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1 Scent propagation

We model scent propagation in turbulence as packets that appear at the prey position x0 according to a Poisson

arrival process and move as a Brownian motion. From the predator’s perspective, this is equivalent to encountering

a random number of units of scent, H ∼ Pois(toR(|x−xo|)), at its location x during a scanning phase of length to,

where R is the rate of scent arrival. Denoting ` = |x−x0|, under these assumptions, the likelihood of h encounters is

P (H = h|`) = [toR(`)]he−toR(`)/h!. To derive R(`), let u(x) represent the mean concentration of scent at predator

position x emitted by a prey item located at position x0. The steady-state diffusion process without advection is

described by

0 = D∆u(x)− µu(x) + λδ(x0) (S1)

where D represents the combined molecular and turbulent diffusivity (m2s−1), µ represents the rate of dissolution

of scent patches (s−1), and λ represents the rate of scent emission at the prey (s−1). In two dimensions, the rate of

scent patch encounters by a predator of linear size a located at x is given by R(`) = 2πD
− ln(aψ)u(`) where ψ =

√
µ
D .

This implies

R(`) = 2
λK0(ψ`)

−πψ ln(ψa)
(S2)

where K0 represents a modified Bessel function of the second kind. Two terms are sufficient to characterize the

scent environment: the typical propagation length ro, which corresponds to the distance at which a predator will

register on average one unit of scent per scanning period, and the expected number of encounters per unit to at a

distance of one body length from the prey.

2 Dependence of regime break on scent signal propagation length,

and dependence of results on properties of the intrinsic movement

distribution

To determine whether the prey density at which linear regimes in the encounter rate function transitioned to

nonlinear regimes depended on the length scale of predator scent detection, we repeated simulations to compute

Γ(ρ) over a range of values of the olfaction radius ro. Figure S1 shows that the prey density at which the linear

regime transitions to a sublinear regime decreases as ro increases. Thus, when prey scent propagates over a longer
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distance, the sublinear scaling of encounter rate persists to lower prey density.

As described in the main text, many studies have disputed whether organisms use search strategies that can be

described as random walks in which the lengths of movements are drawn from statistical distributions with heavy

tails, resulting in so called “Lévy walk” behavior. In the main text, we adopt a distribution for the intrinsic

movements γ(θ, `), that has a power law tail with the exponent α = 2, which will lead to superdiffusive Lévy walk

behavior. However, as we show in the main text and as has been shown in past work [1], such behavior does not

lead to nonlinear scaling of the encounter rate function with prey density in the absence of sensory signals. When

signals are incorporated, the effect of signal data can dominate the choice of intrinsic movement strategy such

that, regardless of whether a predator uses a heavy tailed intrinsic movement distribution, or one that decays more

quickly, the realized movement behavior is very similar [2]. Still, to ensure that our results were not determined

by the use of a superdiffusive intrinsic movement strategy, we repeated all search simulations after changing the

value of the Pareto exponent α to 3.5. For values of α above 3, the variance of the Pareto distribution is finite

and the long-term behavior is diffusive rather than superdiffusive. Figure S2 shows that multiple scaling regimes

including a sublinear regime at low-intermediate densities emerge when predators use sensory data ( ν ∈ [0.41,

0.69] in sublinear regime). The qualitative conclusion that signal-modulation leads to the emergence of a sublinear

regime in the encounter rate function matches results shown in the main text (Figures 3 and 4). Our results do not

depend on whether the intrinsic movement distribution is diffusive or superdiffusive.

3 Encounter rate of a predator with perfect sensing and response, and

non-zero encounter radius

Suppose that a predator is located at the origin of an n-dimensional environment containing prey distributed

according to a Poisson spatial process with intensity ρ. We calculate the expected distance to the nearest prey to

reveal the general relationship that the expected encounter rate scales with prey density ρ as ρ1/n. Let `np denote

this distance to the nearest prey. Because we have assumed the prey are distributed according to a spatial Poisson

process, the probability that there are no prey within a radius r of the predator is given by P {`np > r} = e−ρ|B
(n)
r |

where |B(n)
r | is the volume of an n-dimensional ball of radius r. Defining Cn = πn/2

Γ
(

1+ n
2

) , where Γ(s) :=
∫∞

0
ys−1e−ydy

is the gamma function, we note that |B(n)
r | = Cnr

n.

