
Text S1: Supplementary Materials for “Task-Based Core-Periphery

Organization of Human Brain Dynamics”

Danielle S. Bassett1,2,∗, Nicholas F. Wymbs5, M. Puck Rombach3,4,
Mason A. Porter3,4, Peter J. Mucha6,7, Scott T. Grafton5

1Department of Physics, University of California, Santa Barbara, CA 93106, USA;

2 Sage Center for the Study of the Mind,

University of California, Santa Barbara, CA 93106;

3 Oxford Centre for Industrial and Applied Mathematics,

Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK;

4CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP, UK;

5Department of Psychological and Brain Sciences and UCSB Brain Imaging Center,

University of California, Santa Barbara, CA 93106, USA;

6Carolina Center for Interdisciplinary Applied Mathematics,

Department of Mathematics, University of North Carolina,

Chapel Hill, NC 27599, USA;

7Institute for Advanced Materials, Nanoscience & Technology,

University of North Carolina, Chapel Hill, NC 27599, USA;

∗Corresponding author. Email address: dbassett@physics.ucsb.edu

July 29, 2013

1



Reliability of Temporal Core-Periphery Organization

A brain region’s role in the temporal core, bulk, and periphery is robust across levels of training. Regions
identified as part of the core, bulk, or periphery in multilayer networks constructed from the EXT blocks in
scanning session 1 have similar flexibilities in the other two levels of training (MOD and MIN; see Fig. S1A)
for the same scanning session. To quantify the variability of a brain region’s flexibility, we calculated the
coefficient of variation (CV) of flexibility over the 100 optimizations and the 3 levels of training (see Fig. S1B).
The CV is defined as CV = σ/µ, where σ is the standard deviation of a given sample and µ is its mean. We
observe that the variabilities over optimizations and scans (i.e., CV) and over participants (i.e., error bars)
are largest in regions designated as part of the temporal core and smallest in regions designated as part of
the temporal periphery.

In addition, regional flexibility is also conserved across both intensity of training (MIN, MOD, and EXT)
and duration of training (sessions 1–4). Observe in Fig. S2 that regions identified as part of the temporal
core in multilayer networks constructed from the EXT blocks in scanning session 1 exhibit small flexibility
for all other scanning sessions and for all 3 training levels (EXT, MOD, and MIN). Regions in the temporal
bulk and temporal periphery exhibit a similar amount of flexibility to one another.

Reliability of Geometrical Core-Periphery Organization

As we illustrate in Fig. S3, the geometrical core-periphery organization of the brain was consistent over
the 42 days of practice, across sequence types, and throughout variations in the intensity of training (MIN,
MOD, and EXT) and in the duration of training (sessions 1–4).

Relationship Between Temporal Core-Periphery Organization and Community Structure

The division of the brain networks into temporal core, bulk, and peripheral nodes has interesting similarities
to their partitioning into communities based on optimizing multilayer modularity. We first noted this sim-
ilarity when we examined community structure in an object that we call the mean-coherence matrix. The
mean-coherence matrix Ā contain elements Āij that are equal to the mean coherence between nodes i and
j over participants and EXT blocks on day 1 of the experiment. We determined the community structure
of this mean-coherence matrix by optimizing the single-layer modularity quality function [1, 2, 3, 4, 5]:

Qsingle−layer =
∑
ij

[
Āij −

kikj
2m

]
δ(gi, gj) , (1)

where node i is assigned to community gi, node j is assigned to community gj , the Kronecker delta δ(gi, gj) =
1 if gi = gj and it equals 0 otherwise, ki is the strength of node i, and m is the mean strength of all nodes in
the network. After optimizing this single-layer quality function 100 times, we constructed a representative
partition [6] from the set of 100 partitions. (Each partition arises from a single optimization.) One community
in this representative partition, which we show in Fig. S4A, appears to have high connectivity to the other
two communities: nodes in this first community have edges with strong weights to nodes in the other two
communities. This indicates a high coherence in the BOLD time series, and this behavior is consistent with
the behavior expected from a network “core”. A second community in this representative partition appears
to have low connectivity to the other two communities: nodes in this community have edges with small
weights that connect to nodes in the other two communities. This indicates a low coherence in the BOLD
time series, and this behavior is consistent with the behavior expected from a “periphery”.

