Text S1: Model description

1 Ordinary differential equations

Based on the reaction scheme in Figure 1, a set of ordinary differential equations was constructed. As indicated in the figure, most of the enzymes catalyze multiple reactions, *i.e.* with substrates of different chain length, and many substrates can be converted by different enzymes. For instance $v_{cpt1C16}$ is the rate of conversion of C16 (palmitoyl) CoA by CPT1. In the abbreviations CYT indicates the cytosolic metabolite pool and MAT the metabolite pool in the mitochondrial matrix.

$\frac{dC16AcylCarCYT}{dt} =$	$v_{cpt1C16} - v_{cactC16}$	(1))
at	VCYT		
$\frac{dC16AcylCarMAT}{dc} =$	$\frac{v_{\text{cactC16}} - v_{\text{cpt2C16}}}{V}$	(2)	ļ
at	VMAT		
$\frac{dC16AcylCoAMAT}{=}$	$v_{cpt2C16} - v_{vlcadC16} - v_{lcadC16}$	(3)	,
dt	V _{MAT}		
dC16EnoylCoAMAT	$\frac{v_{\text{vlcadC16}} + v_{\text{lcadC16}} - v_{\text{crotC16}} - v_{\text{mtpC16}}}{v_{\text{mtpC16}}}$	(4)	,
dt	V_{MAT}		
dC16HydroxyacylCoA	$MAT = v_{crotC16} - v_{mschadC16}$	(5)	
dt		(3)	
dC16KetoacylCoAMA	T $v_{\rm mschadC16} - v_{\rm mckatC16}$		
dt	$-=\frac{V_{MAT}}{V_{MAT}}$	(6)	ł
dC14AcvlCarCYT	$-v_{cactC14}$		
$\frac{dt}{dt} =$	VCYT	(7)	1
dC14AcvlCarMAT	$\mathcal{V}_{\text{cost}}(1) = \mathcal{V}_{\text{cost}}(1)$		
$\frac{dt}{dt} =$		(8)	1
dC14A grlCoAMAT			
$\frac{dt}{dt} =$	Vector VicadC14 - VicadC14 - VicadC14	(9)	1
	V MAT		
aci4EnoylCoAMAT	$=\frac{\nu_{\text{vlcadC14}}+\nu_{\text{lcadC14}}-\nu_{\text{crotC14}}-\nu_{\text{mtpC14}}}{V}$	(10))
at	^V MAT		
dC14HydroxyacylCoA	$\frac{\text{MAT}}{\text{mathematical}} = \frac{v_{\text{crotC14}} - v_{\text{mschadC14}}}{v_{\text{mschadC14}}}$	(11	I)
dt	V _{MAT}	× ×	<i>′</i>
dC14KetoacylCoAMA	$\frac{T}{2} = \frac{v_{\text{mschad}C14} - v_{\text{mckat}C14}}{v_{\text{mckat}C14}}$	(12	n
dt	V _{MAT}	(12	-)
dC12AcylCarCYT	$-v_{\text{cactC12}}$	(13	2)
dt —	V _{CYT}	(15	"
dC12AcylCarMAT	$v_{\text{cactC12}} - v_{\text{cpt2C12}}$	(1.4	1\
$\frac{dt}{dt}$	V _{MAT}	(14	+)
dC12AcylCoAMAT	$v_{cpt2C12} + v_{mtpC14} + v_{mckatC14} - v_{vlcadC12} - v_{lcadC12} -$	^v mcadC12 (16	5)
dt =	- V _{MAT}	(15	"
dC12EnoylCoAMAT	$= \frac{v_{\text{vlcadC12}} + v_{\text{lcadC12}} + v_{\text{mcadC12}} - v_{\text{crotC12}} - v_{\text{mtpC12}}}{v_{\text{mtpC12}}}$	(16	í)
dt	$V_{\rm MAT}$	(10	•)
dC12HydroxyacylCoA	$MAT = v_{crotC12} - v_{mschadC12}$	(17	7)
dt	— V _{MAT}	(17)

