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1 Brief Comment on Models

In this supplementary information we describe the models used in the pa-
per in detail. The details of all relevant analysis are also included. We
first discuss the homogeneous and heterogeneous models. Then there are
two memory transfer models: 1 - the “synaptic model” in which the neu-
ronal activity is not explicitly modeled, 2 - the “neuronal model” which does
include neuronal activity. Both models are Markov models, i.e. they are
stochastically updated in discrete time where the state of variables at a time
t + 1 depends only on the state of the variables at time t. We consider the
memory capacity of these models by adopting an ideal observer approach.
That is, we track the mnemonic trace of one particular memory, encoded
in the pattern of synaptic weights of the model, until it is unrecoverable.
For the models considered here we can obtain an analytical formula for the
memory trace which allows us to determine how important measures such as
the initial memory strength and memory lifetime, scale with the system size,
i.e. how many synapses are available. All analytical results are obtained by
studying continuous-time approximations to these Markov processes. These
approximations take the form of ordinary and partial differential equations.
We have organized this supplementary information in order to accompany
the figures in the paper.
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2 A synaptic model with homogeneous tran-

sition probabilities. (Fig.1a and b)

2.1 The Markov model

We consider binary synapses, which can be in one of two states: depressed
or potentiated. At each time step, each synapse is independently presented
with a plasticity event (see top left of Fig.1a) which can be either potenti-
ating or depressing with probability 1/2. A depressed (potentiated) synapse
presented with a potentiating (depressing) event will change state with a
probability q, which is called the transition probability. The binary nature
of the synapses means that only one memory may be encoded at a time. This
is illustrated in Fig.1a by a color code. In the model we consider the state of
N synapses simultaneously, and the ‘memories’ are therefore the combined
N plasticity events to which the synapses are subjected, see bottom left of
Fig.1a. These memories are random and uncorrelated from one time step to
the next. As time progresses, we keep track of how similar the state of the
N synapses is to one particular memory. Since all memories are identically
distributed, tracking one is equivalent to tracking any other one and will tell
us how all memories decay in time.

We can formalize this model description by assigning the value 1 to a
potentiated synapse and −1 to a depressed one. Similarly, a plasticity event
is assigned a value 1 if it is potentiating and −1 if depressing. We then define
a vector of length N , Jt where J t

i ∈ {−1, 1} is the state of synapse i at time t.
Similarly, the memories are also vectors of length N , mt, where mt

i ∈ {−1, 1}
is the plasticity event to which synapse i is subjected at time t. If we choose
to track the memory presented at time t∗, then we define the memory trace
as the signal at time t, which is just the dot product of two vectors, St−t∗ =
mt∗ · Jt. The signal itself is a stochastic variable, since the updating of the
synaptic states is stochastic. This means that if one runs several simulations
presenting exactly the same memories, the signal will be different each time,
see right hand side of Fig.1a. The mean signal, understood as the signal
averaged over many realizations of the Markov process, can be computed
analytically. We compare this signal to the background noise which is defined
as the standard deviation in the overlap between uncorrelated memories.

The probability of finding a synapse in a potentiated state at time t + 1
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is
pt+1
+ = pt+(1− q/2) + pt−q/2, (S.1)

where pt+ = Pr(J t = 1). Using the fact that pt+ + pt− = 1 allows one to write

pt+1
+ − pt+ = q(1/2− pt+). (S.2)

In tracking one particular memory, we wish to know pt+ for those synapses
which were subjected to a potentiation when that memory was presented.
Therefore, the initial condition is p0+ = (1 + q)/2. An identical equation and
initial condition govern the dynamics of p−.

The number of potentiated synapses nt
+ follows a Binomial distribution

with probability pt+. It has mean E(n+) = N
2
pt+ and variance var(nt

+) =
N
4
pt+(1− pt+). The mean signal or memory trace can be written

E(St) = 2
(
E(nt

+)− E(nt
−)
)
,

= N
(
pt+ − (1− pt+)

)
,

= N
(
2pt+ − 1

)
. (S.3)

Note that the term -1 in the parentheses removes the trivial correlation
(synapses are potentiated or depressed with probability 1/2 irrespective of the
memory). The variance in the signal is var(St) = 4Npt+(1−pt+). Writing p̄t =

2pt+ − 1, we can then write the signal to noise ratio as SNRt =
√
N p̄t√

1−(p̄t)2
,

where 0 ≤ p̄ ≤ 1. For simplicity, in this work we take SNRt =
√
Np̄t, which

is a lower bound for the true SNR and is the correct asymptotic expression
for the SNR when p̄t ≪ 1, e.g. at long times. This is so because at long
times the probability of any synapse being potentiated is just one half, i.e.
pt+ → 1/2 as t→ ∞, and pt+ = 1/2 + p̄t.

While for the simple case of homogeneous synapses one can calculate
the signal analytically in the discrete case (St = q(1 − q)tN), solving for
the signal in the continuous-time approximation is, in general, much easier.
For the memory transfer model only the continuous-time approximation will
yield analytical results. For this reason we consider now the continuous-time
formulation of the Markov process.

2.2 The continuous-time approximation

A continuous-time approximation is made by assuming that the probability
in Eq.S.2 changes little from one time step to the next. Then we replace the
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difference on the left hand side by the time derivative to get

ṗ = q(1/2− p), (S.4)

with the initial condition p(0) = (1+q)/2 and we have dropped the subscript
+. The mean signal can be written S̄(t) = N(2p(t) − 1) which leads to the
equation

˙̄S = −qS̄, (S.5)

S̄(0) = qN, (S.6)

the solution of which is S̄(t) = qNe−qt, and the signal-to-noise ratio is there-
fore SNR(t) = qN1/2e−qt. In judging the performance of a model, we con-
sider three salient characteristics of the SNR: 1 - the initial SNR, 2 - the
functional form of the decay of the SNR, and 3 - the lifetime of the SNR.
In the case of the homogeneous population of synapses, decay is exponential
while the initial SNR is qN1/2 and the lifetime, determined by setting the
SNR equal to one, is T = 1

q
ln (qN1/2). It is clear that, for fixed N , taking

a q near one will lead to a large initial SNR but a short lifetime, while a
small q leads to a weak initial SNR but a long lifetime, see Fig.1b. This is
a fundamental trade-off in populations of bounded synapses with homoge-
neous transition probabilities [2]. Significantly, adding synapses in order to
increase memory lifetimes is extremely inefficient since the lifetime scales as
lnN .

3 A synaptic model with heterogeneous tran-

sition probabilities. (Fig.1c)

3.1 The Markov model

Each synapse is updated as in the homogeneous model with the difference
that the transition probability is not the same for all synapses. Specifically,
we consider n ensembles of N/n synapses such that the total number of
synapses is N . Synapses in ensemble k ∈ [1, n] have a transition probability
qk = q̄q(k−1)/(n−1), so that synapses in ensemble 1 are the most plastic with a
transition rate q̄ and those in ensemble n are the least plastic with a transition
rate q̄q.
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3.2 The continuous-time approximation

Following the same derivation as in the case of a population of homogeneous
synapses leads to n distinct yet independent differential equations for the
signal in each ensemble

˙̄Sk = −qkS̄k, (S.7)

S̄k(0) = qk
N

n
, (S.8)

the solution of which is S̄k(t) = qk
N
n
e−qktand the total signal is then S̄(t) =∑n

k=1 S̄k(t). The initial SNR is given by

SNR(0) = N1/2 1

n

n∑
k=1

qk, (S.9)

= q̄N1/2 1

n

(1− qn/(n−1))

(1− q1/(n−1))
, (S.10)

∼ q̄

ln q−1
N1/2, (S.11)

where the last approximate formula holds as long as ϵ = 1
n−1

ln q−1 ≪ 1.
Thus, compared to the homogeneous model, the initial SNR is reduced by a
factor proportional to the logarithm of the slowest transition rate 1/ ln q−1.
The lifetime of the memory is determined by the SNR of the slowest en-
semble and is T = 1

qq̄
ln (qq̄(N/n)1/2), i.e. there is a weak reduction in the

lifetime due to fact that more ensembles mean fewer synapses per ensem-
ble, specifically the slowest ensemble. Interestingly, the functional form of
the SNR is approximately powerlaw with exponent one, with an exponential
cut-off, corresponding to the slowest ensemble. It is not hard to see how
a sum of exponentials can generate a powerlaw dependence [1]. Consider
the following sum of exponentials for which the exponent is itself exponen-
tially distributed, as in the synaptic model SNR(t) ∼ N1/2

∫ 1

q
dkf(k)e−q̄kt =

N1/2
∫ 1

q
dkq̄e−q̄ke−q̄kt = N1/2 1

1+t

(
e−qq̄(1+t) − e−q̄(1+t)

)
. In this continuum ap-

proximation it is clear that after an initial transient for times t < 1/q̄, the
decay is approximately powerlaw until a time t > 1/(q̄q), after which there is
an exponential cutoff. In the intermediate regime 1/q̄ < t < 1/(q̄q) the decay
is approximately powerlaw with exponent one. In this regime, the lifetime
scales as N1/2 and not lnN . Therefore, memory lifetimes can be significantly
extended by adding more synapses.

6



3.3 Optimal readout of the memory signal

We have so far considered the case in which all synapses are read out si-
multaneously in order to determine the SNR of the memory. In the case
of heterogeneous synapses, however, we could envisage an optimal readout
by considering only certain ensembles of synapses so as to maximize the
SNR. Specifically, we could read out only those synapses from ensembles
kf to ks, i.e. SNRoptimal(t) = maxks(t),kf (t)∈{1,n} SNR(t), where SNR(t) =

N1/2

(ks(t)−kf (t))1/2

∑ks(t)
k=kf (t)

Sk(t). In the case of heterogeneous ensembles of synapses,

the optimal readout provides a small increase in SNR, as shown in Fig.S.1A.
Furthermore, this increase is essentially independent of the total number of
ensembles in the model. For heterogeneous synapses it is optimal, at inter-
mediate times, to read out a large fraction of the total number of ensembles
as shown in Fig.S.1B.

