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Full derivation of approximate error vs number of nodes

In order to compute the mean squared error we need expressions for four terms in equation 47 of the

main text. These are the three terms related to the mean; i.e.
〈(
mG
)2〉

,
〈
µim

G
〉
, and 〈µiµj〉, and the

average run-length distribution 〈pi〉. We now derive these terms one at a time.

Term 1:
〈(
mG
)2〉

The simplest of these is just the square mean of the prior distribution over mG the ground truth mean;
i.e., 〈(

mG
)2〉

=

∫ (
mG
)2
p(mG|vp, χp)dmG (1)

This term is defined by our choice of the prior.

Term 2:
〈
µim

G
〉

To compute the second term,
〈
µim

G
〉
, we first express the means, µi, of the individual Delta rules as

weighted sum of all previous data points; i.e.,

µi =

t∑
a=1

αi(1− αi)
t−axa

=

t∑
a=1

κiaxa

(2)

where the kernel κia = αi(1− αi)
t−a. Using this kernel expression for µi, we can write

〈
µim

G
〉

=

t∑
a=1

κia
〈
xam

G
〉

(3)

If there is no change-point between time a and time t + 1, then xa is sampled from a distribution with
mean mG and we have 〈

xam
G
〉
no change-point =

〈(
mG
)2〉

(4)

which is just the square mean of the prior over mG. Conversely, if there is a change-point between a and
t+ 1, then xa comes from a different distribution and we have〈

xam
G
〉
change-point =

〈
mpm

G
〉

= mp

〈
mG
〉

= m2
p (5)

where mp is the mean of the prior distribution over mG.
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Finally, to compute
〈
xam

G
〉

we need to marginalize over the two possibilities that a change-point has
occurred or not. The probability that there is no change-point between times a and t+1 is (1−h)t−a+1 and
a change happens with probability 1− (1− h)t−a+1. These probabilities give us the following expression
for
〈
xam

G
〉
,〈

xam
G
〉

= (1− h)t−a+1
〈
xam

G
〉
no change-point +

(
1− (1− h)t−a+1

) 〈
xam

G
〉
change-point

= (1− h)n+1
(〈(

mG
)2〉−m2

p

)
+m2

p

= (1− h)n+1ξ0 + ξ1

(6)

where we have defined n = t− a, ξ0 =
〈(
mG
)2〉−m2

p and ξ1 = m2
p. Thus we can write

〈
µim

G
〉

=

t−1∑
n=0

αi(1− αi)
n
(
ξ0(1− h)n+1 + ξ1

)
=
ξ0αi(1− h) (1− (1− αi)

t(1− h)t)

1− (1− αi)(1− h)
+ ξ1

(
1− (1− αi)

t
) (7)

Term 3: 〈µiµj〉
〈µiµj〉, is calculated in a similar manner. Using the kernel expression for µi (equation 2), we can write

〈µiµj〉 =

t∑
a=1

t∑
b=1

κiaκjb 〈xaxb〉

= C(0)

t∑
a=1

κiaκja +

t∑
n=1

C(n)

[
t−n∑
a=1

κiaκja+n +

t∑
a=n+1

κiaκja−n

] (8)

where we have introduced the function C(n) to denote the average correlation between data points that
are n time points apart; i.e.,

C(0) =
〈
x2a
〉

C(n) = 〈xaxa+n〉
(9)

If we assume that the data come from a change-point process with hazard rate h, then we can compute
the form of C(n). If a change-point occurs between time a and time a + n, then both xa and xa+n are
sampled from the same generative distribution. In this case 〈xaxa+n〉 is simply the mean square of the
prior over µ; i.e.,

〈xaxa+n〉no change-point = ζ0

=

∫ ∫ ∫
xaxa+np(xa|µ)p(xa+n|µ)p(µ|vp, χp)dxadxa+ndµ

=

∫
p(µ|vp, χp)µ2dµ

(10)

If there is a change-point between time a and time a + n then the parameters of the generating
distributions are different. In this case we have that 〈xaxa+n〉 is the square mean of the prior; i.e.,

〈xaxa+n〉change-point = ζ1 =

[∫
p(µ|vp, χp)µdµ

]2
(11)
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Thus we can write

C(n) = (1− h)n 〈xaxa+n〉no change-point + (1− (1− h)n) 〈xaxa+n〉change-point
= (ζ0 − ζ1)(1− h)n + ζ1

(12)

Now, since all of the sums in equation 8 are geometric progressions they can be written in closed form,

t−n∑
a=1

κiaκja+n =
αiαj(1− αi)

n(1− (1− αi)
t−n(1− αj)

t−n)

1− (1− αi)(1− αj)

= Θij(n)

(13)

Note that, by symmetry,
t∑

a=n+1

κiaκja−n =

t−n∑
a=1

κjaκia+n = Θji(n) (14)

and we also have
t∑

a=1

κiaκja = Θij(0) (15)