$dC12KetoacylCoAMAT _ v_{mschadC12} - v_{mckatC12}$	(18)
$dt = V_{MAT}$	(10)
$\frac{dC10AcylCarCYT}{dC10AcylCarCYT} = \frac{-v_{cactC10}}{2}$	(19)
dt V _{CYT}	(1))
$\frac{dC10AcylCarMAT}{dt} = \frac{v_{cactC10} - v_{cpt2C10}}{U}$	(20)
$a_{\rm L}$ $v_{\rm MAT}$	
$\frac{dc_{10AcylCoAMAT}}{dt} = \frac{v_{cpt2C10} + v_{mtpC12} + v_{mckatC12} - v_{lcadC10} - v_{mcadC10}}{V_{MAT}}$	(21)
$\frac{dC10EpoylCoAMAT}{dC10+v_{med}C10-v_{crot}C10-v_{mtn}C10}$	
$\frac{dt}{dt} = \frac{V_{\text{MAT}}}{V_{\text{MAT}}}$	(22)
$dC10$ HydroxyacylCoAMAT $v_{crotC10} - v_{mschadC10}$	(22)
$\frac{dt}{dt} = \frac{V_{MAT}}{V_{MAT}}$	(23)
$dC10$ KetoacylCoAMAT $v_{mschadC10} - v_{mckatC10}$	(24)
$dt - V_{MAT}$	(24)
$\frac{dC8AcylCarCYT}{dC8AcylCarCYT} = \frac{-v_{cactC8}}{2}$	(25)
dt V _{CYT}	(20)
$\frac{d\text{C8AcylCarMAT}}{v_{\text{cactC8}} - v_{\text{cpt2C8}}} = \frac{v_{\text{cactC8}} - v_{\text{cpt2C8}}}{v_{\text{cpt2C8}}}$	(26)
at V_{MAT}	
$\frac{dC8AcylCoAMAT}{dt} = \frac{v_{cpt2C8} + v_{mtpC10} + v_{mckatC10} - v_{lcadC8} - v_{mcadC8}}{V_{accurr}}$	(27)
$\frac{d(2E_{\text{DD}})}{d(2E_{\text{DD}})} = \frac{1}{2} + $	
dcontrol control c	(28)
$dC8HvdroxvacvlCoAMAT = v_{max} - v_{max} + dc0$	
$\frac{dt}{dt} = \frac{v_{\text{MAT}}}{v_{\text{MAT}}}$	(29)
<i>d</i> C8KetoacylCoAMAT $v_{\text{mschadC8}} - v_{\text{mckatC8}}$	(20)
$\frac{dt}{dt} = \frac{V_{MAT}}{V_{MAT}}$	(30)
$dC6AcylCarCYT = -v_{cactC6}$	(31)
$dt = V_{CYT}$	(31)
$\frac{dC6AcylCarMAT}{dc6AcylCarMAT} = \frac{v_{cactC6} - v_{cpt2C6}}{v_{cpt2C6}}$	(32)
dt V _{MAT}	(=_)
$\frac{dC6AcylCoAMAT}{dt} = \frac{v_{cpt2C6} + v_{mtpC8} + v_{mckatC8} - v_{mcadC6} - v_{scadC6}}{V}$	(33)
$\frac{dc_{\text{COEMOVICOAMAI}}}{dt} = \frac{v_{\text{mcadC6}} + v_{\text{scadC6}} - v_{\text{crotC6}}}{v_{\text{max}}}$	(34)
$dC6HydroxyacylCoAMAT = \frac{1}{2}$	
$\frac{dt}{dt} = \frac{v_{\text{MAT}}}{v_{\text{MAT}}}$	(35)
d C6KetoacylCoAMAT $v_{\text{mschadC6}} - v_{\text{mckatC6}}$	(2 c)
$\frac{dt}{dt} = \frac{M_{MAT}}{V_{MAT}}$	(36)
$dC4AcylCarCYT \v_{cactC4}$	(37)
$dt = V_{CYT}$	(37)
$\frac{dC4AcylCarMAT}{dc4AcylCarMAT} = \frac{v_{cactC4} - v_{cpt2C4}}{v_{cpt2C4}}$	(38)
dt V _{MAT}	(00)
$\frac{dC4AcylCoAMAT}{v} = \frac{v_{cpt2C4} + v_{mckatC6} - v_{mcadC4} - v_{scadC4}}{v_{scadC4} - v_{scadC4}}$	(39)
$\frac{aC4EnoyICOAMAI}{dt} = \frac{v_{mcadC4} + v_{scadC4} - v_{crotC4}}{V_{scadC4}}$	(40)
dC4HydroxyacylCoAMAT u $ot=u$ buck	
$\frac{dt}{dt} = \frac{v_{\text{crot},4} - v_{\text{mschad},4}}{V_{\text{MAT}}}$	(41)
$dC4AcetoacetylCoAMAT = v_{mschadC4} - v_{mschatC4}$	(10)
$\frac{1}{dt} = \frac{V_{MAT}}{V_{MAT}}$	(42)