It is important to note that we observed this relationship between temporal core-periphery organization
and community structure in networks encoded by mean matrices. However, networks encoded by mean ma-
trices constructed by averaging correlation-based matrices often do not adequately represent the topological
or geometrical structure of the ensemble of individual networks from which they are derived [7]. We therefore
test for a relationship between the temporal core-periphery organization and community structure in the
ensemble of networks extracted from individual participants.

A division of the brain into temporal core, bulk, and peripheral regions gives a partition of the functional
brain network. We label this partition using the Greek letter ν, and we use the z-score of the Rand coefficient
[8] to test for similarities between this partition and algorithmic partitions, which we label using η, into
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communities (based on optimization of multilayer modularity) for each participant, block, and optimization.
For each pair of partitions ν and η, we calculate the Rand z-score in terms of the total number of node pairs
M in the network, the number of pairs Mν that are in the same community in partition ν but not in the
partition η, the number of pairs Mη that are in the same community in partition η but not in ν, and the
number of node pairs wνη that are assigned to the same community in both partition ν and partition η. The
z-score of the Rand coefficient allows one to compare partitions η and ν, and it is given by the formula

zνη =
1

σwνη

wνη −
MνMη

M
, (2)

where σwνη
is the standard deviation of wνη. Let the mean partition similarity zi denote the mean value of

zνη over all partitions η (i.e., for all blocks and all optimizations) for participant i.
As we show in Fig. S4B-D, we find that communities identified by the optimization of the multilayer mod-

ularity quality function (see the “Materials and Methods” section in the main manuscript) have significant
overlap with the division into temporal core, bulk, and periphery during early learning. The mean values
of zi over participants indicate that there is a significant similarity between the partitions into modules and
the partitions into core, bulk, and periphery for networks representing functional connectivity during blocks
of extensively, moderately, and minimally trained sequences on scanning day 1. This similarity between
community structure and temporal core-periphery organization is also evident for blocks of moderately and
minimally trained sequences practiced during later scanning sessions. These results underscore the fact that
core-periphery organization can be consistent with community structure. Note, however, that there is no
statistical similarity between partitions into core, bulk, and periphery and partitions into communities for
later learning. (As shown in Fig. S4B-D, the z-scores for networks that represent the functional connectivity
during extensive training in scans 2–4, moderate training in scans 3–4, and minimal training in scan 4 are not
significantly greater than expected (i.e., under the null hypothesis of no difference between the partitions).)
Together, this set of results suggests that the relationship between these two types of mesoscale organization
can be altered by learning.

Methodological Considerations

Experimental Factors

Effect of Region Size

Recent studies have noted that brain-region size can affect estimates of hard-wired connectivity strength
used in constructing structural connectomes [9, 10]. Although the present work is concerned with functional
connectomes, it is nevertheless relevant to consider whether or not region size could be a driving effect of
the observed core-periphery organization. Importantly, we observe no significant correlation between region
size and flexibility (see Fig. S5), which suggests that region size is not driving the reported results.

Effect of Block Design

Another important factor is the underlying experimental block design and its effect on the correlation
structure between brain regions in a single time window (i.e., in a single layer in the multilayer formalism).
Two brain regions, such as motor cortex (M1) and supplementary motor area (SMA), might be active during
the trial but quiet during the inter-trial interval (ITI). This would lead to a characteristic on-off activity
pattern that is highly correlated with all other regions that also turn on with the task and off during the
ITI. The frequency of this task-related activity (one on-off cycle per trial, where each trial is of length 4–6
TRs) is included in our frequency band of interest (wavelet scale two, whose frequency range is 0.06–0.12
Hz), and it therefore likely plays a role in the observed correlation patterns between brain regions in a single
time window.

Note, however, that our investigations of dynamic network structure—namely, our computations of flex-
ibility of community allegiance—probe functional connectivity dynamics at much larger time scales, and the
associated frequencies are an order of magnitude smaller. They lie in the range 0.0083–0.012 Hz, as there
is one time window every 40–60 TRs. At these longer time scales, we can probe the effects of both early
learning and extended learning independently of block-design effects.
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Specificity of Dynamic Network Organization as a Predictor of Learning

An important consideration is whether there exist (arguably) simpler properties of brain function than
flexibility that could be used to predict learning. We find that the power of activity, the mean connectivity
strength, and parameter estimates from a general linear model (GLM) provide less predictive power than
flexibility.