Next the sums over n can be computed as

t∑
n=1

C(n)Θij(n) =
αiαj

1− (1− αi)(1− αj)

[
t∑

n=1

C(n)(1− αi)
n − (1− αi)

t
t∑

n=1

C(n)(1− αj)
t−n

]
=

αiαj

1− (1− αi)(1− αj)
(S1

i − (1− αi)
tS2

j )

(16)

where

S1
i =

(ζ0 − ζ1)(1− h)(1− αi)(1− (1− h)t(1− αi)
t)

1− (1− αi)(1− h)
+
ζ1(1− αi)(1− (1− αi)

t)

αi
(17)

and

S2
j = (ζ0 − ζ1)(1− h)

(1− αj)
t − (1− h)t

h− αj
− ζ1((1− αj)

t − 1)

αj
(18)

Which gives us the following expression for 〈µiµj〉

〈µiµj〉 =
αiαj(1− (1− αi)

t(1− αj)
t)

1− (1− αi)(1− αj)
C(0) +

αiαj

1− (1− αi)(1− αj)
(S1

i − (1− αi)
tS2

j )

+
αiαj

1− (1− αi)(1− αj)
(S1

j − (1− αj)
tS2

i ) (19)

Term 4: 〈pi〉
〈pi〉 is the average value of the run-length distribution at node i; i.e.,

〈pi〉 = 〈p(li|x1:t)〉 (20)

To compute it, we consider the average of the update equation for the run-length distribution

p(li|x1:t) ∝ p(xt|li)
N∑
j=1

p(li|lj)p(lj |x1:t−1) (21)
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Which, for brevity we rewrite as

pt+1
i =

Lt
i

∑
j Tijp

t
j∑

i Lt
i

∑
j Tijp

t
j

(22)

where pt+1
i = p(li|x1:t), is the probability at time t + 1, Lt

i = p(xt|li), is the likelihood of the data for
node i at time t and Tij = p(li|lj) is the transition matrix encoding the change-point prior.

We proceed by taking the average of this update over all possible realizations of the data, x1:t; i.e.,

〈
pt+1
i

〉
=

〈
Lt
i

∑
j Tijp

t
j∑

i Lt
i

∑
j Tijp

t
j

〉

≈
〈Lt

i〉
∑

j Tij
〈
ptj
〉∑

i 〈Lt
i〉
∑

j Tij
〈
ptj
〉 (23)

Where we have made the approximation that the average can be considered separately for Lt
i and pti.

At equilibrium we have 〈pti〉 =
〈
pt+1
i

〉
= 〈pi〉 and 〈Lt

i〉 =
〈
Lt+1
i

〉
= 〈Li〉 which gives

〈pi〉 ∝ 〈Li〉
∑
j

Tij 〈pj〉 (24)

This implies that the mean of run-length distribution is related to the eigenvectors of the matrix, M ,
where

Mij = 〈Li〉Tij (25)

Thus to compute the mean run-length distribution, all that remains is to compute, 〈Li〉. By definition
we can write this as

〈Li〉 =

∫ ∫
...

∫
dx1dx2...dxt+1Lip(x1:t+1)

=

∫
dxt+1p(xt+1|µi)

∫ ∫
...

∫
dx1dx2...dxtp(µi|x1:t, αi)p(x1:t+1)

(26)

where p(x1:t+1) is the prior over the data. It will be useful to write this prior distribution in the following
form

p(x1:t+1) =
∑
r

p(r)

∫
dm

t+1∏
a=t−r+2

p(xa|m)

t−r+1∏
b=1

p(xb|x1:b−1) (27)

This expresses the prior distribution in terms of the time r since the last change-point and the current
generative mean m. Substituting this form into 26 gives

〈Li〉 =
∑
r

p(r)

∫
dm

∫
dxt+1p(xt+1|m)

∫
dµip(xt+1|µi)p(µi|m, r) (28)

where we have defined p(µi|m, r) as the distribution over the mean of node i given that the mean of the
current epoch is m and that the last change-point occurred r time steps ago. This is given by

p(µi|m, r) =

∫
dx1:tp(µi|x1:t, αi)

t+1∏
a=t−r+2

p(xa|m)

t−r+1∏
b=1

p(xb|x1:b−1) (29)

To get a handle on p(µi|m, r), we compute its moments and use moment matching to get an approximate
form. The form will depend on the type of generative distribution. Here we compute it for the Bernoulli
and Gaussian cases. In these case we only need the first two moments. Simulations suggest that this
approximation is very good in these cases.
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First two moments of p(µi|m, r)

1st moment For notational convenience later on, we write the mean of p(µi|m, r) as φ. This mean is
given by

φ =

t−r∑
a=1

κa 〈xa〉+

t∑
a=t−r+1

κa 〈xa〉 (30)

where the first term is the sum over times before the last change-point and the second term the sum over
times after the last change-point. Before the last change-point 〈xa〉 = mp and after 〈xa〉 = m. Therefore
we have