dAcetylCoAM4	$v_{mtpC16} + v_{mckatC16} + v_{mtpC14} + v_{mckatC14} + v_{mtpC12} + v_{mckatC12}$ AT _ + $v_{mtpC10} + v_{mckatC10} + v_{mtpC8} + v_{mckatC8} + v_{mckatC6} + 2 \cdot v_{mckatC4} - v_{acesink}$	(12)
dt	$-=$ V_{MAT}	(43)
$\frac{dFADHMAT}{dt} =$	$\frac{v_{vlcadC16} + v_{vlcadC14} + v_{vlcadC12} + v_{lcadC16} + v_{lcadC14} + v_{lcadC12}}{+ v_{lcadC10} + v_{lcadC6} + v_{mcadC12} + v_{mcadC10} + v_{mcadC6} + v_{mcadC4} + v_{scadC6} + v_{scadC4} - v_{fadhsink}}}{V_{MAT}}$	(44)
$\frac{dNADHMAT}{dt} =$	$= \frac{v_{mtpC16} + v_{mtpC14} + v_{mtpC12} + v_{mtpC10} + v_{mtpC8} + v_{mschadC16} + v_{mschadC14} + v_{mschadC12}}{V_{MAT}}$	(45)

2 Kinetic rate equations

When an enzyme catalyzes the conversion of multiple substrates, the same rate equation applies, but many of the rate constants are chain-length-specific, as indicated by the subscript n. Most equations are of the reversible Michaelis-Menten type (based on random binding of substrates). The only exception is the rate equations for the transporter CACT. In the model description the rates are given in μ mol.min⁻¹.mgProtein⁻¹, while the rates of change in the differential equations are in μ M.min⁻¹. In the presentation of the results the fluxes were converted to μ mol.min⁻¹.gProtein⁻¹. As in the Modre-Osprian model (1), the rate equations for the consumption of the end products NADH, FADH₂ and acetyl CoA were made up such that *i*) the sink reactions do not control the flux; and *ii*) the concentrations of these metabolites equal the constant K1_{xsink}. For the computational outcome this is equivalent to fixing the concentrations of NADH, FADH₂ and acetyl CoA as external parameters. The advantage of the formulation used here, is that it allows to directly monitor the fluxes of end product removal.

$$v_{cpt1C16} = \frac{sf_{cpt1C16} \cdot v_{cpt1} \left(\frac{C16AcylCoACYT}{Km_{C16AcylCoACYT} \cdot Km_{CarCYT}} \frac{C16AcylCaCYT[t] \cdot CoACYT}{Km_{C16AcylCoACYT} \cdot Km_{CarCYT} \cdot Km_{CarCYT}$$

$$v_{\text{readCn}}(n \rightarrow 8, 10, 12, 14 \text{ or } 16) = \frac{sf_{\text{readCo}}(\text{charge(charding)}(famburt + \text{ADBMAT[]})}{(1 + \Sigma_{n=n,0,12,14 \text{ and } 16)} \left(\frac{\text{Charge(charding)}(Famburt + \text{ADBMAT[]})}{\text{Km}_{\text{Cabaye(charding)}}(Km, Km_{\text{Cabaye(charding)}})}{(1 + \Sigma_{n=n,0,12,14 \text{ and } 16)} \left(\frac{\text{Charge(charding)}(Famburt + \text{ADBMAT[]})}{\text{Km}_{\text{Cabaye(charding)}}(Km, Km_{\text{Cabaye(charding)}})}\right)(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, Km_{\text{Cabaye(charding)}})}{(1 + \Sigma_{n=n+1,0,12}^{cn})} \left(\frac{1 + \Sigma_{n=n+1,0,12}^{cn}}{(1 + \Sigma_{n=n+1,0,12}^{cn})} \left(\frac{\text{Charge(charding)}(Famburt + \text{ADBMAT[]})}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[]})}\right)(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])}}\right)(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])}}\right)(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])}})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km, FADBMAT[])})(1 + \frac{\text{Famburt FADBMAT[]}}{\text{Km}_{\text{Cabaye(charding)}}(Km,$$

$$v_{\text{acesink}} = K s_{\text{acesink}} \cdot (\text{ACetyICOAMAT}[t] - K \mathbf{1}_{\text{acesink}})$$

$$v_{\text{fadhsink}} = K s_{\text{fadhsink}} \cdot (\text{FADHMAT}[t] - K \mathbf{1}_{\text{fadhsink}})$$
(58)