3.4 Summary

In summary, allowing for heterogeneity in the transition rates, which is tan-
tamount to having some synapses be very plastic and others less so, leads to
small reductions in the initial SNR and memory lifetime for fixed N com-
pared to the homogeneous case. However, the heterogeneity provides a sig-
nificant boost to the SNR for intermediate times. Specifically , in the pow-
erlaw regime lifetimes scale as N1/2. The optimal readout for heterogeneous
synapses leads only to a small improvement compared to reading out all en-
sembles, and requires reading out a significant fraction of ensembles in the
powerlaw regime.

4 The synaptic memory transfer model (Figs.2

and 3)

For clarity we first list here the main model parameters, variables and func-
tions.

7



10
-1

10
0

10
1

10
2

10
3

10
4

Time

10
-1

10
0

10
1

10
2

10
3

10
4

SN
R

heterogeneous
heterogeneous w optimal readout

A

10
-1

10
0

10
1

10
2

10
3

10
4

Time

0

0.1

0.2

0.3

0.4

0.5

w
op

tim
al

/n

n = 10
n = 20
n = 50
n = 100

B

Fig. S.1: A. The SNR for heterogeneous ensembles of synapses both by
reading out all ensembles (dashed lines) as well as using an optimal read-
out (solid lines). The total number of synapses is N = 109 which are di-
vided into n = 10, 20, 50 and 100 ensembles (black, read, green, blue). Here
qi = q̄q(i−1)/(n−1) with q̄ = 0.8 and q = 0.001. B. The width of the optimal
readout scaled by the total number of ensembles of synapses.
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Symbol Description
N Total number of synapses
n Number of stages
qi = q̄q(i−1)/(n−1) Learning rate of stage i
q1 = q̄ Fastest learning rate
qn = q̄q Slowest learning rate
St
i Signal in stage i at time t in discrete-time model
SNRt

i Signal-to-noise ratio in stage i at time t in discrete-time model
Si(t) Signal in stage i at time t in continuous-time model
SNRi(t) Signal-to-noise ratio in stage i at time t in continuous-time model

4.1 The Markov model

In the memory transfer model synapses take on different transition probabil-
ities, as in the heterogeneous model. However, unlike in the heterogeneous
model, synapses from one ensemble in the consolidation model may affect the
state of synapses in another ensemble. Specifically, N synapses are arranged
into n stages of N/n synapses each, and the stages interact in a feedforward
manner. Memories are encoded only in the state of synapses in stage 1. The
states of synapses in stage 2 depend on the states of synapses in stage 1 and
so on. Furthermore, the synapses in stage 1 are taken to be the most plastic
and synapses in each stage thereafter are progressively less plastic. In this
way we seek to capture a consolidation process by which memories are ini-
tially encoded with a strong SNR in the input stage and then are transferred
into deeper stages where the SNR lifetimes become progressively longer. It
was shown previously that such a scheme implemented via a cascade of meta-
plastic states at the level of a single synapse can greatly improve memory
capacity over models of simple synapses [1]. Here we implement a similar
idea in a spatially segregated model with feedforward structure.

Specifically, at time t, a memory mt of length N/n consisting of a ran-
dom pattern of potentiating (mt

i = 1) and depressing (mt
i = −1) events is

presented to the N/n synapses in stage one, which have synaptic state Jt
1.

Synapse i is subjected either to a potentiating (mt
i = 1) or to a depressing

(mt
i = −1) event with probability 1/2, and is updated with a probability q1

as in the previous models. Therefore, the updating for synapses in stage 1
is identical to that for ensemble 1 in the synaptic model with heterogeneous
transition probabilities in Section 3. We then assume that a synapse i in
stage 2 is influenced by the state of synapse i in stage 1 in the following way.
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If synapse i in stage 1 is in a potentiated (depressed) state at time t (J t
1 = 1

or J t
1 = −1 respectively), then synapse i in stage 2 will potentiate (depress)

at time t + 1 with probability q2. The update rule for synapses in stage 3
proceeds analogously, but depends now on the state of synapses in stage 2,
and so on. See Fig. 2a for a schematic of this update rule.

We can formalize the update rule mathematically as before. The proba-
bility of finding that a synapse in stage 1 is in the potentiated state at time
t+ 1 is

pt+1
(1,+) = pt(1,+) + q1(1/2− pt(1,+)), (S.12)

which follows from Eq.S.2.
In order to derive the update rule for stage k > 1, we must take into

consideration the fact that the probabilities in stage k > 1 are dependent on
those in stage k−1. The probabilities may, in fact, be correlated. Therefore,
the probability of finding that a synapse in stage 2 is in the potentiated state
at time t+ 1 is

pt+1
(k,+) = pt(k,k−1;+,+) + pt(k,k−1;+,−)(1− qk) + qkp

t
(k,k−1;−,+),

= pt(k,+) + qk

(
pt(k,k−1;−,+) − pt(k,k−1;+,−)

)
,

= pt(k,+) + qk

(
pt(k,k−1;−,+) + pt(k,k−1;+,+) − pt(k,k−1;+,+) − pt(k,k−1;+,−)

)
,

= pt(k,+) + qk

(
pt(k−1,+) − pt(k,+)

)
, (S.13)

where p(k,k−1;a,b) is the joint probability distribution for a synapse in stage k
to be in a state a ∈ {−,+} and the corresponding synapse in stage k − 1 to
be in a state b ∈ {−,+}.

Again, because the number of potentiated and depressed synapses follow

Binomial distributions, we can write SNRt
k =

√
N

p̄tk√
1−(p̄tk)

2
, where p̄tk =

2ptk,+ − 1. We approximate this as SNRt
k =

√
Np̄tk which is a lower bound

on the true SNR and the correct asymptotic form of the SNR for p̄tk ≪ 1.
As before, these equations can be solved analytically, but become in-

creasingly unwieldy for downstream stages. It is easier to do analysis in the
continuous-time approximation.
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The continuous-time approximation

In the continuous-time approximation, discrete time differences become time
derivatives, and one has the following set of equations

Ṡ1 = −q1S1, (S.14)

Ṡ2 = q2(S1 − S2), (S.15)
... =

... (S.16)

Ṡn = qn(Sn−1 − Sn), (S.17)

together with the initial condition

S1(0) = q1
N

n
, (S.18)

S2(0) = 0, (S.19)
... =

... (S.20)

Sn(0) = 0, (S.21)

where as before Si(t) =
N
n
(2pi(t)−1) and qi+1 < qi. At this point, we consider

how Eqs.S.14-S.21 reflect the phenomenon of consolidation. At time t = 0
a new ‘memory’ encoded in stage 1. This memory trace drives an increase
in the memory trace in stage 2, which will then decay at a rate q2, and
so on. Therefore, while in the heterogeneous model the memory trace in
stages 1 and 2 both decrease monotonically in time, in the memory transfer
model, the memory trace in stage 2 is non-monotonic. It first increases, and
then decreases, as shown in Fig.2b. At this point we can ask if the memory
transfer model outperforms the benchmark heterogeneous model, even in the
simplest case of two stages (or ensembles in the heterogeneous case). First
we note that Sh

1 = Smt
1 = q1

N
n
e−q1t is identical for both the heterogeneous (h)

and the memory transfer (mt) models. On the other hand, Sh
2 = q2

N
n
e−q2t,

while Smt
2 = q1q2

q1−q2
N
n
(e−q2t − e−q1t). These curves intersect at a time T =

1
q1−q2

ln(q1/q2), and for times greater than T , i.e. t = T + t
′
one finds that

Smt
1 /Sh

1 = q1−q2e−(q1−q2)t
′

q1−q2
, which is always greater than 1. Therefore, after a

time T the memory transfer model will always outperform the heterogeneous
model. In fact, we will show that improvement is largest when there are many
stages, and the difference between transition probabilities in adjacent stages
is small. If this is the case, we can write q2 = q1 − ∆q where ∆q ≪ 1 and
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Fig. S.2: Comparison of the stochastic Markov model (black circles) and the
continuous-time meanfield model (black line). See text for parameter values.

we find that T ∼ 1/q1 to leading order. Since q1 is close to one (very plastic
synapses in stage one) the improvement in performance of the consolidation
model over the heterogeneous model comes about already at very short times.

Testing the meanfield model against the full Markov
model

In order to compare the the meanfield model with the full Markov model
we conduct Monte-Carlo simulations of the stochastic Markov model given
binary synapses with a learning rate in stage i of qi = 0.8 ∗ (0.01)(i−1)/9 for
a total of n = 10 stages. Each stage has 106 synapses for a total of 107

synapses. The total signal averaged over 10 runs is shown as black circles
in Fig.S.2. With this we compare the a simulation of the continuous-time
meanfield model Eqs.S.14-S.17 (black line). Clearly, the meanfield model
captures the ensemble average of the Monte-Carlo simulations quite well.

The curve plotted in Fig.S.2 is the total signal, summed over all stages.
We can also look at the signal in each stage individually. This is shown
in Fig.S.3 for stages 1,2,4 and 7 out of ten. Not all stages are shown for
the sake of clarity. Here it is clear that there is a discrepancy between the
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Fig. S.3: Comparison of the stochastic Markov model (circles) and the
continuous-time meanfield model (lines). See text for parameter values.

continuous-time meanfield model and the full Markov model at short times
(and hence in early stages). This discrepancy is due to the assumption of
evolution in continuous time, whereas the Markov model evolves in discrete
time. This can be seen by comparing the Markov model to the discrete-time
meanfield model. In particular, we have solved the discrete-time meanfield
model analytically for the first two stages. The solution for stage 1 is simply
St
1 = N

n
q1(1 − q1)

t, whereas for stage 2, after a lengthy calculation (details
not shown), one arrives at

St
2 =

{
0, if t = 0(
q1(1− q1)

t−1 − q1(1− q2)
t + q21

∑t−1
k=1(1− q1)

t−1−k(1− q2)
t
)

N
n

if t > 0.

(S.22)
The signal in downstream stages can be calculated but the formulae become
increasingly unwieldy.

The result is shown in Fig.S.4, where the result from the discrete-time
meanfield model is shown as squares. Clearly the agreement with the stochas-
tic Markov model is excellent.