φ = mp

(
(1− αi)

r − (1− αi)
t
)

+m (1− (1− αi)
r) (31)

2nd moment As we did above for the derivation of the mean, we break into components before and
after the last change-point

〈
µ2
i

〉
=

t∑
a=t−r+1

t∑
b=t−r+1

κaκb 〈xaxb〉+ 2

t−r∑
a=1

t∑
b=t−r+1

κaκb 〈xaxb〉+

t−r∑
a=1

t−r∑
b=1

κaκb 〈xaxb〉

= Q1 +Q2 +Q3

(32)

Now, for a > t − r and b > t − r we have that xa and xb are sampled from the same distribution with
mean m. Also note that xa = xb when a = b. Therefore we can write

〈xaxb〉 =

{ ∫ ∫
dxadxbxaxbp(xa|m)p(xb|m) = m2 a 6= b, a > t− r, b > t− r∫

dxax
2
ap(xa|m) = m2 + σ2 a = b, a > t− r, b > t− r (33)

where σ2 is the variance of the generative distribution of the data; i.e., the variance of p(x|m). So we
have

Q1 = m2
t∑

a=t−r+1

t∑
b=t−r+1

κaκb + σ2
t∑

a=t−r+1

κ2a

= m2 (1− (1− αi)
r)

2
+
α2
iσ

2(1− (1− αi)
2r)

1− (1− αi)2

(34)

For Q2 we have a > t− r and b ≤ t− r which gives

〈xaxb〉 =

∫ ∫
dxadxbxaxbp(xa|m)p(xb|prior)

= mmp

(35)

This gives

Q2 = mmp

t∑
t−r+1

t−r∑
b=1

κaκb

= mmp (1− (1− αi)
r)
(
(1− αi)

r − (1− αi)
t
) (36)

For Q3 we have

Q3 =

t−r∑
a=1

t−r∑
b=1

κaκb 〈xaxb〉 (37)
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Note that this is equal to Term 3, 〈µiµj〉, except that, instead of from 1 to t, the sums are instead from
1 to t− r. For large t, this allows us to write

Q3 =

t−r∑
a=1

t−r∑
b=1

κaκb 〈xaxb〉

=

t∑
a′=r

t∑
b′=r

κa′−rκb′−r 〈xa′−rxb′−r〉

=

t∑
a′=r

t∑
b′=r

(1− α)2rκa′κb′ 〈x′ax′b〉

≈
t∑

a′=1

t∑
b′=1

(1− α)2rκa′κb′ 〈x′ax′b〉

= (1− α)2r 〈µiµj〉

(38)

Finally, for notational convenience we define the variance of p(µi|m, r) as ψ2.

Bernoulli case

For the Bernoulli case, we approximate p(µi|m, r) with a beta distribution of the form

p(µi|m, r) ∝ µA−1
i (1− µi)

B−1 (39)

where parameters A and B that are related to the moments of p(µi|m, r) as

A =
φ(φ(1− φ)− ψ2)

ψ2

B =
(1− φ)(φ(1− φ)− ψ2)

ψ2

(40)

Substituting this into equation 28 for 〈Li〉 gives the following closed form expression

〈Li〉 ≈
(Y −X)h(1− ((1− αi)(1− h))t+1)

1− (1− αi)(1− h)
+ (X + Z − Y (1− αi)

t)(1− (1− h)t+1) (41)

where

X =
2(A+ 1)

(A+B + 1)(A+B)
− A

A+B

Y =
2A

A+B
− 1

Z = 1− A

A+B

(42)

Gaussian case

In the Gaussian case, we approximate p(µi|m, r) using a Gaussian distribution with mean φ and variance
ψ2. Substituting this into equation 28 we get the following expression for Li

Li =
1√
2π

T∑
r=0

p(r)
1√

ψ2 + σ2
i + σ2 + (1− αi)2rσ2

p

(43)
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where σ is the variance of the generative distribution of the data, p(xt|m), σi = σ
√

1 + α is the variance
of the predictive distribution on node i, p(xi|li), and σp = σ/

√
vp is the variance of the prior distribution

over the mean p(m|vp, χp). Finally, p(r) is the prior over the run-length to the last change-point and, for
a constant hazard rate, is given by

p(r) ∝ h(1− h)r (44)

Unlike the Bernoulli case, in which the sum over the run-length, r, can be evaluated exactly, in the
Gaussian case we have to evaluate this sum explicitly. For the number of trials used in our task this is
straightforward.

Taken together these expressions allow us to compute the average run-length distribution for a given
hazard rate and generative distribution.

Figure Legends

Figure S1. Histograms of fit parameter values for all models. Each column represents a model,
with the name of the model given at the top. Each row represents a single variable going, in order from
top to bottom: hazard rate, decision noise standard deviation, learning rate 1, learning rate 2 and
learning rate 3. Where a particular model does not have a particular parameter that box is left empty.

Table Legends

Table S1. Table showing correlation coefficient between simulated and fit parameter values.