 $CoAMAT = CoAMATt - \sum_{n \to 8,10,12,14 \text{ and } 16}^{Cn} (CnAcylCoAMAT[t] + CnEnoylCoAMAT[t] + CnHydroxyacylCoAMAT[t] + CnKetoacylCoAMAT[t]) - AcetylCoAMAT[t]$ (60)

3 Simulations for model validation

The parameters in Table 1 below were used for steady-state calculations, unless parameter variations are indicated in the Figure. These steady-state calculations represent the functioning of mitochondria in the cell. To produce Figure 2 (the *in vitro* experiment with isolated mitochondria), the computer model was slightly adapted to match the conditions used in this experiment. In the experiment the supplied palmitoyl-CoA or palmitoyl-carnitine substrate decreased with time and this time course was imposed on the model, instead of the constant concentration above, which was used for steady state calculations. The substrate consumption dynamics was fitted to the concentration of palmitoyl carnitine over time, which resulted in the following equation:

$$[substrate] = 26.8 \cdot e^{-0.18 \cdot t} \tag{61}$$

Here the substrate concentration is in μ M and time *t* in minutes. As we could not measure the time course for palmitoyl CoA, we used the same time course for palmitoyl CoA when it was given as a substrate. In the latter case palmitoyl carnitine was a free variable, predicted by the model and validated independently in the experiment.

The concentrations of CarCYT was set to 400 μ M, which was the average value measured over time. For VCYT we took 10⁻² L.mgProtein⁻¹, which here represents the extramitochondrial volume in the reaction vessel rather than the cytosolic volume. The remaining parameters were not changed. The initial concentrations of the acyl carnitines were set to the measured concentrations at time point 0.