Now, let `e := max(0, `np − re) denote the distance the omniscient predator has to travel to reach the encounter
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radius of the nearest prey. Using the formula for expectation and then integrating by parts, we can write

E [`e] = −
∫ ∞
re

(r − re)
d

dr
P {`np > r} dr

= −(r − re)P {`np > r}
∣∣∣∞
r=re

+

∫ ∞
re

P {`np > r} dr

=

∫ ∞
re

exp (−ρCnrn) dr

Under the substitution y = ρCnr
n, this integral becomes

E [`e] =
1

ρ
1
n

1

nC
1
n
n

∫ ∞
ρCnrne

y
1
n−1e−ydy =

1

ρ
1
n

1

nC
1
n
n

(
Γ
( 1

n

)
− γ
( 1

n
, ρCnr

n
e

))

where γ(s, x) :=
∫ x

0
ys−1e−ydy is the incomplete gamma function. The leading order terms of the power series

expansion for the incomplete gamma function are γ(s, x) = e−x
(
xs Γ(s)

Γ(s+1) + xs+1 Γ(s)
Γ(s+2) +O(xs+2)

)
, which leads to

the expansion

E [`e] = ρ−
1
n

(
Γ
(

1
n

)
nC

1
n
n

)
+ exp

(
− ρCnrne

) [ Γ
(

1
n

)
Γ
(
1 + 1

n

) +O(ρ)

]
(S3)

The expected time between encounters is then E [`e] /v where v is the velocity of the predator. The encounter rate

is then computed asymptotically by looking at the number of of encounters as of time t, N(t), that occur per unit

time. The Renewal Theorem reveals that

Γ(ρ) = lim
t→∞

N(t)

t
=

v

E [`e]
=

vρ
1
n

K + o(ρ
1
n )
. (S4)

where K is a constant that depends only on N . In the specific case of two dimensions, the random distance between

the predator and the nearest prey is given by the Rayleigh distribution, which has density p(`) = 2ρπ`e−ρπ`
2

. We

then observe that

E [max(`np − re, 0)] =

∫ ∞
re

(`− re)p(r)dr =
1

2
√
ρ

(1− erf(re
√
πρ)) ,

where erf(x) = 2√
π

∫ x
0
e−z

2

dz.

To observe the square root scaling, simply note that erf(x) → 0 as x → 0. It follows that Γ(ρ) ∼ 2
√
ρ/v in this

regime. For larger ρ, the error function behaves like 1− erf(x) = e−x2

x
√
π

+O
(
x−3e−x

2)
so that, to leading order,

Γ(ρ) =
2
√
ρ

v(1− erf(re
√
πρ))

∼ 2πre
v

ρ er
2
eπρ.

Because re and ρ are small in the parameter regime of interest, there is a range of ρ, roughly from 10 to 100, for

which encounter rate scales roughly linearly with ρ (i.e. er
2
eπρ ≈ 1). This is seen in Figure 1 in the main text. As
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ρ becomes large, the scaling is exponential; however, for the cases of interest here (i.e. relatively low prey density),

the exponential regime is not relevant.

4 Encounter probabilities in the sparse regime

When prey density is very sparse, each prey exists essentially in isolation. This is why the empirically observed

probability of encounter with nearby prey stabilizes for low prey density (see Fig. 5, main text) In this section, we

aim to estimate this probability in the sparse prey regime. As described in the main text, a proximity event begins

when the predator comes within a radius ro of the prey. We pick this length because the expected signal size is one

unit and the probability of the signal being nonzero is nontrivial (0.63). If the predator happens to take steps away

from the prey it may reach a distance where it is exceedingly unlikely that another signal will be received from that

prey. At such a distance, we consider the interaction to have ended without an encounter (and hence subsequent

capture). To find an analytical estimate for this sparse regime scaling, we propose the following problem from

classical probability theory. We approximate predator motion by a Brownian motion that has diffusivity D. The

prey is located at the origin and the predator is located uniformly at random among all points that are a distance

distance ro from the origin. We compute the probability that the predator hits a circle of radius re before exiting a

concentric circle of radius zro. This is an exactly solvable problem. The predator’s radial distance from the origin

evolves according to a Bessel process R(t) that satisfies following Itô form stochastic differential equation [3]

dR(t) =
D

R(t)
dt+

√
2DdW (t), R(0) = ro.

