
gemini Documentation
Release 0.3.0b

Quinlan lab @ UVa

June 12, 2013

CONTENTS

1 Overview 1

2 Table of contents 3
2.1 Installation . 3
2.2 Quick start . 8
2.3 Annotation with snpEff or VEP . 8
2.4 Loading a VCF file into GEMINI . 10
2.5 Querying the GEMINI database . 12
2.6 Built-in analysis tools . 15
2.7 The GEMINI browser interface . 26
2.8 The Gemini database schema . 28
2.9 Using the GEMINI API . 43
2.10 Acknowledgements . 44
2.11 Release History . 45
2.12 F.A.Q. 45

Python Module Index 47

Index 49

i

ii

CHAPTER

ONE

OVERVIEW

GEMINI (GEnome MINIng) is designed to be a flexible framework for exploring genetic variation in the context of
the wealth of genome annotations available for the human genome. By placing genetic variants, sample genotypes,
and useful genome annotations into an integrated database framework, GEMINI provides a simple, flexible, yet very
powerful system for exploring genetic variation for for disease and population genetics.

Using the GEMINI framework begins by loading a VCF file into a database. Each variant is automatically annotated
by comparing it to several genome annotations from source such as ENCODE tracks, UCSC tracks, OMIM, dbSNP,
KEGG, and HPRD. All of this information is stored in portable SQLite database that allows one to explore and interpret
both coding and non-coding variation using “off-the-shelf” tools or an enhanced SQL engine.

Note:

1. GEMINI solely supports human genetic variation mapped to build 37 (aka hg19) of the human genome.

2. GEMINI is very strict about adherance to VCF format 4.1.

3. For best performance, load and query GEMINI databases on the fastest hard drive to which you have access.

1

gemini Documentation, Release 0.3.0b

2 Chapter 1. Overview

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Installation

2.1.1 Automated installation

GEMINI contains an automated installation script which installs GEMINI along with required Python dependencies,
third party software and data files.

$ wget https://raw.github.com/arq5x/gemini/master/gemini/scripts/gemini_install.py
$ python gemini_install.py /usr/local /usr/local/share/gemini

This installs the GEMINI executable as /usr/local/bin/gemini, other required third party dependencies in
/usr/local/bin, and associated data files in /usr/local/share/gemini. It allows easy upgrading of
GEMINI and data files to the latest released version with:

$ gemini update

The installer requires Python 2.7.x, git, and the ability to ssh to your local machine. It also has options to install in
“non-root” environments:

$ python gemini_install.py ~/gemini ~/gemini --nosudo

At this point, you will have a self-contained installation of GEMINI, including both the software and its associated
genome annotations. However, if you have done a custom install in a “non-root” enviornment, you will first need to
update your PATH environment variable to include the path to the bin directory that you just created by running the
automated installer.

For example, if, as above, you placed you custom install in ~/gemini, you would need to update your PATH as
follows:

$ export PATH=$PATH:~/gemini/bin

Note that this change will only last for the life of your current terminal session. To make this more permanent, update
your .bash_profile so that this change is made each time you login.

If successful, you should be able to run the following command from anywhere on your system:

$ gemini -v
gemini 0.3.0b

Tip: Some tips and tricks for installation issues:

1. Some older versions of wget have certificate problems with GitHub files. If you run into this problem, you can
alternatively download the install script using‘‘wget –no-check-certificates‘‘ or curl -O.

3

gemini Documentation, Release 0.3.0b

2. The installation script is idempotent and you can re-run it multiple times without any issues. If you experience
internet connectivity or other transient errors during installation, a re-run can often solve the problem (fingers
crossed).

2.1.2 Software dependencies

GEMINI depends upon several widely-used genomics command line software as well as multiple Python packages.
We recognize that the dependency stack is quite deep and are working on ways to minimize dependencies in the
interest of the most streamlined installation process possible. Nonetheless, the following are core dependencies:

1. Python 2.7.x

2. grabix

3. samtools

4. tabix

5. bedtools

6. pybedtools

2.1.3 Manual installation

Once the above dependencies have been installed, one can begin installing GEMINI itself. To install you should
download the latest source code from GitHub, either by going to:

http://github.com/arq5x/gemini

and clicking on “Downloads”, or by cloning the git repository with:

$ git clone https://github.com/arq5x/gemini.git

Once you have the source code, run:

$ cd gemini
$ sudo python setup.py install

to install it. If you don’t have permission to install it in the default directory, you can simply build the source in-place
and use the package from the git repository:

$ python setup.py build_ext --inplace

2.1.4 Installing annotation files

One of the more appealing features in GEMINI is that it automatically annotates variants in a VCF file with several
genome annotations. However, you must first install these data files on your system. It’s easy enough — you just
need to run the following script and tell it in which what full path you’d like to install the necessary data files. The
recommended path is /usr/local/share, but you can install the data files wherever you want.

$ python gemini/install-data.py /usr/local/share/

4 Chapter 2. Table of contents

https://github.com/arq5x/grabix
http://sourceforge.net/projects/samtools/files/
http://sourceforge.net/projects/samtools/files/
https://code.google.com/p/bedtools/
http://pythonhosted.org/pybedtools/main.html#installing-pybedtools

gemini Documentation, Release 0.3.0b

2.1.5 Running the testing suite

GEMINI comes with a full test suite to make sure that everything has installed correctly on your system. We strongly
encourage you to run these tests.

$ bash master-test.sh

Functional annotation tools

GEMINI depends upon external tools to predict the functional consequence of variants in a VCF file. We currently
support annotations produced by both SnpEff and VEP. Recommended instructions for annotating existing VCF files
with these tools are available here. In addition, we have attempted to standardize the terms used to describe the
functional consequence of a given variant, as each annotation tool uses different vocabulary.

The variant consequence columns in the variant table are populated either by snpEff or VEP as defined by the user
using the -t option while running pop load (To populate these columns the input VCF file should have been annotated
either by snpEff or VEP):

$ gemini load -v my.vcf -t VEP -d my.db
$ gemini load -v my.vcf -t snpEFF -d my.db

By default the following columns in the variant table would be set to null:

• anno_id

• gene

• affected_gene

• affected_transcript

• affected_exon

• is_exonic

• is_lof

• is_coding

• codon_change

• aa_change

• aa_length

• biotype

• most_severe_impact

• impact_severity

• polyphen_pred

• polyphen_score

• sift_pred

• sift_score

2.1. Installation 5

http://snpeff.sourceforge.net/
http://useast.ensembl.org/info/docs/variation/vep/index.html

gemini Documentation, Release 0.3.0b

Impacts

The table below shows the alternate GEMINI terms for the consequences from snpEff and VEP, for SQL queries. The
last column represents the severity terms associated with the impacts:

6 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

Gemini terms snpEff terms VEP terms Impact severity
splice_acceptor SPLICE_SITE_ACCEPTOR splice_acceptor_variant HIGH
splice_donor SPLICE_SITE_DONOR splice_donor_variant HIGH
stop_gain STOP_GAINED stop_gained HIGH
stop_loss STOP_LOST stop_lost HIGH
frame_shift FRAME_SHIFT frameshift_variant HIGH
start_loss START_LOST null HIGH
exon_deleted EXON_DELETED null HIGH
non_synonymous_start NON_SYNONYMOUS_START null HIGH
non_syn_coding NON_SYNONYMOUS_CODING missense_variant MED
inframe_codon_gain CODON_INSERTION inframe_insertion MED
inframe_codon_loss CODON_DELETION inframe_deletion MED
inframe_codon_change CODON_CHANGE null MED
codon_change_del CODON_CHANGE_PLUS_CODON_DELETION null MED
codon_change_ins CODON_CHANGE_PLUS_CODON_INSERTION null MED
UTR_5_del UTR_5_DELETED null MED
UTR_3_del UTR_3_DELETED null MED
other_splice_variant null splice_region_variant MED
mature_miRNA null mature_miRNA_variant MED
regulatory_region null regulatory_region_variant MED
TF_binding_site null TF_binding_site_variant MED
regulatory_region_ablation null regulatory_region_ablation MED
regulatory_region_amplification null regulatory_region_amplification MED
TFBS_ablation null TFBS_ablation MED
TFBS_amplification null TFBS_amplification MED
synonymous_stop SYNONYMOUS_STOP stop_retained_variant LOW
synonymous_coding SYNONYMOUS_CODING synonymous_variant LOW
UTR_5_prime UTR_5_PRIME 5_prime_UTR_variant LOW
UTR_3_prime UTR_3_PRIME 3_prime_UTR_variant LOW
intron INTRON intron_variant LOW
CDS CDS coding_sequence_variant LOW
upstream UPSTREAM upstream_gene_variant LOW
downstream DOWNSTREAM downstream_gene_variant LOW
intergenic INTERGENIC, INTERGENIC_CONSERVED intergenic_variant LOW
intragenic INTRAGENIC null LOW
gene GENE null LOW
transcript TRANSCRIPT null LOW
exon EXON null LOW
start_gain START_GAINED null LOW
synonymous_start SYNONYMOUS_START null LOW
intron_conserved INTRON_CONSERVED null LOW
nc_transcript null nc_transcript_variant LOW
NMD_transcript null NMD_transcript_variant LOW
transcript_codon_change null initiator_codon_variant LOW
incomplete_terminal_codon null incomplete_terminal_codon_variant LOW
nc_exon null non_coding_exon_variant LOW
transcript_ablation null transcript_ablation LOW
transcript_amplification null transcript_amplification LOW
feature elongation null feature elongation LOW
feature truncation null feature truncation LOW

Note: “null” refers to the absence of the corresponding term in the alternate database

2.1. Installation 7

gemini Documentation, Release 0.3.0b

2.2 Quick start

gemini is designed to allow researchers to explore genetic variation contained in a VCF file. The basic workflow for
working with gemini is outlined below.

