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Supplementary Results

Figure S1 gives a flowchart for the methods that we used to acquire landscape, probabilistic flux, barrier
heights, MFPT (mean first passage time) dynamic paths and the sensitivity analysis.

In order to exhibit the landscape of the complete 52 dimensional network, we also used Langevin
dynamics method to obtain landscape (Figure S2). For a 52 dimensional system, for visualization, we
harnessed RMSD (root mean squared distance) as the coordinate to reduce the dimensionality to 2

dimension (RMSD =
√∑N

i (xi − xref
i )2, N is the number of variables, and xref

i is the reference state,

here we chose two potential minima as the reference states). RMSD represents the distance between
a state point and reference point in state space. In this way, from 52-dimensional trajectory, we can
generate two new coordinates RMSD1 and RMSD2, separately representing the distance from a state
point to the reference state 1 (the potential minimum of stem cell attractor) and the reference state
2 (the potential minimum of differentiation state attractor). We can find that the landscapes using
RMSD method based on Langevin dynamics (Figure S2) possess the similar dynamics compared with
using NANOG and GATA6 as the coordinates (Figure 2 in main text) based on the self consistent
approximation. This shows that the two dimensional projection of landscape in NANOG and GATA6
state space can reflect the major dynamics of the full 52-dimensional gene network.

We found that the landscape is critically influenced by the activation constant a. When a increases
the stem cell state will be dominant and when a decline the differentiation state will be dominant.
Figure S2 show the landscape of the stem cell network when activation constant a is changed, separately
corresponding to a = 0.5,a = 0.38,a = 0.36,a = 0.3. Landscape comparisons illustrated that a = 0.3
represents the case of prominent differentiation state (right attractor), and when a = 0.5 the stem cell
state (left attractor) dominates. It also shows that when a gradually decreases from 0.5 to 0.3, the stem
cell state becomes less and less stable and the differentiation state becomes more and more stable until
being dominant, demonstrating that the system of stem cell experiences a transition from stem cell state
to differentiation state with activation strength a decreased.

For sensitivity analysis, we firstly exploited the self consistent approximation method to obtain those
top parameters - that is, by finding those parameters affecting barrier heights of the system critically.
Specifically, we changed the value of each of the activation and repression constant Aji and Bji (Eq. (2),
the parameters Aji and Bji and rpji are only used for the sensitivity analysis) by giving a perturbation
level pl (here, the value of pl is chosen as : -0.5, -0.2, -0.1, 0.1, 0.2, 0.5, and the default parameter
value is: Aji = 0.37, Bji = 0.5) as the percentage to change. Then for every mutation of parameters we
compared the change of the landscape topography in terms of the barrier heights for both differentiation
∆USP and reprogramming ∆USD. Figure S3 show barrier change results when pl =0.5 in terms of self
consistent approximation method. Figure S3A present the results for 84 activation parameters (change
activation constant Aji to 150% of its default value ) and Figure S3B present the results for 39 repression
parameters (change repression constant Bji to 150% of its default value). Blue stairs represent the barrier
for differentiation process USP (Udifferentiation) for different mutations, red stairs represent the barrier for
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differentiation state USD (Ureprogramming) for different mutations. X axis in A represent all 84 activation
links, and X axis in B represent all 39 repression links. From Figure S3, we can see that most of the
parameters only have small influence to the barrier heights compared with the default value. In this way,
we acquired 14 top activation links (absolute value of barrier change is larger than 3 in Figure S3A) and
6 top repression links (absolute value of barrier change is larger than 1 in Figure S3B).