Finally, Fig.S.5 shows the total signal, averaged over all 10 stages, for all
10 simulations of the stochastic Markov model. Two of the signals are shown
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Fig. S.4: Comparison of the stochastic Markov model (circles), continuous-
time meanfield model (lines) and discrete-time meanfield model (squares).
See text for parameter values.

as solid lines as examples. We also plot the result of the meanfield model
(solid green line). We define the SNR as the signal divided by N1/2 which, as
we show above, is a lower bound on the SNR and is a good approximation for
stage k as long as pk ≪ 1. It is clear that the fluctuations in the signal indeed
are as large as the signal itself on a single run once the SNR approaches 1.

The continuous-time continuous-space approximation

If the number of stages is large enough we can recast Eqs.S.14-S.21 in the
form of a partial differential equation. In doing so, we are thinking of the
index of the stages as a spatial variable and assuming that nearby stages
have similar signals. Specifically, we write Si(t) ∼ S(x, t), qi ∼ q(x) and

then expand Si−1(t) ∼ S(x− dx, t) = S(x, t)− dx∂S(x,t)
∂x

+ dx2 1
2
∂2S(x,t)

∂x2 + . . . ,
where dx = 1/n (and so x ∈ [0, 1]). Then Eqs.S.14-S.21 become

∂S

∂t
+
q̄qx

n

∂S

∂x
=

q̄qx

2n2

∂2S

∂x2
, (S.23)

S(x, 0) = q̄
N

n
δ(x), (S.24)
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where δ(x) is the Dirac delta function and we have dropped all terms of order
1/n3 and higher. Furthermore, we choose q(x) = q̄qx to be consistent with
the Markov model. Eqs.S.23-S.24 represent an advection diffusion process
in which the initial condition is a pulse of amplitude q̄N/n at x = 0. The
pulse travels to the right and slowly diffuses, eventually exiting the system
at x = 1. Moreover, both the velocity of the pulse and the diffusion depend
on the spatial location of the pulse, i.e. they are not homogeneous. Note
that the pulse represents the correlation of the synaptic weights with a par-
ticular memory. Therefore, it is this correlation, i.e. the ‘memory’ which is
propagating.

The advection equation

We can determine the spatial dependence of the pulse velocity by ignoring
the diffusion term and solving

∂S

∂t
+
q̄qx

n

∂S

∂x
= 0, (S.25)

S(x, 0) = q̄
N

n
δ(x), , (S.26)

which is a pure advection equation. In this equation the initial pulse propa-
gates to the right without changing shape. The curve along which it travels
in space and time c(x, t) can be found by the so-called method of character-
istics. Since the signal pulse doesn’t change along this curve we can write

∂S

∂c
=
∂S

∂t

∂t

∂c
+
∂S

∂x

∂x

∂c
= 0, (S.27)

which, comparing to Eq.S.26 means that ∂c
∂t

= 1 and ∂c
∂x

= n
q̄
q−x. From this

we find that ∂x
∂t

= q̄
n
qx, which when integrated with the initial condition that

x(0) = 0 gives the curve

t =
n

q̄ ln q−1
(q−x − 1). (S.28)

For advection or wave phenomena where the velocity of propagation is con-
stant, the characteristics have the form x − vt. Here it is clear that the
propagation is not at a constant speed, but rather slows down exponentially.
The memory lifetime is just the time at which the memory pulse exits the
system at x = 1, i.e.

T ∼ n

q̄q ln q−1
. (S.29)
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From this we can see that the memory lifetime is boosted by a factor n/ ln q−1

compared to the heterogeneous case (in the heterogeneous case the power law
regime ends for t ∼ 1/(q̄q), see Section 3.2). Conspicuously missing is the
scaling with the number of synapses N . This is because we have not actually
solved the true advection diffusion equation. For the pure advection equation,
the amplitude of the pulse does not change in time as long as the initial SNR
is above one, nothing is gained by adding more synapses. Once we include
diffusion this will change.

The advection-diffusion equation

We can use the small parameter ln q−1/n to find an approximate solution to
the full equations, Eqs.S.23-S.24. Before doing this, we will perform a change
of variables to eliminate the spatially variable velocity, i.e. we will stretch
space so that the characteristics are just straight lines. We already know the
correct change of variables from the preceding section. Specifically, we define
the new spatial variable y = n

q̄ ln q−1 (q
−x−1) and rewrite the PDE in terms of

y. This requires using the chain rule for differentiation. The first and second
derivatives are

∂

∂x
=

∂

∂y

dy

dx
,

=
n

q̄qx
∂

∂y
, (S.30)

and

∂2

∂x2
=

∂

∂x

( n

q̄qx
∂

∂y

)
,

=
n ln q−1

q̄qx
∂

∂y
+

n2

q̄2q2x
∂2

∂y2
. (S.31)

The PDE becomes

∂S

∂t
+
(
1− ϵ

2

)∂S
∂y

=
1

2q̄

(
1 + q̄ϵy

)∂2S
∂y2

, (S.32)

S(y, 0) = q̄
N

n
δ(y), (S.33)

where ϵ = ln q−1/n≪ 1. Since ϵ is small, we can ignore the small correction
to the (now constant) velocity, but we cannot ignore the term proportional

17



to y in the diffusion. The reason is that y itself ranges between 0 and values
of order 1/ϵ. Rather, we will define a new spatial variable Y = ϵy. Which
allows us to write

∂S

∂t
+
∂S

∂y
=

1

2q̄

(
1 + q̄Y

)∂2S
∂y2

, (S.34)

S(y, 0) = q̄
N

n
δ(y), (S.35)

The separation of variables y and Y has a physical interpretation here. The
memory pulse propagates through the system, and as it does so, it slowly
spreads out. The shape of the pulse depends on this diffusion, i.e. the second
spatial derivative, which itself depends on the location of the pulse. However,
the diffusion coefficient changes over a length scale which is large compared
to the pulse shape itself. Therefore, we can treat the system as if the diffusion
coefficient were locally constant. The constant coefficient advection-diffusion
equation with delta function initial condition has a classical solution which,
given the parameters in Eqs.S.34-S.35, takes the form

SNR(x, t) =

√
N

4πD(x)t
exp
[−( n

q̄ ln q−1 (q
−x − 1)− t

)2
4D(x)t

]
, (S.36)

where we have written directly SNR(x, t) = S(x, t)/N1/2 andD(x) = q̄−1q−x/2.
Curiously, taking D(x) = q̄−1q−x/4 provides a much better fit to the Markov
simulations. Direct numerical simulation of the PDE’s EqsS.23-S.24 reveals
that the PDE itself fits the Markov simulations well and that Eq.S.36 with
D(x) = q̄−1q−x/4 is a very good approximate solution to the PDE (not
shown). Therefore, in the analysis which follows, we will make use of Eq.S.36
with D(x) = q̄−1q−x/4.

4.2 Readout of the memory signal: the role of corre-
lations

We have already discussed the size of correlations in any one memory stage.
Specifically, if the total number of synapses is N in a system with n stages,
then the variance of the signal in stage i is (N/n)(1 − p2i (t)) which we have
approximated as N/n. When reading out the memory signal from multiple
stages we must be concerned with correlations in the fluctuations between
different stages; these correlations will increase the variance of the signal.
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We expect positive noise correlations in the signal between stages since
the state of a synapse in stage i depends on the state of a synapse in stage
i − 1 whether it correctly encodes the signal or not. We can estimate this
correlation by noting that the probability that both synapses are in the same
state (above and beyond the chance probability of 1/4) at a time t is qi(1−
qi−1). This is so because the synapse in stage i must have switched state to
match the state of the synapse in stage i− 1, and the synapse in stage i− 1
cannot yet have switched state. Similar reasoning tells us that the correlation
between stages i and i− 2 is proportional to qiqi−1(1− qi−1)(1− qi−2)

2. The
complete correlation matrix depends on such correlations of all orders.

In any case, we can write, for the total variance of the readout signal

σ2 =
n∑

i=1

σ2
i +

n∑
i=1

∑
j ̸=1

σ2
ij,

=
n∑

i=1

N

n
+

n∑
i=1

∑
j ̸=i

σ2
ij,

= N +
n∑

i=1

∑
j ̸=1

σ2
ij. (S.37)

If the covariances σ2
ij are of the same order as the variances σ2

i then the total
variance will be dominated by these covariances since there are n(n − 1)
of them. However, these covariances are proportional to the learning rates,
as we explain above, and so are not of order one. How can we estimate
them? It is not hard to estimate the covariance between adjacent stages
using the arguments above. It can be caluclated explicitly to give σi,i−1 =
qi(1− qi−1)

N
n
. However, how do we take into account the contribution from

all other stages? A simple calculation can give us a hint. The correlation
between stage 1 and stage i is proportional to q1q2 . . . qi. In our model we
use qi = q(i−1)/(n−1) which means that the correlation is proportional to

1 · q1/(n−1) · q2/(n−1) · · · · q(i−1)/(n−1) = q
1

n−1

∑i−1
j=1 i = q

i2−i
2(n−1) . The idea is to

sum this quantity over all i to see how the total cross-correlation scales as a
function of n. This can be done by taking i as a continuous variable x and
integrating from 1 to n, which gives the integral

∫ n

1
dxe−α(x2−x)/n, where α

is a constant. If we assume n is large and take y = (x − 1)
√
α/n we can

write this integral as
√
n/α

∫∞
0
dye−y2 . This shows that adding up the small

pairwise correlations between stages over all stages give a total contribution
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of the order
√
n. Therefore, we can try approximating the total covariance

as the covariance between adjacent layers, magnified by a factor
√
n. This

gives

σ2 = N
(
1 +

2√
n

n−1∑
i=1

qi+1(1− qi)
)
,

= N
(
1 +

2√
n

n−1∑
i=1

qi/(n−1)(1− q(i−1)/(n−1))
)
. (S.38)

where the factor 2 is because σ2
ij = σ2

ji.
Fig.S.6 shows that Eq.S.38 describes the true covariance quite well. In

Fig.S.6 we show the results of numerical simulations of the stochastic memory
transfer model for different values of q, where the learning rates are qi =
q(i−1)/(n−1) and there are 1000 synapses per stage. We track a memory which
is never presented and hence the signal here has mean zero. To generate
one data point we do 10 simulations of 1000 time steps each. For each
simulation we calculate the noise (standard deviation) and then calculate
the mean and standard deviation of this noise over the 10 simulations. We
then plot the mean standard deviation normalized by the expected standard
deviation if the noise were uncorrelated, which is just

√
N , the square root

of the total number of synapses. Error bars show one standard deviation in
the measurement of this normalized noise level over the ten trials. The solid
lines are from Eq.S.38.