2.2.1 Importing VCF files into gemini.

Assuming you have a valid VCF file produced by standard variation discovery programs (e.g., GATK, FreeBayes,
etc.), one loads the VCF into the gemini framework with the load submodule:

$ gemini load -v my.vcf my.db

In this step, gemini reads and loads the my.vcf file into a SQLite database named my.db, whose structure is described
here. While loading the database, gemini computes many additional population genetics statistics that support down-
stream analyses. It also stores the genotypes for each sample at each variant in an efficient data structure that minimizes
the database size.

Loading is by far the slowest aspect of gemini. Using multiple CPUs can greatly speed up this process.

$ gemini load -v my.vcf --cores 8 my.db

2.2.2 Querying the gemini database.

If you are familiar with SQL, gemini allows you to directly query the database in search of interesting variants via
the -q option. For example, here is a query to identify all novel, loss-of-function variants in your database:

$ gemini query -q "select * from variants where is_lof = 1 and in_dbsnp = 0" my.db

Or, we can ask for all variants that substantially deviate from Hardy-Weinberg equilibrium:

$ gemini query -q "select * from variants where hwe < 0.01" my.db

2.3 Annotation with snpEff or VEP

2.3.1 Stepwise installation and usage of VEP

Download the latest version of Variant Effect Predictor “standalone Perl script” from the Ensembl CVS server. For
example:

$ open http://useast.ensembl.org/info/docs/variation/vep/index.html

Untar the tarball into the current directory.

$ tar -zxvf variant_effect_predictor.tar.gz

This will create the variant_effect_predictor directory. Now do the following:

$ cd variant_effect_predictor
$ perl INSTALL.pl [options]

By default this would install the bioperl-1.2.3, the cache files (in the .vep sub-directory of the users home directory) and
the latest version of the Ensembl API (68) (in the variant_effect_predictor directory under a sub-directory

8 Chapter 2. Table of contents

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://nowhere
http://useast.ensembl.org/info/docs/variation/vep/index.html

gemini Documentation, Release 0.3.0b

Bio). This script is useful for those who do not have all the modules in their system required by VEP, specifically
DBI and DBI::mysql. Use this link for alternate options of the installer script.

Users (e.g mac users) who have a problem installing through this script should go for a manual installation of the latest
Ensembl API (68) and bioperl-1.2.3 and follow all other installation instructions here.

The appropriate pre-build caches should be downloaded to the .vep directory under home from this link.

To use the cache, the gzip and zcat utilities are required. VEP uses zcat to decompress cached files. For systems
where zcat may not be installed or may not work, the following option needs to be added along with the --cache
option:

--compress "gunzip -c"

You may run the script as:

$ perl variant_effect_predictor.pl [OPTIONS]

We recommend running VEP with the following options as currently we support VEP fields specified as below:

$ perl variant_effect_predictor.pl -i example.vcf \
--cache --compress "gunzip -c" \
--terms so \
--sift b \
--polyphen b \
--hgnc \
--numbers \
-o output \
--vcf \
--fields Consequence,Codons,Amino_acids,Gene,HGNC,Feature,EXON,PolyPhen,SIFT

A documentation of the specified options for VEP may be found at http://www.ensembl.org/info/docs/variation/vep/vep_script.html

2.3.2 Stepwise installation and usage of SnpEff

Note: Basic Requirements: Java v1.6 or later; at least 2GB of memory

Go to home directory and download the SnpEff version >=3.0. For example:

$ wget http://sourceforge.net/projects/snpeff/files/snpEff_v3_0_core.zip

Note: SnpEff should be installed preferably in snpEff directory in your home directory. Else, you must update the
data_dir parameter in your snpEff.config file. For e.g. if the installation of snpEff has been done in ~/src instead
of ~/ then change the data_dir parameter in snpEff.config to data_dir = ~/src/snpEff/data/

Unzip the downloaded package.

$ unzip snpEff_v3_0_core.zip

Change to the snpEff directory and download the genome database.

$ cd snpEff_v3_0_core
$ java -jar snpEff.jar download GRCh37.66

Unzip the downloaded genome database. This will create and place the genome in the ‘data’ directory

2.3. Annotation with snpEff or VEP 9

http://useast.ensembl.org/info/docs/variation/vep/vep_script.html#download
http://useast.ensembl.org/info/docs/api/api_installation.html
http://useast.ensembl.org/info/docs/variation/vep/vep_script.html#cache
http://www.ensembl.org/info/docs/variation/vep/vep_script.html

gemini Documentation, Release 0.3.0b

$ unzip snpEff_v3_2_GRCh37.66.zip

To annotate a vcf using snpEff, use the following command:

Note: Memory options for the run may be specified by -Xmx2G (2GB) or Xmx4G (4GB) based on the requirement

$ java -Xmx4G -jar snpEff.jar -i vcf -o vcf GRCh37.66 example.vcf > example_snpeff.vcf

If running from a directory different from the installation directory, the complete path needs to be specified as, e.g.:

$ java -Xmx4G -jar path/to/snpEff/snpEff.jar -c path/to/snpEff/snpEff.config GRCh37.66 path/to/example.vcf > example_snpeff.vcf

2.4 Loading a VCF file into GEMINI

2.4.1 Annotate with snpEff or VEP

Note: Annotate your VCF with SnpEff/VEP, prior to loading it into GEMINI, otherwise the gene/transcript features
would be set to None.

GEMINI supports gene/transcript level annotations (we do not use pre-computed values here) from snpEff and VEP
and hence we suggest that you first annotate your VCF with either of these tools, prior to loading it into GEMINI. The
related database columns would be populated, which would otherwise be set to None if an unannotated VCF file is
loaded into GEMINI.

Note: Choose the annotator as per your requirement! Some gene/transcript annotations are available with only one
tool (e.g. Polyphen/Sift with VEP and amino_acid length/biotype with SnpEff). As such these values
would be set to None, if an alternate annotator is used during the load step.

Instructions for installing and running these tools can be found in the following section:

Annotation with snpEff or VEP

2.4.2 The basics

Before we can use GEMINI to explore genetic variation, we must first load our VCF file into the GEMINI database
framework. We expect you to have first annotated the functional consequence of each variant in your VCF using either
VEP or snpEff (Note that v3.0+ of snpEff is required to track the amino acid length of each impacted transcript).
Logically,the loading step is done with the gemini load command. Below are two examples based on a VCF file
that we creatively name my.vcf. The first example assumes that the VCF has been pre-annotated with VEP and the
second assumes snpEff.

VEP-annotated VCF
$ gemini load -v my.vcf -t VEP my.db

snpEff-annotated VCF
$ gemini load -v my.vcf -t snpEff my.db

As each variant is loaded into the GEMINI database framework, it is being compared against several annotation files
that come installed with the software. We have developed an annotation framework that leverages tabix, bedtools,
and pybedtools to make things easy and fairly performant. The idea is that, by augmenting VCF files with many

10 Chapter 2. Table of contents

http://sourceforge.net/projects/samtools/files/tabix/
http://bedtools.googlecode.com
http://pythonhosted.org/pybedtools/

gemini Documentation, Release 0.3.0b

informative annotations, and converting the information into a sqlite database framework, GEMINI provides a
flexible database-driven API for data exploration, visualization, population genomics and medical genomics. We feel
that this ability to integrate variation with the growing wealth of genome annotations is the most compelling aspect of
GEMINI. Combining this with the ability to explore data with SQL using a database design that can scale to 1000s of
individuals (genotypes too!) makes for a nice, standardized data exploration system.

2.4.3 Using multiple CPUS for loading

Now, the loading step is very computationally intensive and thus can be very slow with just a single core. However,
if you have more CPUs in your arsenal, you specify more cores. This provides a roughly linear increase in speed as a
function of the number of cores. On our local machine, we are able to load a VCF file derived from the exomes of 60
samples in about 10 minutes. With a single core, it takes a few hours.

Note: Using multiple cores requires that you have both the bgzip tool from tabix and the grabix tool installed in
your PATH.

$ gemini load -v my.vcf -t snpEff --cores 20 my.db

2.4.4 Using LSF, SGE and Torque clusters

Thanks to some great work from Brad Chapman and Rory Kirchner, one can also load VCF files into GEMINI in
parallel using many cores on LSF, SGE or Torque clusters. One must simply specify the type of job scheduler your
cluster uses and the queue name to which your jobs should be submitted.

For example, let’s assume you use LSF and a queue named preempt_everyone. Here is all you need to do:

$ gemini load -v my.vcf \
-t snpEff \
--cores 50 \
--lsf-queue preempt_everyone \
my.db

If you use SGE, it would look like:

$ gemini load -v my.vcf \
-t snpEff \
--cores 50 \
--sge-queue preempt_everyone \
my.db

If you use Torque, it would look like: (you guessed it):

$ gemini load -v my.vcf \
-t snpEff \
--cores 50 \
--torque-queue preempt_everyone \
my.db

2.4.5 Describing samples with a PED file

GEMINI also accepts PED files in order to establish the familial relationships and phenotypic information of the
samples in the VCF file.