In the following, we employed the Langevin dynamics to further obtain the change of barrier heights
for the above top 20 parameters, because by the Langevin dynamics the landscape of the system can be
acquired directly by the statistics of the trajectories of the system - not through approximation. Figure 6
in main text shows the results of the sensitivity analysis for the 20 top parameters. Figure 6A in main text
shows the results for 6 repression links (changing parameter rpji), and Figure 6(B) in main text shows
the results for 14 activation links (changing parameter Aji). In Figure 6, every parameter is perturbed
to 200% compared to its default value (Aji = 0.37, rpji = 1). Here, we introduce another parameter rpji,
which is only used in sensitivity analysis section (Figure 6 in main text). The reason is the activation
constant Aji and repression constant Bji actually represent the relative weight of activation or repression
link (or maximum protein synthesis rate separately for activation item and repression item) in the driving
force equation (Eq (1) or Eq (2)). The increase of parameter Bji cannot really reflect the increase of
inhibition of gene j to gene i, as we can see from Eq. (2) that the increase of Bji actually will lead to
activation of gene i. Therefore, we introduce the parameter rp, whose increase can really represent the
increase of inhibition of gene j to gene i. Then we did sensitivity analysis with respect to the activation
constant Aji and the new repression constant rpji in terms of Langevin dynamics (Figure6 in main text).

Fi = −k ∗Xi +

m1∑
j=1

a ∗Xj
n

Sn +Xj
n +

m2∑
j=1

b ∗ Sn

Sn +Xj
n (1)

Fi = −k ∗Xi +
m1∑
j=1

Aji ∗Xj
n

Sn +Xj
n +

m2∑
j=1

Bji ∗ Sn

Sn + rpjiXj
n (2)

Self Consistent Mean Field Approximation

The time evolution the dynamical systems are governed by the diffusion equations. Given the sys-
tem state P (X1, X2, ..., Xn, t), where X1, X2, ..., Xn is the concentration or populations of molecules or
species, we expected to have N-coupled differential equations, which are difficult to solve. Following a
self consistent mean field approach [1–3], we split the probability into the products of individual ones:
P (X1, X2, ..., Xn, t) ∼

∏n
i P (Xi, t) and solve the probability self-consistently. This effectively reduces the

dimensionality from MN to M ×N , and thus makes the problem computationally tractable.
However, for the multi-dimensional system, it is still hard to solve diffusion equations directly. We can

start from moment equations and then simply assume specific probability distribution based on physical
argument, meaning that we give some specific connections between moments. In principle, once we know
all moments, we can construct the probability distribution. For example, Poisson distribution has only
one parameter, so we may calculate all other moments from the first moment, that is the mean. Here we
use gaussian distribution as approximation, then we need two moments, mean and variance.

Let us begin from one dimensional diffusion equation [4, 5]:

∂P (x, t)

∂t
= − ∂

∂x
[F (x)P (x, t)] +D

∂2

∂x2
[d(x)P (x, t)] (3)

Here F (x),d(x) is ”drift and diffusion part”. For this equation, in weak noise D ≪ 1, we divide x to
two part:
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x = x(t) +
√
Dy

x(t) = ⟨x⟩ =
∫

xP (x, t)dt

y = o(1)

(4)

Then, we expand Eq. (3) for D, and discuss all moment equations of the system. First, multiplying
x in two sides of Eq. (3), and integrating x in whole space, we can get the first moment equation of x.

ẋ(t) = ⟨F (x)⟩ (5)

Bring equation (4) to equation (5), we can get:

ẋdt = F [x(t)] +
D

2

∂2F [x(t)]

∂x(t)2
σ(t) + o(D

3
2 ), σ(t) = ⟨y2⟩. (6)

Using x2 to multiply Eq. (3) in two sides, in the same way we can get:

2x(t)ẋ(t) +Dσ̇(t) = 2x(t)(F [x(t)] +D
∂2F [x(t)]

∂x(t)2
σ(t)) + 2D

∂F [x(t)]

∂x(t)
σ(t) + 2Dd[x(t)] + o(D

3
2 )

(7)

Bring Eq. (6) to Eq. (7), we can finally get:

σ̇(t) = 2
∂F [x(t)]

∂x(t)
σ(t) + 2d[x(t)] + o(

√
D). (8)

When diffusion coefficient D is small, if Dσ(t) is not big enough to 1/D level, the Eq. (6),(8) could
be approximated to:

ẋ(t) = F [x(t)] (9)

σ̇(t) = 2
∂F [x(t)]

∂x(t)
σ(t) + 2d[x(t)]. (10)

For multi-dimensional case, the moment equations can be approximated to [4, 5]:

˙̄x(t) = F[x̄(t)] (11)

σ̇(t) = σ(t)AT(t) +A(t)σ(t) + 2D[x̄(t)]. (12)