Given this good agreement between Eq.S.38 and numerical simulation of
the stochastic model, we now study Eq.S.38 further. Specifically, we will
consider two cases which correspond to the two types of readout we will
consider in subsequent sections: 1 - a naive readout of all stages and 2 - a
readout of only a subset of stages.

4.2.1 Correlations in a naive readout

In this case, doing the sum in Eq.S.38 explicitly leads to the following equa-
tion

σ2 = N
(
1 +

2q1/(n−1)

√
n

[ (1− q)

(1− q1/(n−1))
− (1− q2)

(1− q2/(n−1))

])
(S.39)
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Fig. S.6: The noise level in the memory transfer model as a function of the
slowest learning rate. The symbols are the means of 10 simulations of 103

time steps and error bars indicate the standard deviation. The curves are
the analytical approximation. The learning rate in stage i is qi = q(i−1)/(n−1).
Each stage has 1000 synapses.
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If we assume that ln (q−1)/n ≪ 1, i.e. the scaling used in the continuous
space approximation, then this equation gives, to leading order

σ2 = N
(
1 +

(1− q)2

ln (q−1)

√
n
)
. (S.40)

Eq.S.40 is used to make the dashed curve in Fig.S.6. To put some numbers to
this expression, taking n = 10 and q = 10−2 gives σ = 1.3

√
N , while n = 100

and q = 10−4 gives σ = 1.4
√
N . In any case, the noise clearly increases as a

function of the number of stages.

4.2.2 Correlations in a readout of only a subset of stages

If we only readout from stage k to stage k + w, then Eq.S.38 gives, for
ln (q−1)/n≪ 1

σ2 = N
(
1 +

2w√
n
qk/n(1− qk/n)

)
. (S.41)

Eq.S.53 tells us that the size of the correlation depends on the width of
the readout. Furthermore, when k is close to one or n, then the correlations
vanish. We will make use of this formula in Section 4.4 Optimal readout of
the memory signal.

4.3 Naive readout of the memory signal

Naively one can simply readout the signal of all of the synapses. This is
equivalent to integrating SNR(x, t) over x. In this case one can perform the
integral analytically in the limit ϵ = ln q−1

s /n≪ 1. One obtains

SNR(t) =
q̄N1/2√

(1 + (1−q)2

ln (q−1)

√
n)2(n+ q̄ ln (1/qs)t)

(
1+erf(

n
q̄ ln (1/qs)

(q−1
s − 1)− t√
q−1
s t/q̄

)
)
,

(S.42)
which also makes use of Eq.S.40.

4.4 Optimal readout of the memory signal

As for the heterogeneous model we can maximize the SNR by only reading
out a fraction of stages. In the case of the consolidation model, it turns out
that the optimal readout is to follow the memory trace as it propagates and
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Fig. S.7: A. The SNR for the consolidation model reading out all ensembles
(dashed lines) as well as using an optimal readout (solid lines). The total
number of synapses is N = 109 which are divided into n = 10, 20, 50 and
100 ensembles (black, read, green, blue). Here qi = q̄q(i−1)/(n−1) with q̄ = 0.8
and q = 0.001. B. The width of the optimal readout for different values of n.
Note that for fixed n that width reaches a constant value at early times, i.e.
it is independent of time for long times (until the pulse exits the system).

read out the stages near the maximum of the pulse. The fraction of stages
to be read out as a function of the total system size decreases for increasing
n as shown in Fig.S.7.

We can therefore calculate the SNR of the optimal readout by assuming
that the bounds of the integral move along with the pulse. This also allows
one to calculate the optimal width. For any bounds a(t) and b(t) which vary
in time, the SNR is just

SNR(t) =
1√

b(t)− a(t)

∫ b(t)

a(t)

dxSNR(x, t) (S.43)

We then choose the bounds in order to track the pulse. We take a(t) =
ln (q̄−1(1 + ϵt))/ ln q−1 − µ and b(t) = ln (q̄−1(1 + ϵt))/ ln q−1 + µ and then
perform a change of variables by defining z = x−ln q̄−1(1 + ϵt)/ ln q−1, where
ϵ = ln q−1/n. This converts the integral to the following form

SNR(t) =

√
N

2πµt

∫ µ

−µ

dz
qz/2√
t(1 + ϵt)

exp
[
− ((q−z(1 + ϵt)− 1)/ϵ− t)2

q−z(1 + ϵt)t

]
.

(S.44)
Now one takes a large time limit which simplifies things considerably.

In fact, it completely eliminates the time dependence of the integral, which
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Fig. S.8: The integrand f(z) from the integral in Eq.S.45

shows that the optimal width is independent of time at long times, as can
be observed numerically in Fig.S.7B. Doing this yields the formula

SNR(t) =

√
N√
πϵt

∫ µ

−µ

dzqz/2exp
[
− (q−z + qz − 2)

ϵ

]
. (S.45)

The integrand is not a symmetric function so one wouldn’t be justified in
integrating from −µ to µ in general. However, for small ϵ it is very close to
symmetric. Fig.S.8 shows what this function looks like for several values of
n. The position of the maximum is to the left of zero, but it turns out that
this position scales like ϵ while the limits of integration µ will end up scaling
like

√
ϵ so it is a higher order effect.

One can find the optimal µ by taking the derivative of the SNR with
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respect to µ and setting it to zero. Taking the integrand to be f(z) this gives

∂SNR

∂µ
= −

√
N

2

1√
2πϵµ3/2t

∫ µ

−µ

dzf(z)

+

√
N√

2πϵµt

(
f(µ) + f(−µ)

)
= 0, (S.46)

This can be rewritten as

1

µ

∫ µ

−µ

dzf(z) = 2
(
f(µ) + f(−µ)

)
. (S.47)

Now we assume that µ can be expanded in a series in ϵ. The idea is
that as the system size grows, the optimal width will decrease as a fraction
of the total system size, which is what is observed numerically, see FigS.7B.
We have already normalized x by dividing by n, so to compare with the
numerically determined optimal width we will have to multiply by n. We are
only interested in the first term of the series so we take

µ = ϵαµ0, (S.48)

and we will need to solve for the scaling α and the value µ0. The right hand
side is easier. We expand f(µ)

f(µ) = qµ/2e−(q−µ+qµ−2)/ϵ,

= e−ϵ2α−1µ2
0(ln q−1)2 + h.o.t, (S.49)

where h.o.t means higher order terms. The left hand side is trickier only in
the sense that we should do a change of variables y = z/µ to put the small
parameter in the integrand. Then we follow much as above. Finally, we end
up with

π

ϵ(2α−1)/αµ0 ln q−1
erf
(
ϵ(2α−1)/2µ0 ln q

−1
)
+ h.o.t = 4e−ϵ2α−1µ2

0(ln q−1)2 + h.o.t

(S.50)
We still do not know the proper scaling since α is an unknown. However,
we can make a guess and see what happens. If we choose α < 1/2 then we
get something on the left which scales like ϵ1/2−α but on the right we get
something exponentially small, so they can not possibly balance. If we take
α > 1/2 we get something on the left which is large and goes like ϵ1/2−α
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again, but on the right we have something which to leading order is just 4,
so that also cannot be balanced. Therefore it must be that α = 1/2. With
that choice the equation simplifies to

erf(x) =
4√
π
xe−x2

, (S.51)

where µ0 = x/ ln q−1. Amazingly, the solution x is nearly equal to 1 (it differs
from 1 by about 1% ). Therefore, taking x = 1, the optimal width is

w = 2µ,

=
√
ϵµ0,

=
2√

n ln q−1
. (S.52)

as a fraction of the system size. In terms of the number of stages it is
2
√
n/ ln q−1.
Now, in order to evaluate the SNR we must determine the size of the

correlations in the noise, given by Eq.S.53. Using the equation for the width
of the optimal readout Eq.S.52, we find that the total variance is

σ2 = N
(
1 +

4√
ln (q−1)

qk/n(1− qk/n)
)
, (S.53)

which is independent of the number of stages n. Furthermore, Eq.S.53 reaches

a maximum of σ2
max = N

(
1+ 1√

ln (q−1)

)
at stage k = n ln 2

ln (q−1)
. This means, for

example, that given the parameters in Fig.3 of the main text (q = 0.0001),
the noise level reaches a maximum of 1.15

√
N when the signal is near stage

7, i.e. at very early times. Fig.S.10 shows numerical confirmation of this.
It shows the SNR using the optimal readout for the same parameters as in
Fig.3 of the main text (number of stages n=100) both assuming there are no
correlations (solid line) and including the effect of correlations (dashed line).
The correlations are clearly very small for the optimal readout. Specifically,
they do not affect the scaling of the intitial SNR or the memory lifetime, and
only very weakly the point at which the SNR crosses that of the heteroge-
neous model. Therefore, for simplicity, we will approximate the noise level
simply as

√
N .

Now we can evaluate the SNR by plugging the formula for µ into Eq.S.45.
Keeping only the first order term in ϵ gives

SNR(t) =
N1/2n1/4

√
2(ln q−1)3/4t

erf(1). (S.54)
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symbols, dashed lines are from the integral Eq.S.45 and the dot-dashed lines
are from Eq.S.54.