2.4. Loading a VCF file into GEMINI 11

http://sourceforge.net/projects/samtools/files/tabix/
https://github.com/arq5x/grabix

gemini Documentation, Release 0.3.0b

$ gemini load -v my.vcf -p my.ped -t snpEff my.db

2.4.6 Load GERP base pair conservation scores

By default, GERP scores at base pair resolution are not computed owing to the roughly 2X increasing in loading time.
However, one can optionally ask GEMINI to compute these scores by using the --load-gerp-bp option.

$ gemini load -v my.vcf --load-gerp-bp -t snpEff my.db

2.4.7 Loading VCFs without genotypes.

To do.

2.5 Querying the GEMINI database

The real power in the GEMINI framework lies in the fact that all of your genetic variants have been stored in a con-
venient database in the context of a wealth of genome annotations that facilitate variant interpretation. The expressive
power of SQL allows one to pose intricate questions of one’s variation data.

Note: If you are unfamiliar with SQL, sqlzoo has a decent online tutorial describing the basics. Really all you need
to learn is the SELECT statement, and the examples below will give you a flavor of how to compose base SQL queries
against the GEMINI framework.

2.5.1 Basic queries

GEMINI has a specific tool for querying a gemini database that has been load‘‘ed using the ‘‘gemini
load command. That’s right, the tool is called gemini query. Below are a few basic queries that give you a sense
of how to interact with the gemini database using the query tool.

1. Extract all transitions with a call rate > 95%

$ gemini query -q "select * from variants \
where sub_type = ’ts’ \
and call_rate >= 0.95" my.db

2. Extract all loss-of-function variants with an alternate allele frequency < 1%:

$ gemini query -q "select * from variants \
where is_lof = 1 \
and aaf >= 0.01" my.db

3. Extract the nucleotide diversity for each variant:

$ gemini query -q "select chrom, start, end, pi from variants" my.db

4. Combine GEMINI with bedtools to compute nucleotide diversity estimates across 100kb windows:

$ gemini query -q "select chrom, start, end, pi from variants \
order by chrom, start, end" my.db | \

bedtools map -a hg19.windows.bed -b - -c 4 -o mean

12 Chapter 2. Table of contents

http://sqlzoo.net/

gemini Documentation, Release 0.3.0b

2.5.2 Selecting sample genotypes

The above examples illustrate ad hoc queries that do not request or filter upon the genotypes of individual samples.
Since GEMINI stores the genotype information for each variant in compressed arrays that are stored as BLOBs in the
database, standard SQL queries cannot directly access individual genotypes. However, we have enhanced the SQL
syntax to support such queries with C “struct-like” access. For example, to retrieve the alleles for a given sample’s (in
this case, sample 1094PC0009), one would add gts.1094PC0009 to the select statement.

Here is an example of selecting the genotype alleles for four different samples (note the examples below use the
test.snpEff.vcf.db file that is created in the ./test directory when you run the bash master-test.sh command as described
above):

$ gemini query -q "select chrom, start, end, ref, alt, gene, \
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" test.snpEff.vcf.db

chr1 30547 30548 T G FAM138A ./. ./. ./. ./.
chr1 30859 30860 G C FAM138A G/G G/G G/G G/G
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 30894 30895 T C FAM138A T/C T/C T/T T/T
chr1 30922 30923 G T FAM138A ./. ./. ./. ./.
chr1 69269 69270 A G OR4F5 ./. ./. G/G G/G
chr1 69427 69428 T G OR4F5 T/T T/T T/T T/T
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G
chr1 69760 69761 A T OR4F5 A/A A/T A/A A/A
chr1 69870 69871 G A OR4F5 ./. G/G G/G G/G

You can also add a header so that you can keep track of who’s who:

$ gemini query -q "select chrom, start, end, ref, alt, gene, \
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.1094PC0012 gts.1094PC0013
chr1 30547 30548 T G FAM138A ./. ./. ./. ./.
chr1 30859 30860 G C FAM138A G/G G/G G/G G/G
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 30894 30895 T C FAM138A T/C T/C T/T T/T
chr1 30922 30923 G T FAM138A ./. ./. ./. ./.
chr1 69269 69270 A G OR4F5 ./. ./. G/G G/G
chr1 69427 69428 T G OR4F5 T/T T/T T/T T/T
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G
chr1 69760 69761 A T OR4F5 A/A A/T A/A A/A
chr1 69870 69871 G A OR4F5 ./. G/G G/G G/G

Let’s now get the genotype and the depth of aligned sequence observed for a sample so that we can assess the confi-
dence in the genotype:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gt_depths.1094PC0005, \

from variants" test.snpEff.vcf.db

2.5. Querying the GEMINI database 13

gemini Documentation, Release 0.3.0b

chr1 30547 30548 T G FAM138A ./. -1
chr1 30859 30860 G C FAM138A G/G 7
chr1 30866 30869 CCT C FAM138A CCT/CCT 8
chr1 30894 30895 T C FAM138A T/C 8
chr1 30922 30923 G T FAM138A ./. -1
chr1 69269 69270 A G OR4F5 ./. -1
chr1 69427 69428 T G OR4F5 T/T 2
chr1 69510 69511 A G OR4F5 ./. -1
chr1 69760 69761 A T OR4F5 A/A 1
chr1 69870 69871 G A OR4F5 ./. -1

2.5.3 Filtering on genotypes

Now, we often want to focus only on variants where a given sample has a specific genotype (e.g., looking for homozy-
gous variants in family trios). Unfortunately, we cannot directly do this in the SQL query, but the gemini query tool
has an option called –gt-filter that allows one to specify filters to apply to the returned rows. The rules followed in the
–gt-filter option follow Python syntax.

Tip: As you will see from the examples below, appropriate use of the –gt-filter option will allow you to compose
queries that return variants meeting inheritance patterns that are relevant to the disease model of interest in your study.

As an example, let’s only return rows where sample 1094PC0012 is heterozygous. In order to do this, we apply a filter
to the gt_types columns for this individual:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--gt-filter "gt_types.1094PC0012 == HET" \
--header \
test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.1094PC0012 gts.1094PC0013
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G

Now let’s be a bit less restrictive and return variants where either sample 1094PC0012 is heterozygous or sample
1094PC0005 is homozygous for the reference allele:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--gt-filter "gt_types.1094PC0012 == HET or \
gt_types.1094PC0005 == HOM_REF" \
--header \
test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.1094PC0012 gts.1094PC0013
chr1 30859 30860 G C FAM138A G/G G/G G/G G/G
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 69427 69428 T G OR4F5 T/T T/T T/T T/T

14 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G
chr1 69760 69761 A T OR4F5 A/A A/T A/A A/A

Eh, I changed my mind, let’s restrict the above to those variants where sample 1094PC0012 must also be heterozygous:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--gt-filter "(gt_types.1094PC0012 == HET or \
gt_types.1094PC0005 == HOM_REF) \
and \
(gt_types.1094PC0013 == HET)" \
--header \
test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.1094PC0012 gts.1094PC0013
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G

2.5.4 Finding out which samples have a variant

While exploring your data you might hit on a set of interesting variants and want to know which of your samples have
that variant in them. You can display the samples containing a variant with the –show-sample-variants flag:

$ gemini query --header --show-samples -q "select chrom, start, end, ref, alt \
from variants where is_lof=1 limit 5" test.query.db

chrom start end ref alt variant_samples HET_samples HOM_ALT_samples
chr1 874815 874816 C CT 1478PC0006B,1478PC0007B,1478PC0010,1478PC0013B,1478PC0022B,1478PC0023B,1478PC0025,1719PC0007,1719PC0009,1719PC0010,1719PC0022 1478PC0006B,1478PC0007B,1478PC0010,1478PC0013B,1478PC0022B,1478PC0023B,1719PC0007,1719PC0009,1719PC0010 1478PC0025,1719PC0022
chr1 1140811 1140813 TC T 1478PC0011 1478PC0011
chr1 1219381 1219382 C G 1719PC0012 1719PC0012
chr1 1221487 1221490 CAA C 1478PC0004 1478PC0004

variant_samples is a list of all of the samples with a variant, HET_samples is the subset of those heterozygous for the
variant and HOM_ALT_samples is the subset homozygous for the variant.

2.6 Built-in analysis tools

2.6.1 comp_hets: Identifying potential compound heterozygotes

Many recessive disorders are caused by compound heterozygotes. Unlike canonical recessive sites where the same
recessive allele is inherited from both parents at the _same_ site in the gene, compound heterozygotes occur when the
individual’s phenotype is caused by two heterozygous recessive alleles at _different_ sites in a particular gene.

So basically, we are looking for two (typically loss-of-function (LoF)) heterozygous variants impacting the same
gene at different loci. The complicating factor is that this is _recessive_ and as such, we must also require that the
consequential alleles at each heterozygous site were inherited on different chromosomes (one from each parent). As
such, in order to use this tool, we require that all variants are phased. Once this has been done, the comp_hets tool will
provide a report of candidate compound heterozygotes for each sample/gene.

