = v1v2. Identifying the maximal biclique in such a
bipartite graph has been shown to be NP-complete [4].

The heuristic densification approach implemented to identify dense sub-matrices of alignments is as
follows. (1) Given n structures aligned (with gaps) at m positions, convert the alignment to an n ×m
binary matrix M such that M [i][j] = 0 if structure i was gapped in the alignment at position j and
M [i][j] = 1 otherwise. (2) Consider each row M [i] to be a binary vector representing structure i.
(3) Compute the complete-linkage hierarchical clustering [5] of the binary vectors using the Hamming
distance metric [6]. (4) Each node of the resulting hierarchical clustering represents one potential sub-
matrix. Calculate the dense size of the sub-matrix by removing all rows or columns containing one or
more zeros from the sub-matrix and taking the sum of the remaining values. (5) Select the sub-matrix
with maximal dense size. Note that the maximal dense sub-matrix selected in step (5) is not guaranteed
to be the optimal sub-matrix because every possible sub-matrix of the original matrix does not exist as
a node in the hierarchical clustering. The rows (protein structures) and columns (alignment positions)
for the selected dense sub-matrix are used to prune the raw alignment positions and structures in order
to provide a fully dense “sub-alignment” as input to ccorps.

Techniques used for finding dense sub-matrices within real-valued gene expression data such as “biclus-
tering” are potential alternatives to the heuristic approach used here (see [7] for a review of biclustering
approaches). However, the binding site position subset of an alignment is often quite dense, making
the sparseness assumptions of gene expression biclustering methods unessential for the current Pfam
alignment dataset.

1.3 Dataset

1.3.1 Selection of families from PFAM

All 12,273 protein families from the Pfam 25.0 release (April 2011) were considered for inclusion in the
dataset. Only protein families that met the following criteria were selected for inclusion: ≥ 200 domain
structures; ≥ 10 unique sequences, ≥ 2 distinct EC classes; for the subset of sequences with known
EC class, ≥ 2 sequences from each of ≥ 2 EC classes, all having ≤ 50% sequence identity. Our dataset
consists of the 48 protein families that meet or exceed these criteria. The criteria were chosen so that there
would be enough structural and sequence diversity to make the prediction of EC classifications sufficiently
challenging. With these criteria, the whole prediction process can (and has been) completely automated.
No manual tuning was done to account for binding site size, EC class size, number of structures, etc.

1.3.2 Dataset statistics

The protein family dataset that we have constructed in the manner described above covers a wide range of
families with very different levels of functional diversification and binding site sizes as shown in Table S1.
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The mean number of unique EC classes across families in the dataset was 8.3, with some families having
as few as 3 different EC classes and as many as 21. An even wider variance is seen for the number of
structures available per family, ranging from as few as 11 to as many as 548 with a mean of 108 for the
dataset. Finally, the number of binding site positions examined ranged from the minimum of 3 to as
many as 81 (mean of 33), covering a large range in binding site sizes.

1.4 Prediction performance

The performance of ccorps was evaluated by applying the cross-validation procedure outlined in the
main text to each of the protein families in the Pfam alignment dataset. For each protein family, the
ability of ccorps to predict enzymatic function annotation labels in the form of EC class numbers was
quantified. The prediction accuracy of ccorps for predicting EC classification at each of the 4 tiers of
EC specificity is show in Table S1.

Due to the hierarchical nature of the EC classification system, the number of unique 4-tier EC classes
(most specific annotation labels) for a family is necessarily greater than or equal to the number of unique
1-tier EC classes (least specific annotation labels). As can be noted by examining the dataset mean
prediction accuracy from 1-tier to 4-tier, accuracy decreases with increasing EC classification annotation
label specificity, as should be expected. The prediction accuracy at the least specific 1-tier EC classifi-
cation was 92 ± 18%, while the accuracy dropped to 53 ± 30% for the most specific 4-tier. With these
numbers one needs to consider the very general automated procedure used to specify the input (e.g., the
way binding site residues were chosen).

A major challenge when attempting to predict the 4-tier (most specific) EC annotation labels derives
from the non-uniformity in structure coverage across the EC labels within a protein family. What could
be considered “outlier” EC classes with only a single corresponding protein sequence within a protein
family, were common throughout the dataset. Given the stringent cross validation procedure used in
this work, it is actually impossible to correctly predict the annotation label for single-protein EC classes.
This is due to the fact that when the structures for the single-protein EC class fall within the test set
during one fold of the cross validation, no structures will exist in the training set that share the same
EC class label by definition of the nr-clusters We chose to be conservative and not correct for this self-
penalizing aspect of our performance benchmarking. The reason for this is that it reflects the realistic
case of predicting enzymatic function for homologous proteins with unknown function that may be novel
relative to the training dataset.

1.5 Highly predictive clusterings

The basis for the predictive ability of ccorps is the detection of hpcs as outlined in the section Selecting
HPCs in the main text. The set of clusters identified by ccorps for one of the 2600 3-position subsets
for the α-amylase family is shown in Figure S2. Note that

(
26
3

)
= 2600, where 26 is the number of binding

site positions available for the α-amylase protein family as listed in Table S1.
In the subplots of Figure S2, the points shown each represent a feature vector (as described in the

section Calculating feature vectors in the main text), where each feature vector corresponds to a single
protein substructure. A tightly grouped cluster of feature vectors in the subplots of Figure S2 reflects a
set of substructures sharing a high degree of structural and chemical similarity. Figure S2A shows the
cluster membership automatically identified by ccorps. Figure S2B and C show the EC annotation
labels that map to each feature vector at the 3-tier and 4-tier levels, respectively. In the last two plots
the points are colored by EC tier level rather than by cluster.

As can be seen in Figure S2B and C, several hpcs for different labels can exist simultaneously in a
single clustering. Also, as shown in Figure S2B for the 3-tier EC label 3.2.1, multiple distinct hpcs
for a single label can be identified. In other words, within EC label 3.2.1 several structural sub-groups
can be detected. The existence of distinct hpcs for a single label indicates that multiple structurally
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and chemically distinct sub-groups can exist within a common annotation label. It is possible to identify
such instances because ccorps makes no assumptions about the structural homogeneity of sub-families
having the same enzymatic function.
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