This means that the decay of the SNR given the optimal readout is also
a power law with power equal to one. However, unlike the naive readout,
where at long times the SNR was independent of n, here the SNR actually
increases as n1/4. Eq.S.54 fits the numerical results very well, see Fig.S.11

4.5 A plausible read-out which is nearly optimal

The optimal readout we have implemented is computationally trivial to cal-
culate, but it is unclear how it might be carried out in the brain. Here we
show that it can, in fact, be implemented approximately through a simple
rule. Specifically, for each stage there is a threshold value of the SNR below
which the signal from that stage is no longer read out. We assume that this
threshold can be learnt and is then held fixed for all memories.
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In order to make the readout nearly optimal, we choose a threshold for
stage k, which has a position x = xk equal to the value of SNR(xk, Tk) where
Tk is the time at which, using the optimal readout, we just cease to read out
the signal in stage k. This time is given by the lower bound a(t) in the
integral Eq.S.43. That means Tk is defined implicitly through the relation
a(Tk) = xk. This can be solved for Tk, yielding

Tk = (q−(xk+µ) − 1)/ϵ, (S.55)

where µ is the optimal one we already calculated. Plugging this into the
formula for SNR(xk, t) gives the threshold only as a function of xk

SNR(xk) =

√
Nϵ

πq−xk(q−(xk+µ) − 1)
exp

(
−

(
(q−xk − 1)/ϵ− (q−(xk+µ) − 1)/ϵ

)2
q−xk(q−(xk+µ) − 1)/ϵ

)
.

(S.56)
This formula can be simplified for xk not too close to 0 which is equivalent
to assuming long times. Then q−xk − 1 ∼ q−xk . Also we plug in the optimal
µ =

√
ϵ/ ln q−1 and then expand in the small parameter ϵ. The leading order

term is

SNR(xk) =

√
N ln q−1

πn

qxk

e
, (S.57)

which is exponentially decreasing in xk.
Using this readout with optimally adjusted fixed thresholds would be

exactly equivalent to the optimal readout if the integrand f(z) were sym-
metric. Since it’s very nearly symmetric for small ϵ at long times the readout
is essentially optimal. We will therefore use the optimal readout in what
follows.

4.6 The performance of the memory transfer model:
Crossing times, SNR and memory lifetimes (Fig.3)

The curves of SNR versus time in the main panel of Fig.3 in the main text are
generated via the meanfield model (the ODEs in continuous time, discrete
stages), for both the heterogeneous system (dashed lines) and the consol-
idation model (solid lines). They represent the curves obtained using the
optimal readout described in detail in previous sections. Three measures of
interest are indicated by colored circles in the main panel of Fig.3: 1 - the
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time at which the SNR of the consolidation model crosses (and thereafter is
larger than) the SNR in an equivalent heterogeneous model, denoted Tc for
crossing time, 2 - The SNR of the consolidation model at long-times in the
powerlaw regime, and 3 - The lifetime of a memory, i.e. the time at which
the SNR of a memory dips below 1, denoted TLT . Here we describe how
these measures are calculated.

4.6.1 The crossing time Tc

The SNR for the heterogeneous model and the consolidation model with
identical q̄, q, N , and n are calculated numerically from the meanfield model,
using the optimal readout. The time at which the SNR of the consolidation
model crosses and exceeds that of the heterogeneous model is called Tc. This
is plotted in the inset of Fig.3 of the main text versus n. As shown in the
section The continuous-time approximation, for n = 2 one can derive the
crossing-time analytically to find Tc ∼ 1/q̄ as long as the learning rates are
similar. For n > 2 it is no longer possible to calculate Tc analytically as
the SNR of many stages contribute to the total SNR in a nontrivial fashion.
Nonetheless, numerically, it appears that Tc always occurs at very early times
compared to the memory lifetimes for all parameter values we have explored.

4.6.2 The SNR in the powerlaw regime

The SNR shown in the lower lefthand panel of Fig.3 in the main text as a
function of n for different slowest learning rates q, is calculated numerically
from the meanfield equations (symbols) and given by the analytical formula
Eq.S.54 (lines). The SNR is evaluated at different times for the three differ-
ent learning rates. The upshot is that the SNR in the powerlaw regime is
proportional to N1/2 and n1/4.

4.6.3 Memory lifetime

The memory lifetime can be calculated analytically from Eqs.S.29 and S.54.
Specifically, the powerlaw regime ends once the pulse reaches the last stage.
This occurs at a time T which is given by Eq.S.29. The SNR at this point
is then given by Eq.S.54 evaluated at time T , as long as the SNR is greater
than one. The memory trace then decays exponentially with a learning rate
equal to that of the last stage. Finally, the SNR reaches a value of one at a
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time TLT = T + Texp which can be written

TLT =
n

q̄q ln q−1
+

1

q̄q
ln
[ N1/2

21/2n3/4
q̄q · erf(1)(ln q−1)1/4

]
. (S.58)

If the SNR drops below one already in the powerlaw regime, then the lifetime
can be calculated from Eq.S.54 alone and is

TLT =
N1/2n1/4

21/2(ln q−1)3/4
erf(1). (S.59)

If the SNR drops below one even before the powerlaw regime is reached then
Eq.S.59 is no longer valid. Eqs.S.58 and S.59 are used to generate the curves
in the lower right hand panel of Fig.3.

To reiterate, if the initial number of synapses is large, for small n we
expect that the final decay of the last stage will occur before the SNR reaches
1. Therefore Eq.S.58 is valid. As n increases the curve will move downwards
such that the SNR reaches 1 already in the powerlaw regime and Eq.S.59 is
valid. Finally, as n increases further, at some point the SNR drops below 1
even before the powerlaw regime. This means that in this limit fewer and
fewer stages have a SNR greater than 1. In fact, in the limit of n → ∞,
the SNR of the first stage will already be less then 1 at time t = 0. At this
point the lifetime will also be zero. Therefore, the lifetime must decrease
with increasing n outside of the powerlaw regime. These trends can clearly
be seen in Figs.S.12 and S.13 which show the lifetime as a function of the
number of stages n for different learning rates q and different numbers of
synapses N . In particular, note how the green curve in Fig.S.13 reaches a
maximum and then decreases for large n.

Note that a scaling of the memory lifetime as TLT ∼ nN1/2 can be
achieved by taking q ∝ 1/N1/2, and ensuring that the SNR does not drop
below one in the powerlaw regime, i.e. Eq.S.58 is valid. This is illus-
trated in Figs.S.12 and S.13 for three different values of q which scale as
q ∝ 1/N1/2. For each value of q three different numbers of synapses are con-
sidered: N = 105, 107 and 109 (green, red and black respectively). For each
case the memory lifetime was determined numerically for the consolidation
model (solid circles) and the heterogeneous model (open squares), both using
optimal readout. The lines are the predictions for the consolidation model,
Eqs.S.58-S.59. As described above there are several qualitatively distinct
scaling regimes of the lifetime as a function of the number of stages. For
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small n the decay of the slowest stage is of the same order or larger than the
time it takes for the pulse to travel to reach the last stage, i.e. both terms in
Eq.S.58 are of the same order. This can even lead to a minimum in the life-
time as a function of n which would indicate a non-optimal number of stages.
For larger n the lifetime is dominated by the propagation time of the pulse
and ends, in fact, only when the pulse leaves the system through the slowest
stage. In this regime the scaling of the memory lifetime is approximately
linear in n. For n > nmax, the SNR drops below one even before the pulse
leaves the system and lifetimes are given by Eq.S.59, i.e. the lifetime scales
as n1/4. Finally, as n increases further, the SNR drops below one already
before the powerlaw regime and the lifetimes decrease again.

While it is clear from Fig.S.12 that the consolidation model outperforms
the heterogeneous model without interactions for all n, the greatest improve-
ment is achieved in the intermediate regime in which lifetimes scale as n.
As described in the previous paragraph, this regime is bounded below by
nmin. For n < nmin the propagation of the pulse to the last stage occurs too
quickly compared to the slowest time scale. This only occurs for relatively
small numbers of stages. The upper bound on the linear regime nmax is given
by setting the lifetimes given by Eq.S.58 and Eq.S.59 equal. Doing this and
taking the limit N → ∞ yields the scaling of maximum number of stages
with the number of synapses as nmax ∝

√
lnN . Fig.S.14 shows nmax as a

function of the square root of the log of the number of synapses N , from
Eqs.S.58-S.59, confirming the scaling for large enough N . Shown is the case
of q = 30/N1/2 for which nmin ∼ 5. Therefore, there is a large range in n
for which lifetimes scale as nN1/2. Note that nmax scales only weakly with
N , such that if the number of synapses is increased from 104, which would
be the case for ∼ 300 neurons with ten percent sparseness, to 1014, which
is approximately the total number of synapses in an adult human brain, the
number of stages is only doubled.

4.7 Comparison between the multi-stage memory trans-
fer model and homogenous (single stage) models

For a fair comparison of the memory capacity of multi-stage and single stage
homogeneous models it is important to take into account that the amount
of information stored per memory is different in the two models. Indeed, in
the multi-stage model the information is stored only in the first stage, which
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Fig. S.12: Memory lifetimes as a function of the number of stages n for
different learning rates (q̄ = 0.8, q = 100/N1/2, 30/N1/2 top to bottom), and
different numbers of synapses (N = 105, 107 and 109, green, red and black
respectively). Symbols are from simulation of the meanfield model (solid
circles and open squares are consolidation model and heterogeneous model
respectively). Lines are Eqs.S.58-S.59. The maximum number of stages for
the linear regime nmax is shown in the bottom panel.
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Fig. S.13: Memory lifetimes as a function of the number of stages n for
different learning rates (q̄ = 0.8, q = 10/N1/2), and different numbers of
synapses (N = 105, 107 and 109, green, red and black respectively). Symbols
are from simulation of the meanfield model (solid circles and open squares
are consolidation model and heterogeneous model respectively). Lines are
Eqs.S.58-S.59.
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containsN/n synapses (n is the number of stages), whereas in the single stage
model all N synapses are available to store new memories. As we assumed
that the memories are random and uncorrelated and that potentiating events
are equally probable as depressing events, then each synapse can store up to
one bit of information per memory. Hence, the first stage of the multi-stage
model can store up to N/n bits of information, which can be significantly
less what is potentially storable in a single stage model.

