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Multi parametric sensitivity analysis

The multi parametric sensitivity analysis (MPSA) method is demonstrated, and compared with a local
sensitivity measure, by applying it to a simple toy model. Consider the following mathematical model of
the complex formation of species A and B to AB (Figure S1):

d[A]

dt
= k1 − k3[A][B]

d[B]

dt
= k2 − k3[A][B]

d[AB]

dt
= k3[A][B]− k4[AB]

A reference simulation (Figure S1) is obtained using values for the initial conditions and parameters as
presented in Table S1. The output of interest y is given by the steady-state value of [AB]. A local
parametric sensitivity analysis (LPSA) was performed by calculating the following measure for each
parameter ki [1]:

Si =
dy/yref
dki/kiref

where dy represents the difference in output compared to the reference output yref upon increasing
the reference parameter value kiref by dki. The parameters were individually increased by 50% with
respect to the reference values. The results are depicted in Figure S2 (top left). The output is only
sensitive to changes in parameter k4. Subsequently, the MPSA method was employed to determine
the relative importance of the parameters with respect to output of interest. A collection of Ns =
10000 randomly sampled parameter sets was generated, using uniform distributions between ±50% of
the reference parameter values. Note that all parameters are varied simultaneously. For each generated
parameter set the model is simulated and the output of interest is calculated. Next, for each parameter
individually the following procedure was performed. The samples are sorted according to the selected
parameter and cumulative distributions of the acceptable (Sa) and unacceptable (Su) cases are computed:

Sa(r) =
1

Ns

Ns
∑

j=1

ki,j≤r

pa(ki,j) (1)

Su(r) =
1

Ns

Ns
∑

j=1

ki,j≤r

pu(ki,j) (2)
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Table S1. Values for the initial conditions and parameters used in the toy model

State / Parameter Value

[A](t0) 1
[B](t0) 2
[AB](t0) 0

k1 1
k2 1
k3 1
k4 1

with pa and pu given by:

pa(ki,j) =

{

1, if ki,j ≤ h(~y)

0, otherwise
(3)

pu(ki,j) =

{

1, if ki,j > h(~y)

0, otherwise
(4)

h(~y) =
1

Ns

Ns
∑

i=1

yi,j (5)

where ~y is a vector of length Ns containing the model outputs corresponding to all sampled parameter
sets. Furthermore, ki,j and yi,j respectively denote the ith parameter and ith model output from the
jth sampled parameter set. The supremum of the difference between these distributions (Kolmogorov-
Smirnov distance) is given by:

KS = sup
r

∣

∣Sa(r) − Su(r)
∣

∣ (6)

where KS represents the Kolmogorov-Smirnov distance. The KS distances are presented in Figure S2
(top right). For each parameter corresponding cumulative distributions and KS distance are depicted
(bottom plots). A critical value for the KS distance (indicated by the dashed line) was obtained from the
Kolmogorov distribution using a significance level of 0.05 [2,3]. A few observations can be made. Results
from both the LPSA and MPSA indicate that the model output is most sensitive to changes in parameter
k4. This is expected because k4 directly acts on the model output. Furthermore, both analyses indicate
that the model output is not sensitive for k3. This is also expected as k3 will only influence the dynamics,
but not the steady-state of [AB]. However, different results are obtained concerning parameters k1 and k2.
The LPSA method attributes no relative importance to these parameters. Indeed, when these parameters
are varied individually they will only induce modest changes to the steady-state value of [AB]. However,
when both parameters are changed simultaneously this could have an impact on the steady-state value
of [AB]. Hence, depending on the situation the model output could display sensitivity with respect
to changes in these parameters. An advantage of the MPSA method is that it allows to detect these
combinatorial effects of parameters on model outputs that might go unnoticed in LPSA based methods.
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Figure S1. Overview of the toy model. The MPSA method is demonstrated by applying it to a
simple model of complex formation of species A and B to AB. Top) schematic overview of the model.
Bottom) reference simulation obtained with values for the initial conditions and parameters as presented
in Table S1.
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Figure S2. Parametric sensitivity analysis. Top left) Results obtained with the LPSA method.
Top right) KS distances obtained with the MPSA method. A significant KS distance is indicated by the
dashed line. Bottom plots) For each parameter corresponding cumulative distributions and KS distance
are depicted.
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