Measures of Activity and Connectivity. It is far beyond the scope of this study to perform exhaustive
computations using all possible measures of brain-region activity, so we focus on two common diagnostics.
One is based on functional connectivity, and the other is based on brain activity. To estimate the strength of
functional connectivity, we calculated the mean pairwise coherence between regional wavelet scale-two time
series constructed from the BOLD signal, where we took the mean over all possible pairs of regions and all
EXT experimental blocks extracted from scans on day 1 for a given subject. To estimate the strength of
activity, we calculated the mean signal power of the regional wavelet scale-two time series constructed from
the BOLD signal, where we took the mean over all regions and all EXT experimental blocks extracted from
scans on day 1 for a given subject. We estimate the power Pw2

of the wavelet scale-two time series as the
square of the time series normalized by its length:

Pw2
=
∑
t

w2(t)2

T
, (3)

where T is the length of the time series [11, 12].
We found that neither mean pairwise coherence nor mean power of regional activity measured during the

first scanning session could be used to predict learning during the subsequent 10 home training sessions. For
the mean pairwise coherence, we obtained a Pearson correlation of r

.
= −0.003 and a p-value of p

.
= 0.987.

For the mean power of brain-region activity, we obtained r
.
= −0.218 and p

.
= 0.354. These results indicate

that a prediction similar to that made using the flexibility is not possible using the (arguably) simpler
properties of the mean pairwise coherence or the mean power of regional brain activity. They also suggest
that the dynamic pattern of coherent functional brain activity is more predictive than means of such activity
patterns.

Parameter Estimates for a General Linear Model. We determined relative differences in the BOLD
signal by using a GLM approach for event-related functional data [13, 14]. For each participant, we con-
structed a single design matrix for event-related fMRI by specifying the onset time and duration of all
stimulus events from each scanning session (i.e., the pre-training session and the 3 test sessions). We found
estimations of changes in the BOLD signal related to experimental conditions by using the design matrix
with the GLM. We modeled the duration of each sequence trial as the time elapsed to produce the entire
sequence; in other words, we calculated the movement time (MT), which is a direct measure of the time
spent on a task and leads to accurate modeling of BOLD signals using the GLM [15]. Separate stimulus
vectors indicate each sequence exposure type (EXT, MOD, and MIN) for each scanning session. We took
potential differences in brain activity due to rate of movement into account by using the MT for each trial as
the modeled duration for the corresponding event. We convolved events using the canonical hemodynamic
response function and temporal derivative. Using the canonical hemodynamic response function (HRF) and
its temporal derivative — we use the implementation in the Statistical Parametric Mapping Toobox (SPM8)
[18] — we then modeled the events that were specified in the stimulus vectors. From this procedure, we
obtained a pair of beta images for each event type. These images correspond to estimates of the HRF and
its temporal derivative. Using freely available software [16], we then combined the corresponding beta image
pairs for each event type (HRF and its temporal derivative) at the voxel level to form a magnitude image
[17]

H = sign(B̂1) +

√
(B̂1 + B̂2) , (4)

where H is called the “combined amplitude” of the estimation of the BOLD signal using the HRF (B̂1) and
its temporal derivative (B̂2). 1 This yielded separate magnitude images for each sequence exposure type

1In this equation, we use the hat notation to indicate that these values are estimated (rather than directly measured) from
a general linear model for a response variable (such as regional cerebral blood) at each voxel in a given participant [14].
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(EXT, MOD, and MIN) and session. We then calculated the mean region-based magnitude for each exposure
type and session using regions derived from each subject’s grey matter-constrained Harvard-Oxford (HO)
atlas.

We did not find a significant correlation between the mean parameter estimates averaged over brain
regions for the EXT trials in scanning session 1 and learning of the EXT sequences over the subsequent
approximately 10 home training sessions. The Pearson correlation is r

.
= −0.10 and the p-value is p

.
= 0.65.