CPT1 $sf_{cpt1C16}$ 1 V_{cpt1} 0.012 μ mol.min ⁻¹ .mgProtein ⁻¹ $Km_{cpt1C16AcylCoACYT}$ 13.8 μ M $Km_{cpt1CarCYT}$ 250 μ M $Km_{cpt1C16AcylCarCYT}$ 136 μ M $Km_{cpt1C16AcylCarCYT}$ 136 μ M $Km_{cpt1C16AcylCarCYT}$ 136 μ M
CPT1 $sf_{cpt1C16}$ 1 V_{cpt1} 0.012µmol.min ⁻¹ .mgProtein ⁻¹ $Km_{cpt1C16AcylCoACYT}$ 13.8µM $Km_{cpt1CarCYT}$ 250µM $Km_{cpt1C16AcylCarCYT}$ 136µM $Km_{cpt1C16AcylCarCYT}$ 136 $Km_{cpt1C16AcylCarCYT}$
$sf_{cpt1C16}$ 1 V_{cpt1} 0.012 $\mu mol.min^{-1}.mgProtein^{-1}$ Fitted to experimental data $Km_{cpt1C16AcylCoACYT}$ 13.8 μM (2) $Km_{cpt1CarCYT}$ 250 μM (2) $Km_{cpt1C16AcylCarCYT}$ 136 μM (2) $Km_{cpt1C16AcylCarCYT}$ 136 μM (2)
V_{cpt1} 0.012 μ mol.min ⁻¹ .mgProtein ⁻¹ Fitted to experimental data $Km_{cpt1C16AcylCoACYT}$ 13.8 μ M(2) $Km_{cpt1CarCYT}$ 250 μ M(2) $Km_{cpt1C16AcylCarCYT}$ 136 μ M(2) $Km_{cpt1C16AcylCarCYT}$ 136 μ M(2)
$Km_{cpt1C16AcylCoACYT}$ 13.8 μ M(2) $Km_{cpt1CarCYT}$ 250 μ M(2) $Km_{cpt1C16AcylCarCYT}$ 136 μ M(2) $Km_{cpt1C16AcylCarCYT}$ 136 μ M(2)
$Km_{cpt1CarCYT}$ 250 μ M(2) $Km_{cpt1C16AcylCarCYT}$ 136 μ M(2) $Km_{cpt1C16AcylCarCYT}$ 107 μ M(2)
$Km_{cpt1C16AcylCarCYT} 136 \ \mu M \tag{2}$
km $AO_7 \dots M$ (2)
100 _{cpt1CoACYT} 40.7 μινι (2)
$Ki_{cpt1MalCoACYT}$ 9.1 μM (3)
Keq_{cpt1} 0.45 (4)
<i>n</i> _{cpt1} 2.4799 Estimated based on data of (5)
CACT
Vf _{cact} 0.42 µmol.min ⁻¹ .mgProtein ⁻¹
Vr _{cact} 0.42 μmol.min ⁻¹ .mgProtein ⁻¹
$Km_{C16AcylCarCYT}$ 15 μ M (2)
Km_{CarMAT} 130 μ M (2)
$Km_{C16AcylCarMAT}$ 15 μ M (2)
Km_{CarCYT} 130 μ M (2)
$Ki_{C16AcylCarCYT}$ 56 μ M (2)
Ki_{CarCYT} 200 μ M (2)
Keq_cact1Based on passive transport
СРТ2
<i>sf</i> _{cpt2C16} 0.85 (6)
$sf_{cpt2C14}$ 1 (6)
<i>sf</i> _{cpt2C12} 0.95 (6)
$sf_{cpt2C10}$ 0.95 (6)
<i>sf</i> _{cpt2C8} 0.35 (6)
sf_{cpt2C6} 0.15 (6)
sf_{cpt2C4} 0.01 (6)
V_{cpt2} 0.391 µmol.min ⁻¹ .mgProtein ⁻¹ (6)
$Km_{CnAcylCarMAT}$ 51 μ M (2)
Km_{COAMAT} 30 μ M (2)
$Km_{CnAcylCoAMAT}$ 38 μ M (2)
Km_{CarMAT} 350 μ M (2)
<i>Keq</i> _{cpt2} 2.22 (4)
VLCAD
$sf_{vlcadC16}$ 1 (7)
sf _{vlcadC14} 0.42 (7)
$sf_{vlcadC12}$ 0.11 (7)
V _{vlcad} 0.008 µmol.min ⁻ .mgProtein ⁻ Fitted to experimental data
$Km_{C16ACylCoAMAT}$ b.5 μ M (/)
$\kappa m_{C14AcylCoAMAT}$ 4 μM (/)
$K_{III}_{C12ACYIC0AMAT} \qquad 2.7 \ \mu V I \qquad (7)$
$Km_{FAD} \qquad \qquad U.12 \mu V I \qquad (1)$
$\begin{array}{ccc} K_{IIIC16EnoyICoAMAT} & I_{UV} & U_{V} & U_{V} \\ K_{m} & I_{UV} & U_{UV} & U_{UV} \\ K_{m} & U_{UV} & U_{UV} & U_{UV} & U_{UV} \\ K_{m} & U_{UV} & U_{UV} & U_{UV} & U_{UV} \\ K_{m} & U_{UV} & U_{UV} & U_{UV} & U_{UV} & U_{UV} \\ U_{UV} & U_{UV} & U_{UV} & U_{UV} & U_{UV} & U_{UV} \\ U_{UV} & U_{UV} & U_{UV} & U_{UV} & U_{UV} & U_{UV} & U_{UV} \\ U_{UV} & U_{UV}$
$\begin{array}{ccc} N I I C 14 E noylCoAMAT & I UV & (I) \\ K m & I O Q & UV I & (I) \end{array}$
$\begin{array}{ccc} N I I C 12 E n O I C O A M A T & I I O O I I I I I I I I$
$\begin{array}{ccc} Kea_{\text{Let}} & & & & (1) \\ Kea_{\text{Let}} & & & & & (2) \\ \end{array}$