The probability that this process hits the level re before zro is given by the solution to the ODE

Dp′′(r) +
D

r
p′(r) = 0

with p(re) = 1 and p(zro) = 0. The general solution is readily shown to be

p(r) =
ln(zro)− ln(zr)

ln(zro)− ln(re)

which, plugging in the initial condition R(0) = ro yields

p(ro) =
ln z

ln z + ln( rore )
. (S5)

The approximation is successful because in the presence of signal, the likelihood function in the Bayesian update,

Equation (1), truncates the power law tail of the default Pareto distribution. Random walks with exponential jump
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tails are diffusive in character, meaning that Brownian motion can give a somewhat authentic scaling in ro and

re. Furthermore, note that the hitting probability for Brownian motion is insensitive to its diffusivity, meaning we

do not have to attempt to tune the Brownian motion to match the imperfectly sensing predator. On the other

hand, the effective diffusivity of the imperfectly sensing predator is certainly state dependent because larger signal

magnitudes lead to shorter jump lengths. A further defect of the Brownian approximation is that it will always

overestimate the encounter probability because the imperfect predator will occasionally experience zero signal when

somewhat distant from the prey. This means imperfectly sensing predators will occasionally sample from the jump

distribution with heavy tail and increase its chance of escape before reaching the prey.

5 Stability Analysis for the Predator-Prey model

In order to determine the local stability of the coexistence fixed point, we compute the Jacobian and evaluate at

(R∗, P∗),

J(R∗, P∗) =

 f ′(R∗)− f(R∗)
ϕ′(R∗)
ϕ(R∗)

−ϕ(R∗)

mβf(R∗)
ϕ′(R∗)
ϕ(R∗)

0

 . (1)

In the above formulation we have used the fact that, when written in terms of R∗, the predator fixed point

value is P∗ = f(R∗)
ϕ(R∗)

. The stability of this system depends on whether the trace occur when the trace T (R∗) =

f ′(R∗) − f(R∗)
ϕ′(R∗)
ϕ(R∗)

is positive (unstable) or negative (stable). As we will see, for relevant choices of f and ϕ,

there is a critical prey density Rc that satisfies

f ′(Rc)

f(Rc)
=
ϕ′(Rc)

ϕ(Rc)
. (2)

To understand the bifurcation more clearly, we consider the special choices f(x) = rx(1−x/K) and ϕ(x) = µSµT Γ(x)
1+µT Γ(x) .

We further suppose that Γ(R) = γRν for some γ > 0 and ν ∈ (0, 1] in a neighborhood of the prey density fixed

point R∗. Checking whether the trace is positive reduces to checking whether

K − 2R∗
K −R∗

>
R∗Γ

′(R∗)

Γ(R∗)(1 + µTΓ(R∗))
=

ν

1 + µT γRν∗
. (3)

A quick calculation shows that there is a unique Rc and for all R∗ > Rc, the coexistence steady state is stable.

For all R∗ < Rc, the fixed point is unstable; however numerical studies demonstrate there is stable limit cycle

that contains the unstable coexistence equilibrium. For the form of functional response considered here (which is a

Holling type II functional response when encounter rate is linear in prey density), all encounter rate models yield

dynamics with a region of instability. Indeed, when the encounter rate is linear, Γ(x) = γx for some γ, which has
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the units of number of prey encountered per hour, Rc = 1
2K −

1
2γµT

revealing that the region of instability exists

even for predators with linear encounter rate functions.
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