For example:

2.6. Built-in analysis tools 15

gemini Documentation, Release 0.3.0b

$ gemini comp_hets chr22.low.exome.snpeff.100samples.vcf.db
sample gene het1 het2
NA19675 PKDREJ chr22,46653547,46653548,C,T,C|T,non_syn_coding,exon_22_46651560_46659219,0.005,1 chr22,46657894,46657895,G,A,A|G,non_syn_coding,exon_22_46651560_46659219,0.005,1

This indicates that sample NA19675 has a candidate compound heterozygote in PKDREJ. The two heterozygotes are
reported using the following structure:

chrom,start,end,ref,alt,genotype,impact,exon,AAF,in_dbsnp

--only_lof

By default, all coding variants are explored. However, one may want to restrict the analysis to LoF variants using the
--only_lof option.

$ gemini comp_hets --only_lof chr22.low.exome.snpeff.100samples.vcf.db
NA19002 GTSE1 chr22,46722400,46722401,G,A,G|A,stop_gain,exon_22,0.005,1 chr22,46704499,46704500,C,A,A|C,stop_gain,exon_22,0.005,0

--allow-other-hets

By default, the comp_hets tool will identify candidate pairs of heterozygotes that are found in only one of the
samples in your database. Depending on the genetic model, this may be too restrictive. If you’d like to identify
candidates where other individuals may also be heterozygous, just use the --allow-other-hets option

$ gemini comp_hets --allow-other-hets chr22.low.exome.snpeff.100samples.vcf.db
NA19375 PKDREJ chr22,46658977,46658978,T,C,T|C,non_syn_coding,exon_22_46651560_46659219,0.25,1 chr22,46655778,46655779,G,C,C|G,non_syn_coding,exon_22_46651560_46659219,0.08,1
HG01619 PKDREJ chr22,46658977,46658978,T,C,C|T,non_syn_coding,exon_22_46651560_46659219,0.25,1 chr22,46657307,46657308,T,C,T|C,non_syn_coding,exon_22_46651560_46659219,0.005,1

Here, samples NA19375 and HG01619 are both hets for the same variant (chr22,46658977,46658978)

--ignore-phasing

If your genotypes aren’t phased, we can’t be certain that two heterozygotes are on opposite alleles. How-
ever, we can still identify pairs of heterozygotes that are candidates for compound heterozygotes. Just use the
--ignore-phasing option.

$ gemini comp_hets --ignore_phasing example.db
M1047 DHODH chr16,72048539,72048540,C,T,C/T,non_syn_coding,3/4,0.125,1 chr16,72057434,72057435,C,T,C/T,non_syn_coding,8/9,0.125,1
M1282 DHODH chr16,72055099,72055100,C,T,C/T,non_syn_coding,5/9,0.125,0 chr16,72055114,72055116,CT,C,CT/C,frame_shift,5/9,0.125,0

2.6.2 de_novo: Identifying potential de novo mutations.

Note: This tool requires that you identify familial relationships via a PED file when loading your VCF into gemini
via:

gemini load -v my.vcf -p my.ped my.db

Example PED file format for GEMINI

#Family_ID Individual_ID Paternal_ID Maternal_ID Sex Phenotype Ethnicity
1 S173 S238 S239 1 2 caucasian
1 S238 -9 -9 1 1 caucasian
1 S239 -9 -9 2 1 caucasian

16 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

2 S193 S230 S231 1 2 caucasian
2 S230 -9 -9 1 1 caucasian
2 S231 -9 -9 2 1 caucasian
3 S242 S243 S244 1 2 caucasian
3 S243 -9 -9 1 1 caucasian
3 S244 -9 -9 2 1 caucasian
4 S253 S254 S255 1 2 caucasianNEuropean
4 S254 -9 -9 1 1 caucasianNEuropean
4 S255 -9 -9 2 1 caucasianNEuropean

Assuming you have defined the familial relationships between samples when loading your VCF into GEMINI, one
can leverage a built-in tool for identifying de novo (a.k.a spontaneous) mutations that arise in offspring.

default behavior

By default, the de novo tool will report, for each family in the database, a list of mutations that are not found in the
parents yet are observed as heterozygotes in the offspring. For example:

$ gemini de_novo my.db

family_id chrom start end ref alt gene impact impact_severity in_dbsnp rs_ids aaf_1kg_all aaf_esp_all clinvar_sig clinvar_disease_name clinvar_dbsource sample1(father) sample2(mother) sample3(child; affected) sample1(depth) sample2(depth) sample3(depth)
1 chr1 17197609 17197610 G A BX284668.1 non_syn_coding MED 1 rs200754171 None None None None None G/G G/G G/A 104 168 244
1 chr1 196763706 196763707 T C CFHR3 splice_acceptor HIGH 1 rs481759 None None None None None T/T T/T T/C 26 28 34
1 chr1 248813541 248813542 G A OR2T27 non_syn_coding MED 1 rs77685347 0. 17 0.180025 None None None G/G G/G G/A 21 38 68
1 chr2 90060872 90060873 A T AC009958.1 non_syn_coding MED 1 rs202041075 None None None None None A/A A/A A/T 90 238 234
1 chr3 195505789 195505790 G C MUC4 non_syn_coding MED 1 rs11928301 None None None None None G/G G/G G/C 250 247 248
...

-d

Unfortunately, inherited variants can often appear to be de novo mutations simply because insufficient sequence cov-
erage was available for one of the parents to detect that the parent(s) is also a heterozygote (and thus the variant was
actually inherited, not spontaneous). One simple way to filter such artifacts is to enforce a minimum sequence depth
for each sample. For example, if we require that at least 50 sequence alignments were present for mom, dad and child,
two of the above variants will be eliminated as candidates:

$ gemini de_novo -d 50 my.db

family_id chrom start end ref alt gene impact impact_severity in_dbsnp rs_ids aaf_1kg_all aaf_esp_all clinvar_sig clinvar_disease_name clinvar_dbsource sample1(father) sample2(mother) sample3(child; affected) sample1(depth) sample2(depth) sample3(depth)
1 chr1 17197609 17197610 G A BX284668.1 non_syn_coding MED 1 rs200754171 None None None None None G/G G/G G/A 104 168 244
1 chr2 90060872 90060873 A T AC009958.1 non_syn_coding MED 1 rs202041075 None None None None None A/A A/A A/T 90 238 234
1 chr3 195505789 195505790 G C MUC4 non_syn_coding MED 1 rs11928301 None None None None None G/G G/G G/C 250 247 248
...

2.6.3 autosomal_recessive: Find variants meeting an autosomal recessive
model.

Note: This tool requires that you identify familial relationships via a PED file when loading your VCF into gemini
via:

gemini load -v my.vcf -p my.ped my.db

2.6. Built-in analysis tools 17

gemini Documentation, Release 0.3.0b

Assuming you have defined the familial relationships between samples when loading your VCF into GEMINI, one
can leverage a built-in tool for identifying variants that meet an autosomal recessive inheritance pattern. The reported
variants will be restricted to those variants having the potential to impact the function of affecting protein coding
transcripts.

$ gemini autosomal_recessive my.db | head

family_id chrom start end ref alt gene impact impact_severity sample1(father) sample2(mother) sample3(child; affected)
1 chr1 1888192 1888193 C A C1orf222 non_syn_coding MED C/A C/A A/A
1 chr1 6162053 6162054 T C CHD5 non_syn_coding MED T/C T/C C/C
1 chr1 6646958 6646968 GCCTGCCTTC G ZBTB48 inframe_codon_loss MED GCCTGCCTTC/G GCCTGCCTTC/G G/G
1 chr1 11826629 11826630 C T C1orf167 non_syn_coding MED C/T C/T T/T
1 chr1 11828237 11828238 G A C1orf167 non_syn_coding MED G/A G/A A/A
1 chr1 11828318 11828319 G A C1orf167 non_syn_coding MED G/A G/A A/A
1 chr1 11831614 11831615 C T C1orf167 non_syn_coding MED C/T C/T T/T
1 chr1 11836627 11836628 T C C1orf167 non_syn_coding MED T/C T/C C/C
1 chr1 11836681 11836682 C T C1orf167 non_syn_coding MED C/T C/T T/T ...

2.6.4 autosomal_dominant: Find variants meeting an autosomal dominant model.

Note: This tool requires that you identify familial relationships via a PED file when loading your VCF into gemini
via:

gemini load -v my.vcf -p my.ped my.db

Assuming you have defined the familial relationships between samples when loading your VCF into GEMINI, one
can leverage a built-in tool for identifying variants that meet an autosomal dominant inheritance pattern. The reported
variants will be restricted to those variants having the potential to impact the function of affecting protein coding
transcripts.

$ gemini autosomal_dominant my.db | head

family_id chrom start end ref alt gene impact impact_severity sample1(father) sample2(mother) sample3(child; affected)
1 chr1 16855 16856 A G WASH7P splice_donor HIGH A/A A/G A/G
1 chr1 881917 881918 G A NOC2L non_syn_coding MED G/A G/G G/A
1 chr1 907757 907758 A G PLEKHN1 non_syn_coding MED A/A A/G A/G
1 chr1 909237 909238 G C PLEKHN1 non_syn_coding MED G/C C/C G/C
1 chr1 916548 916549 A G C1orf170 non_syn_coding MED A/G G/G A/G
1 chr1 935221 935222 C A HES4 non_syn_coding MED C/A A/A C/A
1 chr1 949607 949608 G A ISG15 non_syn_coding MED G/A G/G G/A
1 chr1 979747 979748 A T AGRN non_syn_coding MED A/T A/A A/T
1 chr1 1361529 1361530 C T TMEM88B non_syn_coding MED C/T C/C C/T

2.6.5 pathways: Map genes and variants to KEGG pathways.