Here,x, σ(t), and A(t) are vectors and tensors, and AT(t) is the transpose of A(t). The matrix

elements of A is Aij = ∂Fi[X(t)]
∂xj(t)

. In terms of this equation, we can solve x(t) and σ(t). Here, we

consider only diagonal elements of σ(t) from mean field splitting approximation. Therefore, the evolution
of probabilistic distribution for each variable could be acquired using the mean and variance based on
gaussian approximation:

P (x, t) =
1√

2πσ(t)
exp− [x− x̄(t)]2

2σ(t)
(13)



4

The probability obtained above corresponds to one fixed point or basin of attraction. If the system
allows multistability, then there are several probability distributions localized at every basin of attraction,
but with different variations. Therefore, the total probability is the weighted sum of all these probability
distributions. The weighting factors (w1, w2) are the size of the basin, representing the relative size of
different basin of attraction. For example, for a bistable system, the probability distribution takes the
form: P (x, t) = w1P

a(x) + w2P
b(x), here w1 + w2 = 1.

Finally, once we have the total probability, we can construct the potential landscape by the relationship
with the steady state probability: U(x) = −lnPss(x). In the gene regulatory network system, every
parameter or link contributes to the structure and dynamics of the system, which is encoded in the total
probability distribution, or the underlying potential landscape.

For nonequilibrium gene regulatory systems, the driving force F can not be written as the gradient
of potential U , like the equilibrium case. In general, F can be decomposed into a gradient of the
potential and a curl flux force linking the steady state flux Jss and the steady state probability Pss [2,6](
F = +D/Pss · ∂

∂xPss + Jss(x)/Pss = −D ∂
∂xU + Jss(x)/Pss). Pss denotes steady state probability and

potential U is defined as U = −lnPss. The probability flux vector J of the system in concentration or
gene expression level space x is defined as [5]: J(x, t) = FP −D · ∂

∂xP .
In the 52-dimensional protein concentration space, it’s hard to visualize 52-dimensional probabilistic

flux. Approximately, we explored the associated 2-dimensional projection of flux vector: J1(x1, x2, t) =
F1(x1, x2)P −D ∂

∂x1
P and J2(x1, x2, t) = F2(x1, x2)P −D ∂

∂x2
P .

Given a GRN with m nodes and their mutual regulation directions (activation or repression), according
to Eq (1) in main text, we can write down the m ODE separately representing the driving force Fi for
the ith gene. Then, according to Eq (3) and Eq(4) in main text (here Eq (3) has the same form as Eq (1)
as the driving force F), for a m variable system, we have m+m=2m ODEs, in which m ODEs represent
equations for mean value (first moment) and the other m ODEs represent equations for variance (second
moment). For our system we have 104 ODEs, we used Mathematic 7.0 software to solve these 104 ODEs
to obtain the solutions for the first moment and second moment ( and ). When solving ODEs, by giving
a large number (100000) of different random initial values for 52 variables, we can obtain different stable
solutions for different initial value, i.e. we can acquire multi-stable solution (bistable in this work). For
the Gaussian approximation, we determine the weights wi by giving a large number of random initial
conditions for ODEs to find solution, and then collect the statistics for different solution. For example,
for a bistable system, if 10% initial condition goes to the first steady state, and 90% initial condition goes
to the second steady state, then the weight w1 for the first basin is 0.1 and w2 for the second basin is
0.9. The multistability comes from the solution of 52 ODEs giving a large number (100000) of random
initial values. We give large number of random different initial conditions for ODEs for solution at a fixed
parameter set. By collecting the statistics of the solution, we can determine if the system is monostable
or bistable or mutistable at current parameter region.

To validate the Gaussian approximation method, we provided the landscape results from Gaussian
distribution approximation of the 2-dimensional case for GATA1/PU1 [7, 8], and made comparisons for
this 2-dimension case between Gaussian approximation method and Langevin dynamics method (Figure
S4). Figure S4 show the landscape comparisons for 3 different parameter values (a=1.2 for first column,
a=1 for second column, a=0.2 for the third column). The first row is from Gaussian approximation and
the second row is from Langevin dynamics. We can see that the landscapes from Gaussian approxima-
tion preserve the similar global properties (the number of attractors, the relative stability of basin of
attractions) as the Langevin dynamics method.