In order to compare the single stage and the multistage model we need to
consider a situation in which the amount of information stored per memory
is the same. In order to do so, consider a single stage model in which the
patterns of synaptic modifications are sparse. More specifically, each synapse
is modified with a probability qf . In this case the amount of information
contained in the pattern of synaptic modifications is:

Isg = N [−qf log2 qf − (1− qf ) log2(1− qf )]

which, in the limit for qf → 0 can be approximated by −Nqf log2 qf . The
information stored in each pattern of synaptic modifications is Img = N/n
bits in the case of the multistage model. For a fair comparison, we should
choose qf such that Img = Isg. This means that qf ∼ 1/n.

As qf decreases, the memory lifetime extends at the expense of the initial
signal to noise ratio. Specifically:

SNR(t) ≃
√
Nqfqe

−qf qt

As it is clear from this formula, making the patterns of synaptic modifi-
cations sparser is equivalent to rescale the learning rate:

SNR(t) ≃
√
Nq̃e−q̃t

where q̃ = qfq. The longest memory lifetime can be achieved for q̃ =
1/
√
N , which produces an initial SNR that is order 1 (i.e. it does not scale

with the number of synapses N).
The only difference with the single stage model in which we do not intro-

duce any correction for equalizing the amount of information per memory, is
that now q̃ can vary in a wider range, as it can go from 1 (fastest) to qfqn,
which is approximately qn/n. This means that the memory lifetime can in
principle be as large as in the multistage model. However, it should be noted
that any reduction of the learning rate leads to a decrease of an already small
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initial signal to noise ratio. As shown in Figure S.15, even if one considers
single stage models with timescales that are longer than qn, all the SNR
curves for single stage models are below the SNR of the multistage model.
This is true for all times. This clearly indicates that there is a significant
memory capacity advantage in using a more complex multistage model.
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Fig. S.15: SNR of the multistage model (black) compared to the SNR of sin-
gle stage models. Red solid line: SNR of a single stage model with the longest
timescale of the multistage model (qn) in the case in which the amount of in-
formation per memory is approximately n times larger than in the multistage
model. All the other curves refer to single stage models in which the amount
of information per memory is the same as in the multistage model. Dashed
red line: single stage model with q = qn. Dotted red line: single stage model
with the same memory lifetime as the multistage model. Notice that the
initial SNR is orders of magnitude smaller than in in the multistage model.
Green dotted lines: SNR of single stage models with various learning rates.
All SNR curves of single stage models are below the SNR of the multistage
model for all times. Parameters: n = 200, N = 1012.
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5 The neuronal memory transfer model (Fig.3)

Here we provide a brief, qualitative description of the model. Details are
given in the subsequent subsections. The neuronal model is once again a
Markov model. The model consists of n stages of McCulloch-Pitts neu-
rons. Neurons are recurrently connected within each stage, and connected
in a feedforward fashion from one stage to the next. There are no feedback
connections between stages. The model operates in two distinct modes of
activity: 1 - encoding and 2 - transfer, see Fig.S.16 for an illustration. Dur-
ing encoding, a pattern of neuronal activity is imposed in stage 1 and the
recurrent synapses are updated according to a simple Hebbian rule. During
transfer, some fraction of neurons in each upstream stage is activated. This
leads to activation in the downstream stage. An appropriate learning rule is
implemented in order to update the recurrent synapses in the downstream
stage such that they become more correlated with those in the upstream
stage. That is, the upstream stage ’teaches’ the downstream stage the cor-
rect synaptic weights.

5.1 The Markov model

There are n stages. Each stage is made up of Nneuron all-to-all coupled neu-
rons. Each one of the N = N2

neuron −Nneuron synapses (no self-coupling) can
take on one of two non-zero values. Specifically, the synapse from neuron j to
neuron i Jij ∈ {J+, J−}, where J+ > J−. Furthermore, there are one-to-one
connections from a neuron i in stage k to a neuron i in stage k + 1. These
connections are so strong that any presynaptic activity elicits postsynaptic
activity without fail. In the initial condition, the synaptic matrices for all n
stages are in the equilibrium state where any synapse is in the potentiated
state J+ or in the depressed state J− with probability 1/2.

5.1.1 Encoding

A memory is encoded in stage 1. Specifically, one half of the neurons are
randomly chosen to be activated (si = 1 if i ∈ {active}), while the remaining
neurons are inactive (si = 0 if i ∈ {inactive}). A synapse Jij is then potenti-
ated to J+ with a probability q1 if si = sj and is depressed with probability q1
if si ̸= sj. This encoding scheme is illustrated in Fig.S.16 for a simple model
of two stages of four neurons each. After encoding a single memory, transfer
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activity is simulated (see below) after which the next memory is encoded,
and so on.

5.1.2 Transfer

A fraction f of neurons in stage 1 is activated at time t. Because of the
powerful feedforward connections, the same subset of neurons is activated in
stage 2. Specifically, a subset of fNneuron neurons in stage 1 is stimulated
at time t, i.e. s1i (t) = 1 for i ∈ {active}, while s1i (t) = 0 for the remaining
neurons. At time t+ 1 then we have s2i (t+ 1) = 1 for the same subset as in
stage 1. The recurrent connectivity may lead to postsynaptic activation in
stage 1 neurons. Each neuron i receives an input h1i (t) =

∑N
j=1 J

1
ijs

1
j(t). If

hi > θi, where θi is a threshold, then neuron i is activated at time t+ 1, i.e.
s1i (t + 1) = 1. Again, because of the powerful feedforward connections, the
same subset of neurons in stage 2 is activated, i.e. s2i (t+ 2) = 1.

We take θi = θ to be the same for all neurons and assume that it can take
one of two values θ ∈ {θl, θh} with equal likelihood during each replay. These
values correspond to a low threshold and a high threshold respectively. We
assume that the recurrent connections in stage 2 have been ‘dialed down’ to
the point where they do not influence the postsynaptic activation, i.e. the
recurrent connections in stage 2 are unimportant for this mode of dynamics.
This is the case if all of the recurrent synapses in stage 2 are multiplied by a
modulatory factor α which is very small. We now need a plasticity rule for
synapses in stage 2. If θ = θl, then J

2
ij = J− at time t + 2 with probability

q2 if and only if s2j(t + 1) = 1 and s2i (t + 2) = 0, otherwise the synapse
is unchanged. This says that if, despite the low threshold, the presynaptic
activity did not elicit postsynaptic activity, then the synapses in stage 1 must
have been weak, therefore I will depress the corresponding synapses in stage
2. If θ = θh, then J

2
ij = J+ with probability q2 if and only if s2j(t + 1) = 1

and s2i (t + 2) = 1. Otherwise the synapse is unchanged. This says that if,
despite the high threshold, the presynaptic activity did elicit postsynaptic
activity, then the synapses in stage 1 must have been strong, therefore I will
potentiate the corresponding synapses in stage 2. At time t + 2 all of the
neurons in stage 1 are silenced, i.e. s1i (t + 2) = 0 signalling the end of the
current ‘replay’. The interaction between stage 2 and stage 3 is analogous.
That is, the factor α is set to 1 for stage 2 and dialed down for stage 3
and the synaptic weights are transferred according to the process described
above. This is repeated until the synapses in the final stage are changed.
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Then the entire replay process is repeated T times before a new memory is
imprinted on stage 1. This process of transfer is illustrated in Fig.S.16 for
the simpled case of two stages of four neurons each.

5.1.3 The fraction of synapses transferred during replay

The postsynaptic activation due to recurrent connections depends on the
presynaptic input. This input depends on the number of neurons activated,
which in this example will be exactly fNneuron, and the state of the synapses
which changes over time. The distribution of recurrent inputs is binomial, but
for fNneuron large enough is nearly Gaussian. The input due to potentiated
synapses is I+ = µ+ + σ+c where c is a random variable with zero mean
and unit variance, µ+ = fNneuronJ

+/2 and σ+ = J+
√
fNneuron/4. The input

due to depressed synapses is I− = µ− − σ−c where µ− = fNneuronJ
−/2 and

σ− = J−
√
fNneuron/4. The total input is therefore approximately Gaussian

distributed with mean and standard deviation given by

µ =
fNneuron

2
(J+ + J−), (S.60)

σ = (J+ − J−)

√
fNneuron

2
. (S.61)

A potentiated event will only occur in the downstream stage if θ = θh
and hi > θh and a depressing event will only occur if θ = θl and hi < θl. The
probability that the fN synapses associated with the postsynaptic activity
of a single neuron are changed is therefore

ϕ =
1

2

(
1− 1√

π

∫ θh−µ√
2σ

θl−µ√
2σ

dze−z2

)
, (S.62)

which, if the low and high thresholds are equally spaced from the mean can
be written

ϕ =
1

2

(
1− erf

(θ − µ√
2σ

))
. (S.63)

From the analysis of the previous section it is clear that the probability of
a synapse in stage k being updated during the transfer process is not simply
equal to the intrinsic learning rate qk. Rather, for a transfer process of T
replays, it is equal to

q̄k = (1− e−qkϕfT ), (S.64)
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Fig. S.16: The neuronal model of memory consolidation. Top: Plasticity
events, in this case patterns of neuronal activation, cause memories to be en-
coded through a Hebbian plasticity rule. Before the next memory is encoded
a transfer process copies patterns of synaptic weights from one stage of the
neuronal memory system to the next, downstream stage. Middle: A pattern
of neuronal activation is imposed during encoding. A Hebbian learning rule
leads to potentiation (depression) in the synapses connecting neurons with
the same (different) activity. Bottom: An illustration of the transfer process
for f = 1/Nneuron. LTP occurs whenever a presynaptic activation leads to
postsynaptic firing. Otherwise LTD occurs.
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which, for qkϕfT ≪ 1 can be written

q̄k = qkϕfT. (S.65)

Eq.S.64 is compared to numerical simulation of the full neuronal model for
various values of f in Fig.S.17.