Mapping genes to biological pathways is useful in understanding the function/role played by a gene. Likewise, genes
involved in common pathways is helpful in understanding heterogeneous diseases. We have integrated the KEGG
pathway mapping for gene variants, to explain/annotate variation. This requires your VCF be annotated with either
snpEff/VEP.

Examples:

$ gemini pathways -v 68 example.db
chrom start end ref alt impact sample genotype gene transcript pathway

18 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

chr10 52004314 52004315 T C intron M128215 C/C ASAH2 ENST00000395526 hsa00600:Sphingolipid_metabolism,hsa01100:Metabolic_pathways
chr10 126678091 126678092 G A stop_gain M128215 G/A CTBP2 ENST00000531469 hsa05220:Chronic_myeloid_leukemia,hsa04310:Wnt_signaling_pathway,hsa04330:Notch_signaling_pathway,hsa05200:Pathways_in_cancer
chr16 72057434 72057435 C T non_syn_coding M10475 C/T DHODH ENST00000219240 hsa01100:Metabolic_pathways,hsa00240:Pyrimidine_metabolism

Here, -v specifies the version of the Ensembl genes used to build the KEGG pathway map. Hence, use versions that
match the VEP/snpEff versions of the annotated vcf for correctness. For e.g VEP v2.6 and snpEff v3.1 use Ensembl
68 version of the genomes.

We currently support versions 66 through 71 of the Ensembl genes

--lof

By default, all gene variants that map to pathways are reported. However, one may want to restrict the analysis to LoF
variants using the --lof option.

$ gemini pathways --lof -v 68 example.db
chrom start end ref alt impact sample genotype gene transcript pathway
chr10 126678091 126678092 G A stop_gain M128215 G/A CTBP2 ENST00000531469 hsa05220:Chronic_myeloid_leukemia,hsa04310:Wnt_signaling_pathway,hsa04330:Notch_signaling_pathway,hsa05200:Pathways_in_cancer

2.6.6 interactions: Find genes among variants that are interacting partners.

Integrating the knowledge of the known protein-protein interactions would be useful in explaining variation data.
Meaning to say that a damaging variant in an interacting partner of a potential protein may be equally interesting as
the protein itself. We have used the HPRD binary interaction data to build a p-p network graph which can be explored
by Gemini.

Examples:

$ gemini interactions -g CTBP2 -r 3 example.db
sample gene order_of_interaction interacting_gene
M128215 CTBP2 0_order: CTBP2
M128215 CTBP2 1_order: RAI2
M128215 CTBP2 2_order: RB1
M128215 CTBP2 3_order: TGM2,NOTCH2NL

Return CTBP2 (-g) interacting gene variants till the third order (-r)

lof_interactions

Use this option to restrict your analysis to only LoF variants.

$ gemini lof_interactions -r 3 example.db
sample lof_gene order_of_interaction interacting_gene
M128215 TGM2 1_order: RB1
M128215 TGM2 2_order: none
M128215 TGM2 3_order: NOTCH2NL,CTBP2

Meaning to say return all LoF gene TGM2 (in sample M128215) interacting partners to a 3rd order of interaction.

--var

An extended variant information (chrom, start, end etc.) for the interacting gene may be achieved with the –var option
for both the interactions and the lof_interactions

2.6. Built-in analysis tools 19

gemini Documentation, Release 0.3.0b

$ gemini interactions -g CTBP2 -r 3 --var example.db
sample gene order_of_interaction interacting_gene var_id chrom start end impact biotype in_dbsnp clinvar_sig clinvar_disease_name aaf_1kg_all aaf_esp_all
M128215 CTBP2 0 CTBP2 5 chr10 126678091 126678092 stop_gain protein_coding 1 None None None None
M128215 CTBP2 1 RAI2 9 chrX 17819376 17819377 non_syn_coding protein_coding 1 None None 1 0.000473
M128215 CTBP2 2 RB1 7 chr13 48873834 48873835 upstream protein_coding 1 None None 0.94 None
M128215 CTBP2 3 NOTCH2NL 1 chr1 145273344 145273345 non_syn_coding protein_coding 1 None None None None
M128215 CTBP2 3 TGM2 8 chr20 36779423 36779424 stop_gain protein_coding 0 None None None None

$ gemini lof_interactions -r 3 --var example.db
sample lof_gene order_of_interaction interacting_gene var_id chrom start end impact biotype in_dbsnp clinvar_sig clinvar_disease_name aaf_1kg_all aaf_esp_all
M128215 TGM2 1 RB1 7 chr13 48873834 48873835 upstream protein_coding 1 None None 0.94 None
M128215 TGM2 3 NOTCH2NL 1 chr1 145273344 145273345 non_syn_coding protein_coding 1 None None None None
M128215 TGM2 3 CTBP2 5 chr10 126678091 126678092 stop_gain protein_coding 1 None None None None

2.6.7 lof_sieve: Filter LoF variants by transcript position and type

Not all candidate LoF variants are created equal. For e.g, a nonsense (stop gain) variant impacting the first 5% of
a polypeptide is far more likely to be deleterious than one affecting the last 5%. Assuming you’ve annotated your
VCF with snpEff v3.0+, the lof_sieve tool reports the fractional position (e.g. 0.05 for the first 5%) of the mutation in
the amino acid sequence. In addition, it also reports the predicted function of the transcript so that one can segregate
candidate LoF variants that affect protein_coding transcripts from processed RNA, etc.

$ gemini lof_sieve chr22.low.exome.snpeff.100samples.vcf.db
chrom start end ref alt highest_impact aa_change var_trans_pos trans_aa_length var_trans_pct sample genotype gene transcript trans_type
chr22 17072346 17072347 C T stop_gain W365* 365 557 0.655296229803 NA19327 C|T CCT8L2 ENST00000359963 protein_coding
chr22 17072346 17072347 C T stop_gain W365* 365 557 0.655296229803 NA19375 T|C CCT8L2 ENST00000359963 protein_coding
chr22 17129539 17129540 C T splice_donor None None None None NA18964 T|C TPTEP1 ENST00000383140 lincRNA
chr22 17129539 17129540 C T splice_donor None None None None NA19675 T|C TPTEP1 ENST00000383140 lincRNA

2.6.8 annotate: adding your own custom annotations

It is inevitable that researchers will want to enhance the gemini framework with their own, custom annotations.
gemini provides a sub-command called annotate for exactly this purpose. As long as you provide a tabix‘ed
annotation file in either BED or VCF format, the annotate tool will, for each variant in the variants table, screen for
overlaps in your annotation file and update a new column in the variants table that you may specify on the command
line. This is best illustrated by example.

Let’s assume you have already created a gemini database of a VCF file using the load module.

$ gemini load -v my.vcf -t snpEff my.db

Now, let’s imagine you have an annotated file in BED format (crucial.bed) that describes regions of the genome
that are particularly relevant to your lab’s research. You would like to annotate in the gemini database which variants
overlap these crucial regions. We want to store this knowledge in a new column in the variants table called
crucial_variant that tracks whether a given variant overlapped (1) or did not overlap (0) intervals in your
annotation file.

To do this, you must first TABIX your BED file:

$ bgzip crucial.bed
$ tabix -p bed crucial.bed.gz

20 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

-t boolean Did a variant overlap a region or not?

Now, you can use this TABIX’ed file to annotate which variants overlap your crucial regions. In the example below,
the results will be stored in a new column called “crucial”. The -t boolean option says that you just want to track
whether (1) or not (0) the variant overlapped one or more of your regions.

$ gemini annotate -f crucial.bed.gz -c crucial -t boolean my.db

Since a new columns has been created in the database, we can now directly query the new column. In the example
results below, the first and third variants overlapped a crucial region while the second did not.

$ gemini query \
-q "select chrom, start, end, variant_id, crucial from variants" \
my.db \
| head -3

chr22 100 101 1 1
chr22 200 201 2 0
chr22 300 500 3 1

-t count How many regions did a variant overlap?

Instead of a simple yes or no, we can use the -t count option to count how many crucial regions a variant over-
lapped. It turns out that the 3rd variant actually overlapped two crucial regions.

$ gemini annotate -f crucial.bed.gz -c crucial -t count my.db

$ gemini query \
-q "select chrom, start, end, variant_id, crucial from variants" \
my.db \
| head -3

chr22 100 101 1 1
chr22 200 201 2 0
chr22 300 500 3 2

-t list Which regions did a variant overlap?

Lastly, we can list which regions a variant overlapped using the -t list option. Let’s imaging that crucial.bed
looks like this:

chr22 50 150 crucial1
chr22 300 400 crucial2
chr22 350 450 crucial3

When we use -t list, the resulting column can store a comma-separated list of the region names (column 4). You
can choose whatever column you want to store in the database, but in this example, we will use the 4th column (the
name). We specify which column to store in the list with the -e option.

$ gemini annotate -f crucial.bed.gz -c crucial -t list -e 4 my.db

$ gemini query \
-q "select chrom, start, end, variant_id, crucial from variants" \
my.db \
| head -3

chr22 100 101 1 crucial1
chr22 200 201 2 0
chr22 300 500 3 crucial2,crucial3

2.6. Built-in analysis tools 21

gemini Documentation, Release 0.3.0b

2.6.9 region: Extracting variants from specific regions or genes

One often is concerned with variants found solely in a particular gene or genomic region. gemini allows one to
extract variants that fall within specific genomic coordinates as follows:

--reg

$ gemini region --reg chr1:100-200 my.db

--gene

Or, one can extract variants based on a specific gene name.