The motivation of our self-consistent method of splitting the variables is to reduce the dimensionality
of the large networks from exponential number of degrees of freedom to polynomial number of degrees of
freedom (fromMN toM∗N , here M is the number of how many different value every protein concentration
variable can have and N is the number of protein species). Our method is not simply splitting the variables
as an independent product but with a mean field type of approximation. In other words, even though
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the form of the probability is a product like P (x1, ..., xq, ..., xN ) = P (x1)...P (xq)...P (xN ), each of the
component P (xq) is not entirely independent with the others. The effect of the interactions of other
components is taken into account by the mean field or average of others on this particular component.
In order to solve each individual P (xq), a self consistent equation for P (xq) has to be solved taking into
account of the mean field effects from averaging the other components. In other words, the interactions
among different components is taken into account approximately by the self consistent way of solving the
each component P (xq) in the back ground of the average effects of others. The self consistent method
has been applied to multi-electron atom and multi atom molecule studies [9]. The results are usually in
reasonable agreements with experiments.

In our current work, for 52 dimensional system, we have 52 Gaussians each for a variable (52 dimen-
sional probability distribution). To exhibit the results in 2-dimensional space, we integrated out the other
50 variables and left two variables NANOG and GATA6.

Paths for Differentiation and Reprogramming from Discretized
Dynamics

The landscape in Figure 2 of main text only is the 2-dimensional projection of the whole 52 dimensional
state space. In order to demonstrate the cell states and the transitions between different cell types in
the complete state space, we projected the expression level of the 52 gene variables to binary states, and
acquired discretized dynamics results of the network (Figure 3 in main text).

We first used the Langevin dynamics to obtain the stochastic dimensionless trajectories of the 52
dimensional system. Then the trajectory is converted to discrete trajectories by setting the value ((max-
imum value - minimum value)/2 + minimum value) of every variable as the cutoff (cutoff is chosen so
that two up/down states are well separated), i.e. the value higher than the cutoff is set to 1 (indicating
high expression), while the value lower than the cutoff is set to 0 (indicating low expression). So, we can
obtain the discrete trajectories for 52 variables of the system. For a 52 dimension system, there will be
252 states even in discrete case (every variable has two value, 1 represent high expression, 0 represent
low expression), which cannot be handled computationally. So, we chose the major 22 marker genes to
present the discrete system, which has 222 = 4194304 states. For example, the stem cell state is rep-
resented by the binary number 1111111111100000000000 (representing expression level from gene 1 to
gene 22, 1 for high expression, 0 for low expression), and for the differentiation state, it is represented
by 0000000000011111111111. By the statistics for the discrete trajectory, we can obtain the appearing
probability separately for 222 different states. To present the results, we set a probability cutoff 0.0002
(only states with higher probability than 0.0002 are chosen, the cutoff is chosen so that the major states
can be presented in a figure, not too many or too few states, i.e. we only demonstrate the states and paths
with higher probability). Figure 3 in main text shows the differentiation and reprogramming process rep-
resented by 313 cell states (nodes) and 329 transition paths (edges) between the different cell states. We
believe that these 313 states with higher probability can capture the major states and regulation dynam-
ics of the system. The sizes of nodes and edges are separately proportional to the occurrence probability
of the corresponding states and paths. Red nodes represent states which are closer to stem cell states,
and blue nodes represent states which are closer to differentiation states. Especially, we acquired the
dominant kinetic paths as the biological paths from path integral formulism , which are shown as green
and magenta paths (Figure 3 in main text) separately for differentiation and reprogramming process (see
Table S4 and Table S5 for detailed paths).

