Text S1. Fisher information

Further simplifications

We can further simplify Eq. 1 by imposing additional limits beyond a small

overall misincorporation rate (Note that I' (7;,8;6,) is written as I', for brevity, as is

done in Methods). In the limit of high relative baseline misincorporation rates

E
( E,>>m-I' -C ), or in the limit of small concentrations ( C<< ‘i_ ),
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N templates Zm-ri . Thus, the baseline misincorporation rate and the height of
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the concentration pulse affect how the Fisher information scales with m and T',.

Compensating for a larger baseline misincorporation rate or for a small peak
concentration requires a larger misincorporation rate increase per unit of ion
concentration change (CMLF slope, m), a longer pulse (corresponding to lower
achievable time resolution), an earlier pulse start-time (to limit the degree of de-
phasing between members of the polymerase ensemble), or less stochastic DNAP

dynamics.

Optimal continuous concentration estimation
Using Eq. 7c, we treat the inverse problem of analytically determining how
the accuracy of estimating a single ion concentration pulse depends on the

polymerase parameters, the length of the template, and the duration of the ion pulse



(i.e. temporal resolution). We continue to consider the simplified case with a single
ion concentration step. The Cramer-Rao bound (CRB) states that the minimum
variance of an unbiased estimator of a parameter 6 is the reciprocal of the Fisher
information /(0) [9]:
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The CRB applies only to unbiased estimators. Our estimator is biased, as we
constrain the concentration to be between zero and one, and thus the CRB does not
represent the theoretical minimum variance of our estimator. In other words, our
constrained estimation algorithm can theoretically perform better than Eq. S1. Thus,
in Fig. S1, we also compare the CRB to results from unconstrained estimation of

concentrations.

Optimal binary decoding accuracy

We use the Cramer-Rao bound to approximate the theoretical optimal
accuracy of binary concentration decoding (determining if C=0 or C=1). To do
this, we first calculate the minimum estimation variance (CRB) at parameter values
C=0 and C=1. We next define two Gaussian distributions with known means (0
and 1) and variances that represent the theoretical distributions of estimator values
when optimally estimating the concentrations 0 and 1. In order to determine the
theoretical minimum error of binary estimation, we ask how likely it is that a value
drawn from one Gaussian distribution could be mistaken to come from the other

Gaussian distribution. We approximate this by setting a “decision threshold”



between the two distributions, where values of C below the threshold should be
classified as a low concentration, and values of C above this threshold should be
classified as a high concentration. Thus, the probability that the Gaussian centered
on C=1 is below this threshold is the probability of false negatives (claiming C=0
when (C=1). The probability of false positives (claiming C=1 when C=0) is found in
the same manner. We set the threshold as the location where the two probability
density functions are equal. We consider the decoding error as the average
probability of false positives and false negatives, assuming an equal prior for low
and high concentrations (as we do in our simulations). The decoding accuracy is

defined as one minus this decoding error.

Additional pulse properties

In the main text, we focus on the ability to estimate an ion concentration at a
given time (or time interval), assuming that both the start-time and duration of the
concentration pulse are known. This is a reasonable assumption in the case of
determining neural responses to known stimuli (i.e. multi-condition experiments),
which we focus on in the main text. It also would not interfere with determining
slow synchronizations, as we only want to determine whether two neurons fired

together within a known time segment. However, more generally, one might want to
know the ability of molecular ticker tapes to predict the start-time, 7, and duration
of a pulse, 6. Thus, in the simplified case of a single pulse, we show the Fisher

information contained in nucleotide misincorporations of these additional pulse

properties.



To calculate these Fisher information expressions, we make the unrealistic
assumption that all other parameters are fixed, so that the provided expressions are
simple and can help in providing intuition. One would need a 3x3 matrix to
determine Fisher information while allowing the concentration, pulse start-time,
and pulse duration to vary.

The Fisher information with respect to pulse start-time is:
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We assume that misincorporation probabilities at successive template bases are
approximately independent, and that individual templates are copied independently,

so that:
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The Fisher information with respect to the pulse duration is:
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We assume that misincorporation probabilities at successive template bases are
approximately independent, and that individual templates are copied independently,

so that:
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Derivations: pulse magnitude (concentration)
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Derivations: pulse start-time

g(X:T))=(E,+m-T,-C)-(1- X,)+(1- E,~m-T,-C)-(X,)
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Derivations: pulse duration

g(X;:8)=(E,+mT,-C)-(1-X,)+(1-E,~m'T,-C)-(X,)
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