$ gemini region --gene PTPN22 my.db

2.6.10 windower: Conducting analyses on genome “windows”.

gemini includes a convenient tool for computing variation metrics across genomic windows (both fixed and sliding).
Here are a few examples to whet your appetite. If you’re still hungry, contact us.

Compute the average nucleotide diversity for all variants found in non-overlapping, 50Kb windows.

$ gemini windower -w 50000 -s 0 -t nucl_div -o mean my.db

Compute the average nucleotide diversity for all variants found in 50Kb windows that overlap by 10kb.

$ gemini windower -w 50000 -s 10000 -t nucl_div -o mean my.db

Compute the max value for HWE statistic for all variants in a window of size 10kb

$ gemini windower -w 10000 -t hwe -o max my.db

2.6.11 stats: Compute useful variant statistics.

The stats tool computes some useful variant statistics like

Compute the transition and transversion ratios for the snps

$ gemini stats --tstv my.db
ts tv ts/tv
4 5 0.8

--tstv-coding

Compute the transition/transversion ratios for the snps in the coding regions.

--tstv-noncoding

Compute the transition/transversion ratios for the snps in the non-coding regions.

Compute the type and count of the snps.

22 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

$ gemini stats --snp-counts my.db
type count
A->G 2
C->T 1
G->A 1

Calculate the site frequency spectrum of the variants.

$ gemini stats --sfs my.db
aaf count
0.125 2
0.375 1

Compute the pair-wise genetic distance between each sample

$ gemini stats --mds my.db
sample1 sample2 distance
M10500 M10500 0.0
M10475 M10478 1.25
M10500 M10475 2.0
M10500 M10478 0.5714

Return a count of the types of genotypes per sample

$ gemini stats --gts-by-sample my.db
sample num_hom_ref num_het num_hom_alt num_unknown total
M10475 4 1 3 1 9
M10478 2 2 4 1 9

Return the total variants per sample (sum of homozygous and heterozygous variants)

$ gemini stats --vars-by-sample my.db
sample total
M10475 4
M10478 6

--summarize

If none of these tools are exactly what you want, you can summarize the variants per sample of an arbitrary query using
the –summarize flag. For example, if you wanted to know, for each sample, how many variants are on chromosome 1
that are also in dbSNP:

$ gemini stats --summarize "select * from variants where in_dbsnp=1 and chrom=’chr1’" my.db
sample total num_het num_hom_alt
M10475 1 1 0
M128215 1 1 0
M10478 2 2 0
M10500 2 1 1

2.6.12 db_info: List the gemini database tables and columns

Because of the sheer number of annotations that are stored in gemini, there are admittedly too many columns to
remember by rote. If you can recall the name of particular column, just use the db_info tool. It will report all of the
tables and all of the columns / types in each table:

2.6. Built-in analysis tools 23

gemini Documentation, Release 0.3.0b

$ gemini db_info test.db
table_name column_name type
variants chrom text
variants start integer
variants end integer
variants variant_id integer
variants anno_id integer
variants ref text
variants alt text
variants qual float
variants filter text
variants type text
variants sub_type text
variants gts blob
variants gt_types blob
variants gt_phases blob
variants gt_depths blob
variants call_rate float
variants in_dbsnp bool
variants rs_ids text
variants in_omim bool
variants clin_sigs text
variants cyto_band text
variants rmsk text
variants in_cpg_island bool
variants in_segdup bool
variants is_conserved bool
variants num_hom_ref integer
variants num_het integer
variants num_hom_alt integer
variants num_unknown integer
variants aaf float
variants hwe float
variants inbreeding_coeff float
variants pi float
variants recomb_rate float
variants gene text
variants transcript text
variants is_exonic bool
variants is_coding bool
variants is_lof bool
variants exon text
variants codon_change text
variants aa_change text
variants aa_length text
variants biotype text
variants impact text
variants impact_severity text
variants polyphen_pred text
variants polyphen_score float
variants sift_pred text
variants sift_score float
variants anc_allele text
variants rms_bq float
variants cigar text
variants depth integer
variants strand_bias float
variants rms_map_qual float

24 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

variants in_hom_run integer
variants num_mapq_zero integer
variants num_alleles integer
variants num_reads_w_dels float
variants haplotype_score float
variants qual_depth float
variants allele_count integer
variants allele_bal float
variants in_hm2 bool
variants in_hm3 bool
variants is_somatic
variants in_esp bool
variants aaf_esp_ea float
variants aaf_esp_aa float
variants aaf_esp_all float
variants exome_chip bool
variants in_1kg bool
variants aaf_1kg_amr float
variants aaf_1kg_asn float
variants aaf_1kg_afr float
variants aaf_1kg_eur float
variants aaf_1kg_all float
variants grc text
variants gms_illumina float
variants gms_solid float
variants gms_iontorrent float
variants encode_tfbs
variants encode_consensus_gm12878 text
variants encode_consensus_h1hesc text
variants encode_consensus_helas3 text
variants encode_consensus_hepg2 text
variants encode_consensus_huvec text
variants encode_consensus_k562 text
variants encode_segway_gm12878 text
variants encode_segway_h1hesc text
variants encode_segway_helas3 text
variants encode_segway_hepg2 text
variants encode_segway_huvec text
variants encode_segway_k562 text
variants encode_chromhmm_gm12878 text
variants encode_chromhmm_h1hesc text
variants encode_chromhmm_helas3 text
variants encode_chromhmm_hepg2 text
variants encode_chromhmm_huvec text
variants encode_chromhmm_k562 text
variant_impacts variant_id integer
variant_impacts anno_id integer
variant_impacts gene text
variant_impacts transcript text
variant_impacts is_exonic bool
variant_impacts is_coding bool
variant_impacts is_lof bool
variant_impacts exon text
variant_impacts codon_change text
variant_impacts aa_change text
variant_impacts aa_length text
variant_impacts biotype text
variant_impacts impact text

2.6. Built-in analysis tools 25

gemini Documentation, Release 0.3.0b

variant_impacts impact_severity text
variant_impacts polyphen_pred text
variant_impacts polyphen_score float
variant_impacts sift_pred text
variant_impacts sift_score float
samples sample_id integer
samples name text
samples family_id integer
samples paternal_id integer
samples maternal_id integer
samples sex text
samples phenotype text
samples ethnicity text

2.7 The GEMINI browser interface

Currently, the majority of GEMINI’s functionality is available via a command-line interface. However, we are de-
veloping a browser-based interface for easier exploration of GEMINI databases created with the gemini load
command.

Ironically, as of now, one must launch said browser from the command line as follows (where my.db should be
replaced with the name of the GEMINI database you would like to explore).

$ gemini browser my.db

At this point, the GEMINI browser is running on port 8088 on your local machine. Open a web browser to
http://localhost:8088/query You should see something like:

26 Chapter 2. Table of contents

http://localhost:8088/query

gemini Documentation, Release 0.3.0b

2.7. The GEMINI browser interface 27

gemini Documentation, Release 0.3.0b

2.8 The Gemini database schema

2.8.1 The variants table

Core VCF fields

column_name type notes
chrom STRING The chromosome on which the variant resides
start INTEGER The 0-based start position.
end INTEGER The 1-based end position.
variant_id INTEGER PRIMARY_KEY
anno_id INTEGER Variant transcript number for the most severely affected transcript
ref STRING Reference allele
alt STRING Alternate alele for the variant
qual INTEGER Quality score for the assertion made in ALT
filter STRING A string of filters passed/failed in variant calling

28 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

Variant and PopGen info

type STRING

The type of variant.
Any of: [snp, indel]

sub_type STRING

The variant sub-type.
If type is snp: [ts, (transition), tv
(transversion)]
If type is indel: [ins, (insertion),
del (deletion)]

call_rate FLOAT The fraction of samples with a valid
genotype

num_hom_ref INTEGER The total number of of homozygotes
for the reference (ref) allele

num_het INTEGER The total number of heterozygotes
observed.

num_hom_alt INTEGER The total number of homozygotes for
the reference (alt) allele

num_unknown INTEGER The total number of of unknown
genotypes

aaf FLOAT The observed allele frequency for the
alternate allele

hwe FLOAT The Chi-square probability of devi-
ation from HWE (assumes random
mating)

inbreeding_coeff FLOAT The inbreeding co-efficient that ex-
presses the likelihood of effects due
to inbreeding

pi FLOAT The computed nucleotide diversity
(pi) for the site

Genotype information

gts BLOB A compressed binary vector of sample genotypes (e.g., “A/A”, “A|G”, “G/G”)
gt_types BLOB A compressed binary vector of numeric genotype “types” (e.g., 0, 1, 2)
gt_phases BLOB A compressed binary vector of sample genotype phases (e.g., False, True, False)
gt_depths BLOB A compressed binary vector of the depth of aligned sequence observed for each sample

2.8. The Gemini database schema 29

gemini Documentation, Release 0.3.0b

Gene information

gene STRING Corresponding gene name of the
highly affected transcript

transcript STRING

The variant transcript that was most
severely affected
(for two equally affected transcripts,
either the first one is selected (VEP)
or the protein_coding biotype is
prioritized (snpEff)

is_exonic BOOL Does the variant affect an exon for >=
1transcript?

is_coding BOOL Does the variant fall in a coding re-
gion (excl. 3’ & 5’ UTRs) for >= 1
transcript?

is_lof BOOL Based on the value of the impact col,
is the variant LOF for >= transcript?