5.1.4 The fraction of synapses correctly transferred during replay

Of the total number of synapses transferred during replay, some fraction
will be errors. The fraction of correctly potentiated synapses is just the
fraction of the area under the curve greater than θh which is due to synapses
in the potentiated state. It is also the ratio of the expected number of
potentiated synapses to the total number of activated synapses per neuron,
i.e. ψ = E(k+)/(fN). The expected number of potentiated synapses is just

E(k+) =

∫∞
k∗
dk · ke−

(k−µ)2

2σ2∫∞
k∗
dke−

(k−µ)2

2σ2

, (S.66)

where k∗ = θh−fNJ−

J+−J− is the minimal number of potentiated synapses needed
to exceed the high threshold θh. Finally, we find that

ψ =
1

2
+

1√
2πfNneuron

e−ξ2

erfc(ξ)
. (S.67)

This formula holds also for depressed synapses if the thresholds are equally
spaced from the mean input. Eq.S.67 reaches a value of one when θ = fNJ+

which is the maximum possible input. Eq.S.67 is shown in Fig.S.18 for various
values of f .

The effective learning rate during transfer

From the previous sections it is clear that the effective learning rate depends
on the intrinsic learning rate times the number of replays, times a constant
which depends on the details of the transfer process. The probability of
correctly updating a synapse is then ψq̄k and an incorrect update occurs
with a rate (1− ψ)q̄k.
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Fig. S.17: The fraction of synapses transferred, or transfer rate q̄ as a function
of ξ = (θ − µ)/(

√
2σ) for Nneuron = 1000 neurons in the downstream stage

and q = 1. Here f = 0.01 (black), 0.02 (red), 0.05 (green) and 0.10 (blue).
The transfer rate is plotted for T = 1 (top), T = 100 (middle) and T = 1000
(bottom, note log scale on y-axis). J+ = 5 and J− = 1. Symbols are the
average of 100 realizations of the full neuronal model. Lines are from Eq.S.63.
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Fig. S.18: The fraction of correctly transferred synapses ψ. The symbols and
all parameters are from the same simulations as in Fig.S.17. Note that ψ is
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onto the same curve for different T s. Lines are from Eq.S.67.

5.2 Meanfield model

The previous synaptic meanfield model still holds with one important correc-
tion. We must now take errors into account. In addition, the learning rates
for stages k > 1 are now taken to be the effective learning rates calculated
from the previous section. The probability of a synapse in stage 2 being in
the potentiated state at time t+ 1 is

p+2 (t+ 1) = p+2 (t)(1− pd) + p−2 (t)pp, (S.68)

pd = q̄2p
−
1 (t)ψ + q̄2p

+
1 (t)(1− ψ), (S.69)

pp = q̄2p
+
1 (t)ψ + q̄2p

−
1 (t)(1− ψ), (S.70)

where pd and pp are the probabilities of a depressing or a potentiating event
respectively. This simplifies to

ṗ2 = q̄2ψ(p1 − p2)− q̄2(1− ψ)(p1 + p2), (S.71)

where we have taken the continuous time limit, dropped the + and subtracted
off the equilibrium value of 1/2. The meanfield equation for the first stage
is unchanged from the synaptic case as are the initial conditions. From
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Eq.S.71 it is clear that the neuronal model approaches the performance of
the synaptic model as ψ → 1. However, in this limit we also have ϕ → 0,
i.e. the transfer rate goes to zero. Therefore, to achieve good performance,
ψ should be close to one, but this requires increasing T to compensate for
low ϕ. That is, accurate transfer takes a large number of replays.

5.3 Build-up of correlations for many stages

Numerical simulations show that the model, as is, tends to generate strong
correlations in the synaptic weights of synapses impinging on the same neu-
ron. Specifically, at sufficiently long times each column in the synaptic matrix
tends towards either an all-potentiated state or an all-depressed state. This
build-up of correlations is more pronounced for more downstream stages for
reasons which will be described below.

During replay, a fraction f of neurons is activated, this produces a sub-
threshold input in postsynaptic cells which is approximately Gaussian with
mean and variance

µ =
fNneuron

2
(J+ + J−), (S.72)

σ2 =
fNneuron

4
(J+ − J−)2. (S.73)

This calculation assumes that the probability of a synapse being in the
potentiated or depressed state is simply 1/2. This is true on average, but
if we consider one particular dendritic tree, i.e. the synapses which contact
a particular neuron, there will be some deviation from this. That is, there
will not be exactly N/2 potentiated and N/2 depressed synapses (ignoring
autapses). So, this means that when a fraction f of neurons is stimulated,
the true input to a cell will have mean and variance

µ = fNneuron((
1

2
+ ϵ)J+ + (

1

2
− ϵ)J−), (S.74)

σ2 = fNneuron(
1

2
+ ϵ)(

1

2
− ϵ)(J+ − J−)2, (S.75)

which can be written

µ =
fNneuron

2
(J+ + J−) + ϵ

fNneuron

2
(J+ − J−), (S.76)

σ2 =
fNneuron

4
(J+ − J−)2(1− 4ϵ2). (S.77)
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where ϵ = δ
Nneuron

and δ is the excess number of potentiated pre-synapses
impinging on one neuron beyond Nneuron/2 so ϵ ∈ {−1/2, 1/2}. Of course,
we expect ϵ to be small. In fact, since the synapses are updated essentially
as a Poisson process with the probability of potentiation and depression both
being 1/2, the expected number of potentiated synapses is Nneuron/2 and the
standard deviation is

√
Nneuron/2 which means ϵ ∼ 1

2
√
Nneuron

. However, it
doesn’t matter how small ϵ is, it will always lead to large fluctuations in
downstream synaptic states if: 1 - for a fixed number of stages there are
sufficiently many replays or 2 - for a fixed number of replays there are suffi-
ciently many stages. The reasons is that even a small excess of potentiated
synapses leads to an imbalance in potentiation over depression in the next
stage. This effect is accentuated by the fact that plasticity is completely
driven by the tails of the input distribution. Therefore sufficiently many re-
plays will always make the ϵ in the next stage bigger than in the current one,
making the system unstable. This can be seen in Fig.S.19 where the input to
each neuron is plotted, averaged over 5000 replays. The inputs to neurons in
stages 2, 4 and 6 are shown. The inputs to stage 2 are clearly tightly peaked
around 30, since here f = 0.01, Nneuron = 1000, J+ = 5 and J− = 1. The
inputs to stages 4 and 6 show much greater variability with those for stage 6
clearly grouping around 10 and 50, indicating that for each neuron all inputs
are either depressed or potentiated respectively. The mean averaged over the
network is still 30.

A simple solution to avoid such a build-up of correlations is to allow for
a variable threshold in the plasticity rule. Specifically, the threshold should
compensate for changes in excitability as in the BCM rule. The most trivial
implementation of this is to subtract off the value ϵfNneuron

2
(J+−J−) from the

input to any cell. This is equivalent to shifting both thresholds by the same
amount. This does not take into account the effect of correlations on the
width of the input distribution, but that effect is order ϵ2 and is negligible.
Fig.S.20 shows the same simulation as in Fig.S.19 but with the corrected
input. The fluctuations are clearly stabilized in this case.

5.4 Neuronal readout of memories

We have described how the memory transfer model can be implemented in
a simple network of McCulloch-Pitts neurons with two modes of activity:
encoding and transfer. In this neuronal model, memories are still defined
as the patterns of synaptic connectivity. These patterns are encoded by
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Fig. S.19: Inputs to cells becomes progressively split between purely de-
pressed and purely potentiated.
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Fig. S.20: Correcting for the effect of fluctuations on the mean input stabilizes
the system.
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imposing a particular pattern of neuronal activity in the first stage during
the encoding phase. Therefore we can associate a pattern of neuronal activity
with every pattern of synaptic weights (memory). This allows us to consider
a simple means of ‘reading out’ memories, by which we mean detecting a
pattern of neuronal activation which has been previously used during the
encoding phase. For this particular type of readout we drive one half of the
neurons in stage k. The pattern of activation is random and may be a novel
(not learned) pattern or may coincide with a previously learned pattern. Our
task is to design a read-out circuit which can distinguish between these two
types of patterns: novel or learned. Therefore this is a recognition task.

Let us designate by the vector sk(t) the state of neurons in stage k at
time t, where for neuron i ski (t) ∈ {0, 1} and 1 means active. The activity
of neuron i at a time t + 1 depends on the recurrent synaptic connectivity.
Specifically, the input current to neuron i is hki (t) =

∑
j J

k
ij(t)s

k
j (t), and if

hki (t) > θ then ski (t+1) = 1. The question is, ‘How does hki (t+1) depend on
whether or not sk(t) is a novel or a learned pattern?’ If there is a systematic
difference in this input current as a function of the novelty of the pattern of
activation, then it is possible to recognize previously learned patterns.

As an illustrative case consider a stage with learning rate q = 1, i.e. every
synapse is overwritten at every time step. Then

Jij(t) =
J+ + J−

2
+
J+ − J−

2

(
2si(t− 1)− 1

)(
2sj(t− 1)− 1

)
, (S.78)

where we have dropped the superscript k. Now we find that

hi(t) =
J+ + J−

2

∑
j

sj(t)+
J+ − J−

2

(
2si(t−1)−1

)∑
j

(
2sj(t−1)−1

)
sj(t).

(S.79)
The expected value of the input is

E(hi) =
Nneuron

4
(J++J−)+(J+−J−)(2si(t−1)−1)

(
E(
∑
j

sj(t−1)sj(t))−
Nneuron

4

)
,

(S.80)
and so clearly depends on the correlation between the patterns of activa-
tion at times t − 1 and t. If they are perfectly correlated (anti-correlated)
patterns, then EC(h) = Nneuron

2
J+ if si(t − 1) = 1 (si(t − 1) = 0)and

EC = Nneuron

2
J− if si(t − 1) = 0 (si(t − 1) = 1). If they are uncorrelated,

then EU = Nneuron

4
(J+ + J−). Also, in this simple example we also have that
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V arC(hi) = 0 and V arU(hi) = 3
8
(J+ − J−)2Nneuron. Therefore in this sim-

ple case the distribution of inputs given novel patterns of activation is an
approximate Gaussian with the mean and variance given above, while for a
learned memory it is two delta functions centered to the left and right of
the mean of the Gaussian. Therefore, the threshold for the McCulloch-Pitts
neurons can be placed between the mean of the Gaussian and the rightmost
delta function EU < θ < EC . This will lead to many more neurons being
active at time t + 1 whenever the pattern of activation is learned and not
novel. A simple readout would then be to recognize a learned pattern if the
sum σ =

∑
i si(t+ 1) is greater than a certain threshold.