Subject State-Dependence of Dynamic Network Organization

Our finding that temporal core-periphery organization predicts the rate of learning across individuals is
compelling evidence that the relationship between geometrical and temporal core-periphery organization is
related to learning. Nevertheless, it is important to ask whether changes in dynamic community structure
and associated mesoscale network organization are related to tasks or to changes in subjects’ physiological
state over the course of longitudinal imaging [18]. It is clear from studies of behavior, peripheral physiology,
and fMRI that subjects can have high levels of anxiety or stress (particularly during their first exposure to
MRI) [19]. To address this issue, we describe additional evidence that supports our conclusions that the
reported changes in dynamic community structure with learning are indeed related to motor tasks.

First, we note that we observed temporal and geometrical core-periphery organization consistently over
all 4 scanning sessions. In Fig. S2 of the present document, we show that the anatomical identity of nodes
in the temporal core, bulk, and periphery are consistent over scanning sessions. In Fig. S3 of this document,
we show that the anatomical identity of nodes in the geometrical core and periphery are also consistent over
scanning sessions. Moreover, Fig. 6 in the main manuscript shows that we observe the relationship between
temporal and geometrical core-periphery organization consistently across scanning sessions.

Second, we assume that the effects of a subject’s mental and physiological state (e.g., anxiety) are greatest
during the first imaging session [20]. If this is indeed the case, then there could be significant changes of
network organization between scans 1 (higher anxiety) and 2 (lower anxiety) that might lead to a spurious
interpretation of changes in core-periphery organization. To examine this possibility, we test whether the
changes in dynamic community structure and core-periphery organization with learning are robust to the
removal of scan 1. Importantly, the trends in Figs. 2 and 5 in the main manuscript remain present if we only
examine scans 2–4. We use data from scan 1 for the three box plots located at the point in the horizontal
axis at which the number of trials is equal to 50. (This is the leftmost point of each panel.) See Table 1 in
the main manuscript. The 9 box plots located at points on the horizontal axis at which the number of trials
is greater than 50 use data from scans 2–4. Therefore, when we examine only scans 2–4, we still observe a
decrease in maximum modularity, an increase in the number of communities, an increase in flexibility, and
a decrease in the variance of the geometrical core score with learning.

Finally, task-related fMRI BOLD activation magnitude in core, bulk, and peripheral brain regions are
not altered significantly across scanning sessions. We employed a repeated-measures analysis of variance
(ANOVA) on the training-depth-averaged GLM parameter estimates [21]. We treated core, bulk, and periph-
ery designations as categorical factors, and we treated scanning session as a repeated measure. We found a sig-
nificant main effect (i.e., single-factor effect) of core, bulk, and periphery (an F-statistic [21] of F (2, 38)

.
= 7.88

and a p-value of p
.
= 0.00137) and a non-significant effect of scanning session (F (3, 57)

.
= 0.615, p

.
= 0.584).

These results suggest that a systematic change in the hemodynamic response function across scanning ses-
sions is unlikely to be responsible for the observed learning-related changes in dynamic community structure.

Furthermore, we observe that mean GLM parameter estimates in core, bulk, and peripheral brain regions
are not correlated significantly with the reported changes in core-periphery structure that accompany learn-
ing. The Pearson correlation coefficient between parameter estimates and the variance of the geometrical
core score for nodes in the temporal core is r

.
= 0.20 (which gives a p-value of p

.
= 0.52), for nodes in the

temporal bulk is r
.
= −0.05 (so p

.
= 0.86), and for nodes in the temporal periphery is r

.
= −0.52 (so p

.
= 0.08).

These results provide further evidence that BOLD activation magnitude and dynamic community structure
provide distinct insights.

Temporal Core-Periphery Organization and Task-Related Activations

One of the strengths of our approach is that we examine the organization of whole-brain functional connec-
tivity and thereby remain sensitive to a wide variety of learning-related changes in the brain that could not
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be identified using a traditional GLM analysis. Nevertheless, it is useful to explore the relationship between
dynamic community structure and task-related activations. In Fig. S6, we show that regions in the temporal
core tend to be regions with strong task-related activations, as evinced by high (and positive) values of
mean GLM parameter estimates. Conversely, regions in the temporal bulk and periphery tend to lack strong
task-related activations, as evinced by low (and negative) values of mean GLM parameter estimates. These
results are consistent with our interpretation that the temporal core consists of a small set of regions that
are required to perform a given task and that the temporal periphery consists of a set of regions that are
associated more peripherally with the task and which are activated in a transient manner.