exon STRING Exon information for the severely af-
fected transcript

codon_change STRING What is the codon change?
aa_change STRING What is the amino acid change (for an

snp)?
aa_length STRING The length of CDS in terms of num-

ber of amino acids (only snpEff)
biotype STRING The ‘type’ of the severely af-

fected transcript (e.g.protein-coding,
pseudogene, rRNA etc.) (only
snpEff)

impact STRING The consequence of the most
severely affected transcript

impact_severity STRING Severity of the highest order ob-
served for the variant

polyphen_pred STRING Polyphen predictions for the snps
for the severely affected transcript
(only VEP)

polyphen_score FLOAT Polyphen scores for the severely af-
fected transcript (only VEP)

sift_pred STRING SIFT predictions for the snp’s for
the most severely affected transcript
(only VEP)

sift_score FLOAT SIFT scores for the predictions
(only VEP)

pfam_domain STRING Pfam protein domain that the variant
affects

30 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

Optional VCF INFO fields

anc_allele STRING The reported ancestral allele if there is one.
rms_bq FLOAT The RMS base quality at this position.
cigar STRING CIGAR string describing how to align an alternate allele to the reference allele.
depth INTEGER The number of aligned sequence reads that led to this variant call
strand_bias FLOAT Strand bias at the variant position
rms_map_qual FLOAT RMS mapping quality, a measure of variance of quality scores
in_hom_run INTEGER Homopolymer runs for the variant allele
num_mapq_zero INTEGER Total counts of reads with mapping quality equal to zero
num_alleles INTEGER Total number of alleles in called genotypes
num_reads_w_dels FLOAT Fraction of reads with spanning deletions
haplotype_score FLOAT Consistency of the site with two segregating haplotypes
qual_depth FLOAT Variant confidence or quality by depth
allele_count INTEGER Allele counts in genotypes
allele_bal FLOAT Allele balance for hets
is_somatic BOOL Whether the variant is somatically acquired.

2.8. The Gemini database schema 31

gemini Documentation, Release 0.3.0b

Population information

in_dbsnp BOOL

Is this variant found in dbSnp (build
135)?
0 : Absence of the variant in dbsnp
1 : Presence of the variant in dbsnp

rs_ids STRING

A comma-separated list of rs ids for
variants present in dbsnp

in_hm2 BOOL Whether the variant was part of
HapMap2.

in_hm3 BOOL Whether the variant was part of
HapMap3.

in_esp BOOL Presence/absence of the variant in the
ESP project data

in_1kg BOOL Presence/absence of the variant in the
1000 genome project data

aaf_esp_ea FLOAT Minor Allele Frequency of the vari-
ant for European Americans in the
ESP project

aaf_esp_aa FLOAT Minor Allele Frequency of the vari-
ant for African Americans in the ESP
project

aaf_esp_all FLOAT Minor Allele Frequency of the vari-
ant w.r.t both groups in the ESP
project

aaf_1kg_amr FLOAT Allele Frequency of the variant for
samples in AMR based on AC/AN
(1000g project)

aaf_1kg_asn FLOAT Allele frequency of the variant for
samples in ASN based on AC/AN
(1000g project)

aaf_1kg_afr FLOAT Allele frequency of the variant for
samples in AFR based on AC/AN
(1000g project)

aaf_1kg_eur FLOAT Allele Frequency of the variant for
samples in EUR based on AC/AN
(1000g project)

aaf_1kg_all FLOAT Global allele frequency (based on
AC/AN) (1000g project)

32 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

Disease phenotype info (from ClinVar).

in_omim BOOL

0 : Absence of the variant in OMIM
database
1 : Presence of the variant in OMIM
database

clinvar_sig STRING

The clinical significance scores for
each
of the variant according to ClinVar:
unknown, untested, non-pathogenic
probable-non-pathogenic,
probable-pathogenic
pathogenic, drug-response,
histocompatibility
other

clinvar_disease_name STRING The name of the disease to which the
variant is relevant

clinvar_dbsource STRING Variant Clinical Channel IDs
clinvar_dbsource_id STRING The record id in the above database
clinvar_origin STRING

The type of variant.
Any of:
unknown, germline, somatic,
inherited, paternal, maternal,
de-novo, biparental, uniparental,
not-tested, tested-inconclusive,
other

clinvar_dsdb STRING Variant disease database name
clinvar_dsdbid STRING Variant disease database ID
clinvar_disease_acc STRING Variant Accession and Versions
clinvar_in_locus_spec_db BOOL Submitted from a locus-specific

database?
clinvar_on_diag_assay BOOL Variation is interrogated in a clinical

diagnostic assay?

2.8. The Gemini database schema 33

gemini Documentation, Release 0.3.0b

34 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

Genome annotations

exome_chip BOOL Whether an SNP is on the Illumina
HumanExome Chip

cyto_band STRING Chromosomal cytobands that a vari-
ant overlaps

rmsk STRING

A comma-separated list of
RepeatMasker annotations that the
variant overlaps.
Each hit is of the form:
name_class_family

in_cpg_island BOOL

Does the variant overlap a CpG
island?.
Based on UCSC: Regulation > CpG
Islands > cpgIslandExt

in_segdup BOOL

Does the variant overlap a segmental
duplication?.
Based on UCSC: Variation&Repeats
> Segmental Dups >
genomicSuperDups track

is_conserved BOOL

Does the variant overlap a conserved
region?
Based on the 29-way mammalian
conservation study

gerp_bp_score FLOAT

GERP conservation score.
Only populated if the
--load-gerp-bp option is used
when loading.
Higher scores reflect greater
conservation. At base-pair
resolution.
Details:
http://mendel.stanford.edu/SidowLab/downloads/gerp/

gerp_element_pval FLOAT

GERP elements P-val
Lower P-values scores reflect greater
conservation. Not at base-pair
resolution.
Details:
http://mendel.stanford.edu/SidowLab/downloads/gerp/

recomb_rate FLOAT

Returns the mean recombination rate
at the variant site
Based on HapMapII_GRCh37
genetic map

2.8. The Gemini database schema 35

http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/

gemini Documentation, Release 0.3.0b

Variant error assessment

grc STRING

Association with patch and fix
regions from the Genome Reference
Consortium:

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
Identifies potential problem regions
associated with variant calls.
Built with
annotation_provenance/make-ncbi-
grc-patches.py

gms_illumina FLOAT

Genome Mappability Scores (GMS)
for Illumina error models
Provides low GMS scores (< 25.0 in
any technology) from:

http://sourceforge.net/apps/mediawiki/gma-
bio/index.php?title=Download_GMS

#Download_GMS_by_Chromosome_and_Sequencing_Technology
Input VCF for annotations prepared
with:

https://github.com/chapmanb/bcbio.variation/blob/master/src/bcbio/variation/utils/gms.clj

gms_solid FLOAT Genome Mappability Scores with
SOLiD error models

gms_iontorrent FLOAT Genome Mappability Scores with
IonTorrent error models

in_cse BOOL

Is a variant in an error prone
genomic position,
using CSE: Context-Specific
Sequencing Errors

https://code.google.com/p/discovering-
cse/

http://www.biomedcentral.com/1471-
2105/14/S5/S1

36 Chapter 2. Table of contents

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://sourceforge.net/apps/mediawiki/gma-bio/index.php?title=Download_GMS
http://sourceforge.net/apps/mediawiki/gma-bio/index.php?title=Download_GMS
https://github.com/chapmanb/bcbio.variation/blob/master/src/bcbio/variation/utils/gms.clj
https://code.google.com/p/discovering-cse/
https://code.google.com/p/discovering-cse/
http://www.biomedcentral.com/1471-2105/14/S5/S1
http://www.biomedcentral.com/1471-2105/14/S5/S1

gemini Documentation, Release 0.3.0b

2.8. The Gemini database schema 37

gemini Documentation, Release 0.3.0b

ENCODE information

encode_tfbs STRING

Comma-separated list of
transcription factors that were
observed by ENCODE to bind DNA
in this region. Each hit in the list is
constructed
as TF_CELLCOUNT, where:

TF is the transcription factor
name
CELLCOUNT is the number
of cells tested that had nonzero
signals.

Provenance:
wgEncodeRegTfbsClusteredV2
UCSC table

encode_dnaseI_cell_count INTEGER

Count of cell types that were
observed to have DnaseI
hypersensitivity.

encode_dnaseI_cell_list STRING

Comma separated list of cell types
that were observed to have DnaseI
hypersensitivity.
Provenance: Thurman, et al, Nature,
489, pp. 75-82, 5 Sep. 2012

encode_consensus_gm12878 STRING

ENCODE consensus segmentation
prediction for GM12878.

CTCF: CTCF-enriched element
E: Predicted enhancer
PF: Predicted promoter flanking
region
R: Predicted repressed or
low-activity region
TSS: Predicted promoter region
including TSS
T: Predicted transcribed region
WE: Predicted weak enhancer or
open chromatin cis-regulatory
element | unknown: This region of
the genome had no functional
prediction.

encode_consensus_h1hesc STRING ENCODE consensus segmentation
prediction for h1HESC. See en-
code_consseg_gm12878 for details.

encode_consensus_helas3 STRING ENCODE consensus segmentation
prediction for Helas3. See en-
code_consseg_gm12878 for details.

encode_consensus_hepg2 STRING ENCODE consensus segmentation
prediction for HEPG2. See en-
code_consseg_gm12878 for details.

encode_consensus_huvec STRING ENCODE consensus segmentation
prediction for HuVEC. See en-
code_consseg_gm12878 for details.

encode_consensus_k562 STRING ENCODE consensus segmentation
prediction for k562. See en-
code_consseg_gm12878 for details.