From Table S4, monitoring the differentiation process according to certain vital marker genes NANOG
(column 3), GATA6 (column 16) and CDX2 (column 22), we can see that the differentiation process
experiences a transition from the stem cell state (high NANOG/low GATA6/low CDX2) to a interme-
diate state (IM1, low NANOG/low GATA6/low CDX2), and then to another intermediate state (low
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NANOG/low GATA6/high CDX2), and eventually to the differentiation state (low NANOG/high GA-
TA6/high CDX2). This indicates the importance of NANOG to the maintenance of pluripotency. For
differentiation proceeding, the cell needs to firstly impair the expression of NANOG, further downregulate
other stem cell marker genes which are promoted by NANOG, and finally reach the differentiation state
(GATA6 dominant). For the reprogramming path in Table S5, we can see that the cell experiences a tran-
sition from the differentiation state (low NANOG/high GATA6/high CDX2), to an intermediate state
(IM2, high NANOG/high GATA6/high CDX2), to another intermediate state (high NANOG/low GA-
TA6/high CDX2), and finally to the stem cell state (high NANOG/low GATA6/low CDX2). This might
imply that in the reprogramming process the cell first opens the key stem cell marker genes NANOG by
the change of regulation strength between key maker genes, then other stem cell marker genes gradually
acquire high expression level due to the activation regulation of NANOG to them. Finally the cell reach
the stem cell state, because the stem cell marker genes which have been activated repress strongly the
differentiation marker genes (such as GATA6 and CDX2). The biological paths can be validated by
related experiments, and we expect that it can be used to guide the design of new strategies for cellular
differentiation and reprogramming.

As we did for the dominant path, we also monitored the differentiation and reprogramming kinetic
paths with the activation strength a changed (separately shown in Table S6 and Table S7) in terms of
certain key marker genes NANOG, GATA6, and CDX2. Similar to the analysis about dominant paths
from path integrals, we can find that for the differentiation process the cell experiences an intermediate
state (low NANOG/low GATA6/low CDX2 or low stem cell marker/low differentiation marker) along
the path from the stem cell state to the differentiation state. For the reprogramming path, we can see
that the cell also experiences an intermediate state (high NANOG/high GATA6/high CDX2, or high
stem cell marker/high differentiation marker) along the path from the differentiation state to the stem
cell state. These results have the consistent predictions with the dominant path analysis, which is that
the cellular differentiation needs to experience an intermediate double low state (both stem cell marker
genes and differentiation marker genes have low expression level), and the cellular reprogramming needs
to experience an intermediate double high state (both stem cell marker genes and differentiation marker
genes have high expression level). We expect that these predictions can be tested by experiments in the
future, as well as help to design the differentiation and reprogramming strategies.

Path Integrals

In the cell, there exist external noise and intrinsic noise, which can be significant to the dynamics of
the system [10, 11]. Therefore, a network of chemical reactions in noisy fluctuating environments can be
addressed by:ẋ = F(x) + ζ. Here, x = (x1(t), x2(t), ..., x52(t)) represents the vector of protein concen-
tration. F(x) is the vector for the driving force of chemical reaction. ζ is Gaussian noise term whose
autocorrelation function is < ζi(x, t)ζj(x, 0) >= 2Dδ(t), and D is diffusion coefficient matrix.

The dynamics for the probability of starting from initial configuration xinitial at t=0 and ending at
the final configuration xfinal at time t, in terms of the Onsager-Machlup functional, can be formulated
[8,12,13] as: P (xfinal, t,xinitial, 0) =

∫
Dx exp[−

∫
dt( 12∇·F(x)+ 1

4 (dx/dt−F(x))· 1
D(x) ·(dx/dt−F(x)))] =∫

Dx exp[−S(x)] =
∫
Dx exp[−

∫
L(x(t))dt].

D(x) is the diffusion coefficient matrix. The integral over Dx denotes the sum over all possible paths
from the state xinitial at time t = 0 to xfinal at time t. The exponent factor gives the weight of each
path. Therefore, the probability of network dynamics from initial state xinitial to the final state xfinal is
equal to the sum of all possible paths with different weights. The S(x) is the action and L(x(t)) is the
Lagrangian or the weight for each path.

The path integrals can be approximated with a set of dominant paths, since each path is exponentially
weighted, and the other subleading path contributions are often small and can be neglected. Therefore,
the dominant path with the optimal weights can be acquired through minimization of the action or
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Lagrangian. In our case, we identify the optimal paths as the biological paths or differentiation and
reprogramming paths.

Hamilton-Jacobian (HJ) Framework for Path Integral.