In the general case (q ̸= 1) the separation between the input distributions
given a learned or a novel pattern of activation is not as large. In fact, after
a pattern is learned (memory encoded), the difference EC −EU will decrease
exponentially in time with a time constant proportional to 1/qk where qk is
the learning rate for stage k. Furthermore, V arC > 0. Therefore, the task of
recognition is a signal-detection problem given Gaussian distributions. In any
case, it is clear that given any θ and any threshold for recognition of a learned
pattern, some errors will be made. The probability of correct recognition
will clearly decrease as a function of the age or SNR of the memory being
tracked. This is illustrated in Fig.S.21 for the neuronal memory transfer
model given the same parameter values as in Fig.6 of the main text. In
Fig.S.21, the upper panel shows the SNR of each of the first five stages as
well as the total SNR (black). The lower panel shows a recognition index
xrecog using each of the individual stages as well as all of them combined
(black). To make these curves, after each encoding/transfer process (one
time step), each stage is probed with both a novel pattern of activation and
the pattern which was learned at t = 0. Both of these patterns produce
a response (here θ = EU + StDevU). In this case we simply compare the
responses and say that the larger response wins (that pattern is recognized).
We then repeat the entire simulation 1000 times. The recognition index is
the number of times the learned pattern led to a larger response minus the
number of times the novel pattern lead to a larger response divided by 1000.
Therefore xrecog ∈ {−1, 1} and xrecog = 0 is chance level. No effort was made
to optimize the readout in any way. Clearly, no errors occur when the SNR
is large, and then the rate of errors increases with decreasing SNR.
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Fig. S.21: The SNR (top) and recognition index (bottom) for the neuronal
memory transfer model. All parameters are the same as in Fig.6 of the main
text. Curves are from all stages (black), stage 1 (red), stage 2 (blue) stage 3
(orange), stage 4 (green) etc.
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6 A neuronal memory transfer model with

random projections

Here we describe a modified neuronal memory transfer model in which we
relax the assumption of one-to-one feedforward connection between stages.
Our results are entirely numerical.

Once again there are n stages with Nneuron neurons in each stage. The
new twist is that at each stage > 1 each neuron i receives input from a ran-
dom subset of neurons in the previous stage. The probability of forming such
a feedforward connection is pff so each neuron receives on average pffNneuron

connections. Recurrent synapses are binary with values J ∈ {J−, J+} while
feedforward synapses are all taken identical with J = Jff . Recurrent con-
nections are sparse with a probability of connection of pr. The simulations
are carried out in the following steps:

6.1 Initializing matrices

We first initialize all recurrent matrices by randomly assigning synaptic
weights. For the connection from cell j to cell i, Jij is non-zero with prob-
ability pr and zero otherwise. If it is nonzero then it is assigned a value J+

with probability 1/2 and is set to J− otherwise. Feedforward matrices are
initialized similarly. For the connection from cell j in stage k to cell i in stage
k + 1 I set J = Jff with a probability pff and to zero otherwise.

We encode a memory by randomly stimulating a subgroup of neurons in
stage 1. The state of a neuron i in stage 1 at a time t is given by s1i (t) ∈ {0, 1}.
Thus at time t = 0 we set s1i (0) = 1 with a probability fm (m for memory).
We activate another randomly selected subgroup of neurons at time t = 1,
again with probability fm. For all simulations fm = 1/2. If neuron j at time
t = 0 and neuron i at time t = 1 are in the same state we set Jij = J+ with
a probability q1. If the activities are different then we set Jij = J− with
a probability q1. If there is no connection between the cells (due to sparse
connectivity) we do nothing. At the same time we initialize the template of
the memory in stage 1. This is the same as the preceding procedure except
that the ‘effective’ q1 = 1.

Initializing the templates for the downstream stages is more involved.
When we stimulate the randomly chosen subset of neurons in stage 1 at
time t = 0, there is some subthreshold input to cells in stage 2 due to the
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feedforward connectivity. This input is approximately Gaussian with mean
µm = fmpffJffNneuron and variance σ2

m = J2
fffmpff (1 − pff )Nneuron. To

maintain the same level of coding, i.e. ensure that only about half of the
neurons in stage 2 are active, we set a threshold θm = µm such that for
a neuron i in stage 2 receiving an input hi, if hi > θm we set s2i (0) = 1,
otherwise it is set to zero. The same holds true at time t = 1. Once we
have done this procedure for times 0 and 1, we can set the weights for the
template. If s2j(0) and s

2
i (1) have the same state, then we set Jij = J+ with

probability 1 (unless there is no connection) and if the states are different we
set Jij = J−.

6.2 Calculating overlap

This is just a procedure which can be carried out at anytime. If the recurrent
connection from cell j to cell i in stage k is Rk

ij and the template ‘connection’
between the same cells is T k

ij then the overlap mk = c
prN2

neuron
where c is the

number of nonzero elements which are the same. The strength of the memory
in stage k is then 2mk − 1. This removes the overlap due to chance (1/2).
Then the SNRk =

√
N(2mk − 1) where N is the number of synapses in one

stage. This is the quantity which is plotted in Fig.S.22.

6.3 Replay

For each replay, we activate a random subset of neurons. For the sake of
argument we will discuss replay from stage 1 to stage 2. For a replay at time t
neuron j in stage 1 is set to 1 with a probability f . This results in fN neurons
being active on average. This activation causes some postsynaptic input
within stage 1 due to the recurrent connections. This input is approximately
Gaussian with mean and variance given by

µr = fprNneuron
(J+ + J−)

2
, (S.81)

σ2
r = fpr

Nneuron

4

(
(J+ − J−)2 + (1− pr)(J

+ + J−)2

)
, (S.82)

where the first term of the variance is due to differences in the synaptic
weights and the second term is due to quenched randomness due to sparse
connectivity. Obviously the input to neuron i, hi will be highest if there is a
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significant overlap between the random pattern of activity and the synapses
potentiated by a previous memory. It will be least when the random pattern
is anti-correlated with the potentiated synapses, i.e. it is correlated with
the synapses depressed by a previous memory. So as before we set two
thresholds, one high and one low, θh and θl. We choose one of these two
thresholds randomly with probability 1/2 at the beginning of the replay. In
either case, if hi > θ then s1i (t+1) = 1 and otherwise it is zero. The fraction
of neurons active at time t+1 can be determined from the threshold and the
Gaussian input distribution defined by Eqs.S.81 and S.82. It is clear that
when there is a high threshold very few neurons will be active, and when
there is a low threshold very many neurons will be active.

The activity in stage 1 at times t and t+1 lead to subthreshold input to
neurons in stage 2 due to the feedforward connections. Again this input will
be approximately Gaussian. The input distribution at time t has mean and
variance

µff (t) = fpffJffNneuron, (S.83)

σ2
ff (t) = J2

fffpff (1− pff )Nneuron, (S.84)

whereas the input distribution at time t+ 1 has mean and variance

µff (t+ 1) =
µff (t)

fN

∑
i

s1i (t+ 1), (S.85)

σ2
ff (t+ 1) =

σ2
ff (t)

fN

∑
i

s1i (t+ 1), (S.86)

where the number of active neurons in stage 1 at time t+ 1 depends on the
details of the recurrent dynamics as discussed above.

Now, the idea is to set thresholds for the feedforward connections so as
to correctly transfer some of the synapses. First we will assume that we
have chosen θh for the recurrent dynamics. The handful of neurons which
become active in stage 1 at time t + 1 are those which overlap maximally
with the random pattern presented at time t. Thus we want to select the
neurons in stage 2 that receive their input predominantly from these two
subsets of neurons. This should give the maximal overlap in the transformed
space of stage 2 as well. We do this by setting high thresholds. However, we
cannot set the threshold to be the same for both time steps since the input
statistics are completely different. What we do is set the threshold to be
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θff (t) = µff (t) + ασff (t) where α can be varied to get different transfer and
error rates. The means and variances are just from Eqs. S.83-S.86. Now we
potentiate the connection from cell j to cell i in stage 2 with probability q2 if
s2j(t) = 1 and s2i (t+1) = 1. If the recurrent threshold is θl then we still want
the neurons in stage 2 at time t to receive their input predominantly from
the neurons in stage 1 constituting the random pattern. However, now it is
the neurons in stage 1 which did not fire at time t+ 1 which are maximally
correlated with the depressed part of the memory. Therefore, I want to isolate
the neurons in stage 2 at time t+1 which predominantly receive inputs from
those neurons. We do this by setting a low threshold. Those neurons in
stage 2 which despite the low threshold still do not fire must be receiving
a significant share of connections from the neurons which are not active in
stage 1. Now we depress the connection from cell j to cell i in stage 2 with
probability q2 if s2j(t) = 1 and s2i (t+ 1) = 0.

We repeat the replay process T times. We then encode a new memory in a
way analogous to the first. Figure S.22 shows the results of a simulation with
two stages, each with 1000 neurons and random projections with feedforward
sparseness of 0.1. The top shows the fraction of synapses transferred per
replay which are actually updated correctly. The fluctuations are large but
this process does better than chance on average. The resulting memory traces
are shown in the bottom panel.
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Fig. S.22: Upper figure: The fraction of updated synapses in stage 2 which
were updated to the correct state (according to the template) for each replay
over 200 replays per memory and 30 memories in this case. The dashed red
line shows the mean which is at 0.73. Chance is 0.5. Bottom figure: The
overlap between the synaptic matrix in stages 1 and 2 and their respective
templates in a system with random projections. Parameter values are: n=2,
N=1000, pr = 1, J+ = 5, J− = 1, Jff = 2, pff = 0.1, fm = 0.5, f = 0.5,
θh = µr+2σr, θl = µr−2σr, α = 2 (see description of feedforward thresholds
in text), q1 = q2 = 0.5, T = 200. Note that the overlap in stage 2 is zero for
t = 0.
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