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1 Implementation of the multi-strain spreading dynamics

Here we provide the details of the implementation of the multi-strain spreading dynamics.
We build the metapopulation systems by randomly generating the mobility network, as detailed in the

Methods section of the main paper, and then assigning to each node an integer value for the population
according to its degree, as given by Eq. (2). This guarantees the system to be at the equilibrium of
the mobility dynamics in such a way that the population of each node fluctuates around the initial
value for the whole duration of the simulated outbreak without any significant replenishment/depletion
of individuals. As such it is consistent with a realistic situation where migration events that alter the
population distribution occur at a time scale larger than the disease ones, thus for the duration of
the epidemic the population is stable at the equilibrium. The epidemic is initialized on the top of
the metapopulation system by extracting at random 50 subpopulations for the slow (fast) strain and
moving the 0.1% of the population in the Is (If ) compartment, keeping the rest of the population in
the susceptible compartment. We explicitly required that the two strains are not initialized within a
same node to avoid interaction at the beginning of the epidemic. We tested different number of initially
infected subpopulations (i.e. 10 and 25) finding the same qualitative results.

Once the system is initialized the epidemic is simulated as a discrete-time stochastic process. At
each time step, corresponding to one unit of time ∆t ≡ 1, both traveling and infection are simulated
one after the other. For each subpopulation i traveling individuals are extracted from each of the four
infection compartments by a multinomial distribution characterized by ki + 1 possible outcomes which
correspond to traveling in each of the ki directions, with probability p

ki
∆t, and not traveling, with

probability 1 − p∆t. After the traveling the contagion is simulated within each node as a combination
of multinomial and binomial transitions. In detail, contagion is modeled with a multinomial process
to accommodate the fact that susceptible individuals can contract the infection from either one of the

two strains. Transition probabilities are
{
βf Ii,f
Ni

∆t,
βsIi,s
Ni

∆t, 1− βf Ii,f+βsIi,s
Ni

∆t
}

, where βf = R0µ and

βs = R0µ/τ . The recovery of infectious is modeled as a binomial process with probabilities µ∆t and
µ∆t/τ for the fast and slow strain respectively. This succession of events is iterated until the epidemic
gets extinct, namely in all subpopulations the Is and If compartments are empty. In all simulations,
except for the parameter exploration of Figure 7, we consider the scenario with R0 = 1.8, µ = 0.6 and
τ = 2.

From each run we collect the attack rate within every subpopulation produced by both the fast and
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the slow strain. We perform 2000 runs for each set of parameters, collecting statistics over different
realizations of the stochastic spreading dynamics as well as different initially infected nodes and network
instances.

2 Heterogenous traffic distribution
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Figure S1. Competition between strains: comparison between the heterogenous mobility
model (HMM) and the uniform mobility one (UMM). Ratio Ds

∞/D
f
∞ as a function of p for

both homogenous and heterogenous networks and the two traffic distribution models, uniform and
heterogenous. Error bars are not displayed for the sake of visualization. The networks have average
degree k̄ = 5. Both strains have R0 = 1.8. Other parameters are µ = 0.6 and τ = 2.

In this section we compare the uniform traffic distribution model considered in the main paper with
the case in which the traveling probability is a heterogenous quantity defined to reproduce the statical
features observed in real systems. Studies on human mobility patterns that extensively analyzed air-
transportation and commuting data, have shown that the traffic along the mobility connections is a
heterogenous quantity and is statistically related to the degrees of the connected nodes through a power
low functional form [1, 2]. In particular for the case of the worldwide air-transportation network the
following simple power law relation has been observed: wkk′ = w0(kk′)θ, where wkk′ represents the
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average daily number of people traveling along a link between a node with degree k and a node with degree
k′. Prompted by these empirical studies we consider a heterogenous model for the traffic distribution
defined as follow [3, 4]. The probability dkk′ of traveling along a link between a node of degree k and a
node of degree k′ is given by

dkk′ =
w0(kk′)θ

Nk
=
k̄ w0

N̄
kθ−1k′θ. (S1)

The probability of traveling out of a node is now function of the degree,

pk = k
∑
k′

dkk′P (k′|k) =
w0

N̄
〈kθ+1〉kθ. (S2)

where the latter equality is recovered under the assumption of uncorrelated network, i.e. P (k′|k) =
k′

〈k〉P (k) (〈k〉 ≡ k̄), that is fulfilled in our simulations for construction.