38 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

2.8.2 The variant_impacts table

column_name type notes
variant_id INTEGER PRIMARY_KEY (Foreign key to

variants table)
anno_id INTEGER PRIMARY_KEY (Based on variant

transcripts)
gene STRING The gene affected by the variant.
transcript STRING The transcript affected by the variant.
is_exonic BOOL Does the variant affect an exon for

this transcript?
is_coding BOOL Does the variant fall in a coding re-

gion (excludes 3’ & 5’ UTR’s of ex-
ons)?

is_lof BOOL Based on the value of the impact col,
is the variant LOF?

exon STRING Exon information for the variants that
are exonic

codon_change STRING What is the codon change?
aa_change STRING What is the amino acid change?
aa_length STRING The length of CDS in terms of num-

ber of amino acids (snpEff only)
biotype STRING The type of transcript (e.g.protein-

coding, pseudogene, rRNA etc.)
(SnpEff only)

impact STRING Impacts due to variation (ref.impact
category)

impact_severity STRING Severity of the impact based on the
impact column value (ref.impact cat-
egory)

polyphen_pred STRING

Impact of the SNP as given by
PolyPhen (VEP only)
benign, possibly_damaging,
probably_damaging, unknown

polyphen_scores FLOAT Polyphen score reflecting severity
(higher the impact, higher the score)
(VEP only)

sift_pred STRING

Impact of the SNP as given by SIFT
(VEP only)
neutral, deleterious

sift_scores FLOAT SIFT prob. scores reflecting severity
(Higher the impact, lower the score)
(VEP only)

2.8. The Gemini database schema 39

gemini Documentation, Release 0.3.0b

2.8.3 The samples table

column name type notes
sample_id INTEGER PRIMARY_KEY
name STRING Sample names
family_id INTEGER Family ids for the samples [User defined, default: NULL]
paternal_id INTEGER Paternal id for the samples [User defined, default: NULL]
maternal_id INTEGER Maternal id for the samples [User defined, default: NULL]
sex STRING Sex of the sample [User defined, default: NULL]
phenotype STRING The associated sample phenotype [User defined, default: NULL]
ethnicity STRING The ethnic group to which the sample belongs [User defined, default: NULL]

40 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

2.8. The Gemini database schema 41

gemini Documentation, Release 0.3.0b

2.8.4 Details of the impact and impact_severity columns

impact severity impacts
HIGH

• exon_deleted
• frame_shift
• splice_acceptor
• splice_donor
• start_loss
• stop_gain
• stop_loss
• non_synonymous_start

MED
• non_syn_coding
• inframe_codon_gain
• inframe_codon_loss
• inframe_codon_change
• codon_change_del
• codon_change_ins
• UTR_5_del
• UTR_3_del
• other_splice_variant
• mature_miRNA
• regulatory_region
• TF_binding_site
• regulatory_region_ablation
• regulatory_region_amplification
• TFBS_ablation
• TFBS_amplification

LOW • synonymous_stop
• synonymous_coding
• UTR_5_prime
• UTR_3_prime
• intron
• CDS
• upstream
• downstream
• intergenic
• intragenic
• gene
• transcript
• exon
• start_gain
• synonymous_start
• intron_conserved
• nc_transcript
• NMD_transcript
• transcript_codon_change
• incomplete_terminal_codon
• nc_exon
• transcript_ablation
• transcript_amplification
• feature elongation
• feature truncation

42 Chapter 2. Table of contents

gemini Documentation, Release 0.3.0b

2.8.5 The resources table

Establishes provenance of annotation resources used to create a Gemini database.

column name type notes
name STRING Name of the annotation type
resource STRING Filename of the resource, with version information

2.8.6 The version table

Establishes which version of gemini was used to create a database.

column name type notes
version STRING What version of gemini was used to create the DB.

2.9 Using the GEMINI API

2.9.1 The GeminiQuery class

class gemini.GeminiQuery(db)
An interface to submit queries to an existing Gemini database and iterate over the results of the query.

We create a GeminiQuery object by specifying database to which to connect:

from gemini import GeminiQuery
gq = GeminiQuery("my.db")

We can then issue a query against the database and iterate through the results by using the run() method:

gq.run("select chrom, start, end from variants")
for row in gq:

print row

Instead of printing the entire row, one access print specific columns:

gq.run("select chrom, start, end from variants")
for row in gq:

print row[’chrom’]

Also, all of the underlying numpy genotype arrays are always available:

gq.run("select chrom, start, end from variants")
for row in gq:

gts = row.gts
print row[’chrom’], gts
yields "chr1" [’A/G’ ’G/G’ ... ’A/G’]

The run() methods also accepts genotype filter:

query = "select chrom, start, end" from variants"
gt_filter = "gt_types.NA20814 == HET"
gq.run(query)
for row in gq:

print row

2.9. Using the GEMINI API 43

gemini Documentation, Release 0.3.0b

Lastly, one can use the sample_to_idx and idx_to_sample dictionaries to gain access to sample-level
genotype information either by sample name or by sample index:

grab dict mapping sample to genotype array indices
smp2idx = gq.sample_to_idx

query = "select chrom, start, end from variants"
gt_filter = "gt_types.NA20814 == HET"
gq.run(query, gt_filter)

print a header listing the selected columns
print gq.header
for row in gq:

access a NUMPY array of the sample genotypes.
gts = row[’gts’]
use the smp2idx dict to access sample genotypes
idx = smp2idx[’NA20814’]
print row, gts[idx]

run(query, gt_filter=None, show_variant_samples=False)
Execute a query against a Gemini database. The user may specify:

1.(reqd.) an SQL query.

2.(opt.) a genotype filter.

header
Return a header describing the columns that were selected in the query issued to a GeminiQuery object.

sample2index
Return a dictionary mapping sample names to genotype array offsets:

gq = GeminiQuery("my.db")
s2i = gq.sample2index

print s2i[’NA20814’]
yields 1088

index2sample
Return a dictionary mapping sample names to genotype array offsets:

gq = GeminiQuery("my.db")
i2s = gq.index2sample

print i2s[1088]
yields "NA20814"

2.10 Acknowledgements

GEMINI is developed by Uma Paila and Aaron Quinlan in the Quinlan laboratory at the University of Virginia.
Substantial contributions to the design, functionality, and code base have been made by the following:

• Brad Chapman, HSPH

• Rory Kirchner, HSPH

• Oliver Hofmann, HSPH

44 Chapter 2. Table of contents

http://quinlanlab.org/

gemini Documentation, Release 0.3.0b

2.11 Release History

2.11.1 0.3.0b

1. Improved speed for adding custom annotations.

2. Added GERP conserved elements.

3. Optionally addition of GERP conservation scores at base pair resolution.

4. Move annotation files to Amazon S3.

2.12 F.A.Q.

2.12.1 Does GEMINI work with non-human genomes?

Currently, no. However, we recognize that the GEMINI framework is suitable to genetic research in other organisms.
This may be a focus of future work.

2.12.2 What versions of the human genome does GEMINI support?

Currently, we support solely build 37 of the human genome (a.k.a, hg19). We intend to support forthcoming versions
of the human genome in future releases.

2.12.3 How can I use PLINK files with GEMINI?

Many datasets, especially those derived from GWAS studies, are based on SNP genotyping arrays, and are thus stored
in the standard PLINK formats. While GEMINI only supports VCF input files, it is relatively straightforward to
convert PLINK datasets to VCF with the PLINK/SEQ toolkit.

1. First, load the PLINK BED file into a new PLINK/SEQ project using the instructions found in the “Load a PLINK
binary fileset” section here.

2. Next, use PLINK/SEQ to convert the project to VCF using the instructions found here.

At this point, you should have a VCF file that is compatible with GEMINI.

Alternatively, in his bcbio project, Brad Chapman has written a convenient script for directly converting PLINK files
to VCF. Below is an example of how to use this script.

$ plink_to_vcf.py <ped file> <map file> <UCSC reference file in 2bit format)

2.11. Release History 45

http://atgu.mgh.harvard.edu/plinkseq/input.shtml#plink
http://atgu.mgh.harvard.edu/plinkseq/output.shtml#vcf
https://github.com/chapmanb/bcbio-nextgen
https://github.com/chapmanb/bcbio-nextgen/blob/master/scripts/plink_to_vcf.py

gemini Documentation, Release 0.3.0b

46 Chapter 2. Table of contents

PYTHON MODULE INDEX

g
gemini, 43

47

gemini Documentation, Release 0.3.0b

48 Python Module Index

INDEX

G
gemini (module), 43
GeminiQuery (class in gemini), 43

H
header (gemini.GeminiQuery attribute), 44

I
index2sample (gemini.GeminiQuery attribute), 44

R
run() (gemini.GeminiQuery method), 44

S
sample2index (gemini.GeminiQuery attribute), 44

49

	Overview
	Table of contents
	Installation
	Quick start
	Annotation with snpEff or VEP
	Loading a VCF file into GEMINI
	Querying the GEMINI database
	Built-in analysis tools
	The GEMINI browser interface
	The Gemini database schema
	Using the GEMINI API
	Acknowledgements
	Release History
	F.A.Q.

	Python Module Index
	Index