From our path integral formalism, we can evaluate the weights of the kinetic paths. The most probable
trajectory can be acquired when the action S(x) is minimized directly. The Lagrangian is written as:

L(x) =
1

4D
ẋ2 + V (x)− 1

2D
F(x) · ẋ (14)

and thus the generalized momentum can be written out as: P(x) = ∂L
∂̇x = 1

2D (ẋ− F(x)). In the kinetic
system, the Hamiltonian of the system has the form:

H(x) = −L(x) +P(x) · ẋ = Eeff (15)

According to the above equation, we can obtain 1
4D ẋ2 − V (x) = Eeff and |ẋ| =

√
4D(Eeff + V (x)).

After substituting Eq. S2 into the action, we can obtain S(x) =
∫
(P(x) · ẋ−H(x))dt. We can see that

the action characterizing the weights of the paths depends on the values of the Hamiltonian. Specific
values of the Hamiltonian correspond to specific values of the final time T . For a fixed Hamiltonian, a
corresponding optimal path exits when minimizing the action S(x).

From the least action principle, if the Hamiltonian of the system is constant, the variation of the
action, for given initial and final coordinates and initial and final time, is zero. Allowing a variation
of the final time T and leaving the initial and the final coordinates fixed, we have δS = −Hδt. For a
constant Hamiltonian, δS = −Eδt. We define S0 =

∫
P(x) · ẋdt, since S(x) =

∫
(P(x) · ẋ −H(x)). We

find δS0 = 0. Thus, the action S0 is minimized with respect to all the paths satisfying the constant
Hamiltonian and passing through the final point at any instant.

For multidimensional questions, the action depends not only the initial and final coordinates but
also on the initial and final time. In the HJ framework, we can transform the formulations into a
different representation in x space: S0 = SHJ(x) =

∫ ∑
i

1
2D (ẋi − Fi)dxi =

∫ ∑
i pi(x)dxi. Here pi

is the associated momentum. Now the action only depends on the initial and final coordinates. This
action can be further simplified and is equivalent to a line integral along a particular one dimensional
path l so that SHJ(x) =

∫ ∑
i pi(x)dxi =

∫
pldl where pl =

√
(Eeff + V (x))/D − 1

2DFl. This switch
from the time-dependent to the Hamiltonian-dependent HJ description [8, 13, 14]. The dominant path
connection given initial and final states is obtained by minimizing the action in the HJ representation
SHJ =

∫ xf

xi
(
√
(Eeff + V (x))/D − 1

2DFl)dl, where dl is an infinitesimal displacement along the path
trajectory. Eeff is a free parameter that determines the total time elapsed during the transition.

In the current work, for simplification we chose Eeff = −Vmin(x), which is the effective potential by
minimizing V (x), and corresponding to the longest kinetic time. Finally, the optimal paths were obtained
by minimizing the discrete target function:

SHJ =

N−1∑
n

(
√
(Eeff + V (n))/D − 1

2D
Fl(n))∆ln,n+1 + λP (16)
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where

P =
N−1∑

i

(∆li,i+1− < ∆l >)2

(∆l)2n,n+1 =
∑
i

(xi(n+ 1)− xi(n))
2

Fl(n) =
∑
i

Fi(x(n))(xi(n+ 1)− xi(n))/∆ln,n+1

V (n) =
∑
i

(
1

4D
F2(xi) +

1

2

∑
j

∂Fj(xi)

∂xj
) (17)

Here, ∆ln,n+1 is the Euclidean measure of the nth elementary path step, and P is a penalty function,
which keeps all the length elements close to their average and becomes irrelevant in the continuum limit.
The minimization of the discrete HJ effective action was performed by applying a simulated annealing
algorithm or the conjugate gradient algorithm. In this study, we chose the discrete steps n as 20, and
the diffusion coefficient is chosen as 0.01. In Figure 2 and Figure 6 of main text, we projected the
52-dimensional path to 2-dimensional state space with respect to stem cell marker gene NANOG and
differentiation marker gene GATA6 as the biological paths. In Table S4 and Table S5, we showed the
22-dimensional discrete paths for differentiation and reprogramming characterized by 22 marker genes.
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