Figure S1 addresses the comparison between the uniform mobility model (UMM) and the heterogenous
one (HMM). The figure shows the ratio Ds

∞/D
f
∞ for the two networks considered (Poisson and power

low degree distribution) and the two kinds of mobility. For the case of heterogenous traffic distribution,
the parameter p represents the average value of pk all over the network:

p ≡ 〈pk〉 =
∑
k

pkP (k) =
w0

N̄
〈kθ+1〉〈kθ〉. (S3)

In this way we are comparing two systems with the same average traveling probability out of the nodes.
According to the results of Figure S1, the multi-strain competition behavior is robust in varying the
model for the traffic distribution along the links. The only difference is a shift towards lower values of p
which is due to the fact that heterogeneities in the traffic distribution, analogously to heterogeneities in
the network topology, increase the value of R∗ and thus decrease the cross-over traveling probability pc.
This effect is more visible for the case of heterogenous network where the fluctuations introduced by the
dependence between traffic and degrees are larger.

3 Partial cross-immunity

Here we present some results for the scenario in which the assumption of full cross-immunity is relaxed.
Specifically, we have explored the case of partial cross-immunity between the two strains. This corresponds
to consider that when an individual is infected by a given strain, he/she is fully protected against that
strain, however has only a partial immunity against the other strain. We followed the multi-strain
approach by Castillo-Chavez et al. [5]. Figure S2 shows what transitions are now possible under the
assumption of partial cross-immunity as well as their associated transition rates. Basically, the model
considers that once an individual is recovered from one strain, it acquires a degree of immunity against the
other strain characterized by the parameter 1− σ, which means that with probability σ it can catch the
other strain. We run numerical simulations (all the rest of parameters are the same as for the case of full
cross-immunity) assuming a range of cross-immunity values compatible with those reported for influenza.
Specifically, we have simulated situations in which recovered individuals from one strain may have up
to 80% cross-immunity to the other strain, which roughly correspond to estimates for diverse degrees of
antigenic drift of influenza [6]. This corresponds to values of σ in the range [0, 0.2]. As figure S3 shows,
the main results reported in our paper regarding the existence of a cross-over point that depends on the
mobility of hosts, are qualitatively the same within the range of σ considered. The full exploration of the
role of the parameter characterizing the degree of cross-immunity in the observed competition dynamics
will be the object of future work.
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Figure S2. Partial cross-immunity setting. Schematic representation of the possible transitions
when partial cross-immunity is considered. At variance with the case in which infection from one strain
confers full immunity to the other strain, here we consider that with probability σ a recovered
individual from one strain (slow: right branch or fast: left branch) can be infected by the other one.

4 Interpretation of the model in a real scenario

We discuss in the following the interpretation of the presented framework within the realistic setting of
influenza in humans, with two strains spatially circulating through an air-transportation network. We
consider the global aviation database of Ref. [7] and a timescale of 1 day. Taking into account the average
daily number of people traveling on each link of the air transportation network (about 200 individuals),
we obtain a corresponding traveling probability for the system under study equal to p = 0.1. The basic
reproductive number of seasonal influenza has been estimated between R0 = 1.4 and 2.0 (Ref. [8]) of the
main text). Thus, referring to the case of Figure 7 of the main paper (R0 = 1.8 and µ = 0.6), we obtain
that the air-transportation mobility scenario falls in the regime in which the fast strain is dominant for
all the values of τ tested, since the cross-over traveling probability assumes values of the order of 10−4 for
all values of τ explored. This indicates that, given the circulation of two strains characterized by total
cross-immunity, and equal reproductive number and different infectious period compatible with influenza
infection, the high level of mixing allowed by the modern and efficient mobility infrastructures would
select the more rapidly spreading strain.
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as a function of p for homogenous networks and two different values of σ.

Ds
∞ denotes the number of populations that experience an outbreak of strain s as a primary infection

(i.e., infectious individuals came directly from class S), while Ds
∞

(f) stands for the number of
populations in which an outbreak of strain s takes place as a result of the re-infection of individuals
already recovered from the other (fast) strain. Error bars are not displayed for the sake of visualization.
The network has an average degree k̄ = 5 and both strains have R0 = 1.8. Other parameters are µ = 0.6
and τ = 2
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