Dynamic Community Detection

In the multilayer modularity quality function (see the “Materials and Methods” section of the main manuscript),
we need to choose values for two parameters [6]: a structural resolution parameter γ and a temporal resolution
parameter ω. We now examine the effects of these choices on our results.

Effect of Structural Resolution Parameter

In the main manuscript, we used a structural resolution parameter value of γ = 1, which is the most common
choice when optimizing the single-layer and multilayer modularity quality functions [4, 5, 22]. In this case,
A − γP = A − P, and one is simply subtracting the optimization null model P from the adjacency tensor
A. One can decrease γ to access community structure at smaller spatial scales (i.e., to examine smaller
communities) or increase it to access community structure at larger spatial scales (i.e., to examine larger
communities). By examining network diagnostics over a range of γ values, we explore the spatial specificity
of our results.

The mean number of communities in the partitions that we obtained by optimizing multilayer modularity
Q varies from the minimum (1) to the maximum (112) possible value for γ approximately in the interval
[0.8, 2.5] (see Fig. 7A). We investigate this transition in greater detail in Figs. 7C,D. Near the value γ = 1, the
number of regions in the bulk dips to about 65, whereas the number of regions in the core and periphery rise to
about 20 and 25, respectively. Observe the dip of the bulk curve and bumps of the core and periphery curves in
Fig. 7D. These features occur for γ approximately in the interval [0.88, 1.22], which corresponds to partitions
that are composed of between approximately 3 and approximately 20 communities (with an associated mean
community size of between approximately 6 and approximately 37 brain regions; see Fig. 7B). This supports
our claim that the temporal core-periphery structure that we examine in this study is a genuine mesoscale
feature of coherent brain dynamics.

Effect of Temporal Resolution Parameter

In the main manuscript, we used a temporal resolution parameter value of ω = 1. The value ω = 1 ensures
that the inter -layer coupling is equal to the maximum possible value of the intra-layer coupling, which
we compute from the magnitude-squared coherence (which is constrained to lie in the interval [0, 1]). It
is important to examine the robustness of results for different values of this parameter, and investigating
dynamic network structure at other values of ω can also provide additional insights [6]. For example, one can
decrease ω to encourage greater variability in community assignments of nodes across individual layers (i.e.,
across time in temporal networks) or increase it to encourage such community assignments to be more similar
across layers. Recall that each node in the temporal multilayer network represents a single brain region at a
specified time, and different nodes that represent the same brain region at different times become more likely
to be assigned to the same multilayer community as ω is increased. By examining network diagnostics over
a range of ω values, we can quantify the robustness of our results to differing amounts of temporal variation
in community structure.

We varied ω from 0.1 to 2 in increments of ∆ω = 0.1. As expected, we find that the number of communities
identified in the optimization of the multilayer modularity quality function decreases as ω is increased (see
Fig. 8A). This is consistent with the fact that greater variation of community assignments across time is
possible for smaller values of ω. Variation between community assignments of nodes in individual layers
can occur in two ways: (1) a small number of regions change community membership from one layer to the
next, but the majority of regions retain their community membership; or (2) entire communities lose their
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identities (via fragmentation, extinction, union, and/or recombination), such that the algorithm identifies
either the “death” of a community that was present in the previous layer but is not present in the current
layer or the “birth” of a community that was not present in the previous layer but is present in the current
layer.

For each value of ω, we examined the robustness of our division of brain regions into a temporal core, a
temporal bulk, and a temporal periphery using the same procedure that we employed for ω = 1. Namely,
we defined a temporal core and temporal periphery as those brain regions that were composed, respectively,
of the brain regions below and above the 95% confidence interval of the nodal null model. In Fig. 8B, we
report the number of regions in each group as a function of ω. Interestingly, the number of brain regions that
we identified as part of the temporal core varied little over the examined range of ω values; it remained at
approximately 17.0±1.1. In fact, 15 of the 17 regions that we identified as part of the temporal core at ω = 1
were also identified as part of the temporal core at all other values of ω that we examined. The number of
regions in the temporal bulk and temporal periphery varied more (with values of approximately 75.6 ± 7.4
for the bulk and approximately 19.4 ± 6.8 for the periphery), which suggests that the separation between
the temporal bulk and temporal periphery is less drastic than that between temporal core and temporal
bulk. Indeed, the mean flexibility of the core is less similar to the mean flexibility of the bulk than is the
latter to the mean flexibility of the periphery. See Fig. 3 of the main manuscript and Figs. S1 and S2 of this
supplement.
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Figure S1. Reliability of Temporal Core-Periphery Structure. Temporal core (cyan), bulk (gold),
and periphery (maroon) of dynamic networks determined based on the flexibility of trial blocks in which
participants practiced sequences that would eventually be extensively trained. (A) Flexibility of the tempo-
ral core, bulk, and periphery averaged over the 100 multilayer modularity optimizations and 20 participants
for blocks composed of extensively trained (EXT; light circles), moderately trained (MOD; squares), and
minimally trained (MIN; dark diamonds) sequences. The darkness of data points indicates scanning session;
darker colors indicate earlier scans, so the darkest colors indicate scan 1 and the lightest ones indicate scan
4. (B) The coefficient of variation of flexibility calculated over the 100 optimizations and 3 sequence types
for all brain regions. Error bars indicate the standard error of the mean CV over participants. Both panels
use data from scanning session 1 on day 1 of the experiment (which is prior to home training).

Figure S2. Temporal Core-Periphery Organization Over 42 Days. Temporal core (cyan), bulk
(gold), and periphery (maroon) of dynamic networks defined by trial blocks in which participants practiced
sequences that would eventually be (A) extensively trained, (B) moderately trained, and (C) minimally
trained for data from scanning sessions 2 (after approximately 2 weeks of training; circles), 3 (after ap-
proximately 4 weeks of training; squares), and 4 (after approximately 6 weeks of training; diamonds). The
darkness of data points indicates scanning session; darker colors indicate earlier scans, so the darkest colors
indicate scan 1 and the lightest ones indicate scan 4.

Figure S3. Geometrical Core-Periphery Organization Over 42 Days. Geometrical core scores for
each brain region defined by the trial blocks in which participants practiced sequences that would eventu-
ally be (A) extensively trained, (B) moderately trained, and (C) minimally trained for data from scanning
sessions 1 (day 1; black circles), 2 (after approximately 2 weeks of training; dark gray squares), 3 (af-
ter approximately 4 weeks of training; gray diamonds), and 4 (after approximately 6 weeks of training;
light gray stars). We have averaged the geometrical core scores over blocks and over 20 participants. The
order of brain regions is identical for all 3 panels (A-C ), and we chose this order by ranking regions from
high to low geometrical core scores from the EXT blocks on scanning session 1 (on day 1 of the experiment).

Figure S4. Relationship Between Temporal Core-Periphery Organization and Community Struc-
ture. (A) Mean-coherence matrix over all EXT blocks from all participants on scanning day 1. The colored
bars above the matrix indicate the 3 communities that we identified from the representative partition. Mean
partition similarity z-score zi over all participants for blocks of (B) extensively, (C) moderately, and (D)
minimally trained sequences for all 4 scanning sessions over the approximately 6 weeks of training. The
horizontal gray lines in panels (B-D) indicate the zi value that corresponds to a right-tailed p-value of 0.05.

Figure S5. Region Size is Uncorrelated with Flexibility. (A) Scatter plot of the size of the brain
region in voxels (averaged over participants) versus the flexibility of the EXT multilayer networks, which
we averaged over the 100 multilayer modularity optimizations and the 20 participants. Data points indicate
brain regions. The line indicates the best linear fit. Its Pearson correlation coefficient is r

.
= −0.009, and

the associated p-value is p
.
= 0.92. (B) Box plot over the 20 participants of the squared Pearson correlation

coefficient r2 between the participant-specific region size in voxels and the participant-specific flexibility
averaged over the 100 multilayer modularity optimizations.

Figure S6. Temporal Core-Periphery Organization and Task-Related Activations. Mean GLM
parameter estimates for the temporal core (cyan; circles), bulk (gold; squares), and periphery (maroon;
diamonds) of dynamic networks defined by the trial blocks in which participants practiced sequences that
would eventually be (A) extensively trained, (B) moderately trained, and (C) minimally trained for data
from scanning sessions 1 (first day of training), 2 (after approximately 2 weeks of training), 3 (after approx-
imately 4 weeks of training), and 4 (after approximately 6 weeks of training).

Figure S7. Effect of Structural Resolution Parameter. (A,B) Number of communities and (C,D)
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number of regions in the temporal core (cyan; circles), temporal bulk (gold; squares), and temporal periph-
ery (maroon; diamonds) as a function of the structural resolution parameter γ, where we considered (A,C)
γ ∈ [0.2, 5] in increments of ∆γ = 0.2 and (B,D) γ ∈ [0.8, 1.8] in increments of ∆γ = 0.01. We averaged the
values in panels (A) and (B) over 100 multilayer modularity optimizations and over the 20 participants.

Figure S8. Effect of Temporal Resolution Parameter. (A) Number of communities averaged over
100 multilayer modularity optimizations and over 20 participants as a function of the temporal resolution
parameter ω. (B) Number of regions that we identified as part of the temporal core (cyan; circles), temporal
bulk (gold; squares), and temporal periphery (maroon; diamonds) as we vary ω from 0.1 to 2 in increments
of ∆ω = 0.1.

9



References

[1] Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev
E 69: 026113.

[2] Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:
066133.

[3] Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:
8577–8582.

[4] Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Not Amer Math Soc 56: 1082–1097,
1164–1166.

[5] Fortunato S (2010) Community detection in graphs. Phys Rep 486: 75–174.

[6] Bassett DS, Porter MA, Wymbs NF, Grafton ST, Carlson JM, et al. (2012) Robust detection of dynamic
community structure in networks. Chaos 23: 013142.

[7] Simpson SL, Moussa MN, Laurienti PJ (2012) An exponential random graph modeling approach to
creating group-based representative whole-brain connectivity networks. NeuroImage 60: 1117–1126.

[8] Traud AL, Kelsic ED, Mucha PJ, Porter MA (2011) Comparing community structure to characteristics
in online collegiate social networks. SIAM Rev 53: 526–543.

[9] Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008) Mapping the structural core
of human cerebral cortex. PLoS Biol 6: e159.

[10] Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable archi-
tecture of human white matter connectivity. NeuroImage 54: 1262–1279.

[11] MATLAB (2012) Measuring signal power. MATLAB’s Help Menu .

[12] Smith SW (1997) Digital Signal Processing: A Guide for Engineers and Scientists. California Technical
Pub.

[13] Lazar N (2010) The Statistical Analysis of Functional MRI Data. Springer-Verlag.

[14] Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, et al. (1994) Statistical parametric maps in
functional imaging: A general linear approach. Human Brain Mapping 2: 189–210.

[15] Grinband J, Wager TD, Lindquist M, Ferrera VP, Hirsch J (2008) Detection of time-varying signals in
event-related fMRI designs. NeuroImage 43: 509–520.

[16] Steffener J, Tabert M, Reuben A, Stern Y (2010) Investigating hemodynamic response variability at
the group level using basis functions. NeuroImage 49: 2113–2122.

[17] Calhoun VD, Adali T, Pekar JJ (2004) A method for comparing group fMRI data using independent
component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging 22:
1181–1191.

[18] Johnstone T, Somerville LH, Alexander AL, Oakes TR, Davidson RJ, et al. (2005) Stability of amygdala
BOLD response to fearful faces over multiple scan sessions. NeuroImage 25: 1112–1123.

[19] Lueken U, Muehlhan M, Evens R, Wittchen HU, Kirschbaum C (2012) Within and between session
changes in subjective and neuroendocrine stress parameters during magnetic resonance imaging: A
controlled scanner training study. Psychoneuroendocrinology 37: 1299–1308.

[20] Chapman HA, Bernier D, Rusak B (2010) MRI-related anxiety levels change within and between re-
peated scanning sessions. Psychiatry Res 182: 160–164.

[21] Agresti A, Franklin CA (2007) Statistics: The Art and Science of Learning From Data. Prentice Hall.

[22] Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74: 016110.

10