Table 1: Kinetic parameters

LCAD $sf_{lcadC16}$ 0.9 $sf_{lcadC14}$ 1 $sf_{lcadC12}$ 0.9 $sf_{lcadC10}$ 0.75 $sf_{lcadC10}$ 0.75	
$ \begin{array}{cccccc} sf_{\rm lcadC16} & 0.9 & (8) \\ sf_{\rm lcadC14} & 1 & (8) \\ sf_{\rm lcadC12} & 0.9 & (8) \\ sf_{\rm lcadC10} & 0.75 & (8) \\ \end{array} $	
$ \begin{array}{cccc} s_{f_{1cadC14}} & 0.5 & (0) \\ s_{f_{1cadC12}} & 1 & (8) \\ s_{f_{1cadC12}} & 0.9 & (8) \\ s_{f_{1cadC10}} & 0.75 & (8) \\ \end{array} $	
$\begin{array}{ccccccc} s_{f_{1cadC14}} & & 1 & (0) \\ s_{f_{1cadC12}} & & 0.9 & (8) \\ s_{f_{1cadC10}} & & 0.75 & (8) \\ \end{array}$	
$sf_{lcadC12}$ 0.5 (8)	
Jicaclu O/	
$V_{\rm L}$ 0.01 umol min ⁻¹ mgProtein ⁻¹ Fitted to experimental data	
$Km_{\text{recombined}}$ 25 µM (8)	
$Km_{\text{CLOACYICOAMAI}} = 2.5 \mu\text{W} \qquad (0)$	
$Km_{c144}cylcoamal \qquad \qquad$	
$Km_{cloan/comman}$ 24.3 μ (0)	
$Km_{\text{CLOACYICOAMAI}} = \frac{123}{123} \text{ µM} \qquad (0)$	
$Km_{csacylcoamal}$ (0)	
$Km_{FAD} = 0.12 \ \mu W \qquad (1)$	
$Km_{\text{cl6EnoylCoAMAT}} = 1.00 \ \mu\text{W} \qquad (1)$	
$Km_{c14EnoylCoAMAT} = 1.00 \mu W (1)$	
$Km_{\text{cl2EnoyICOAMAI}} = 1.00 \mu W (1)$ $Km_{\text{cl2EnoyICOAMAI}} = 1.02 \mu W (1)$	
$Km_{C10EnoyICoAMAT} 1.08 \mu W (1)$	
$Km_{\text{conv}} = 24.2 \text{ mV} \qquad (1)$	
$K_{11} = \frac{1}{24.2} \mu v \qquad (1)$	
Key _{lcad} 0 (2)	
MCAD	
$sf_{mcadC12}$ 0.38 (8)	
$sf_{mcadC10}$ 0.8 (8)	
sf_{mcadC8} 0.87 (8)	
sf_{mcadC6} 1 (8)	
sf_{mcadC4} 0.12 (8)	
V_{mcad} 0.081 µmol.min ⁻¹ .mgProtein ⁻¹ (8)	
$Km_{C12ACylCoAMAT}$ 5.7 μ M (8)	
$Km_{C10ACYICOAMAT}$ 5.4 μM (8)	
$Km_{CBACYICOAMAT}$ 4 μ M (8)	
$Km_{C6AcylCoAMAT}$ 9.4 μM (8)	
$Km_{C4AcylCoAMAT}$ 135 μM (8)	
Km_{FAD} 0.12 μM (1)	
$Km_{C12EnoylCoAMAT}$ 1.08 μ M (1)	
$Km_{C10EnoylCoAMAT}$ 1.08 μ M (1)	
$Km_{C8EnoylCoAMAT}$ 1.08 μ M (1)	
$Km_{C6EnoylCoAMAT}$ 1.08 μ M (1)	
$Km_{C4EnoylCoAMAT}$ 1.08 μ M (1)	
Km_{FADH} 24.2 μM (1)	
Keq_{mcad} 6 (2)	
SCAD	
<i>sf</i> _{scadC6} 0.3 (8)	
sf_{scadC4} 1 (8)	
$V_{\rm scad}$ 0.081 µmol.min ⁻¹ .mgProtein ⁻¹ (8)	
$Km_{C6AcylCoAMAT}$ 285 μ M (8)	
$Km_{C4AcylCoAMAT}$ 10.7 μ M (8)	
Km_{FAD} 0.12 μ M (1)	
$Km_{CGEnovICoAMAT}$ 1.08 μ M (1)	
$Km_{C4EnovICoAMAT}$ 1.08 μ M (1)	
<i>Km</i> _{FADH} 24.2 μM (1)	
Keq _{scad} 6 (2)	

Parameter	Value		Reference
cf	0.13		(0)
J crotC16	0.13		(0)
SJ crotC14	0.2		(9)
SJ crotC12	0.23		(9)
SJ crotC10	0.55		(9)
SJ crotC8	0.58		(9)
SJ _{crotC6}	0.8		(9)
SJ _{crotC4}	1	una dunin ⁻¹ na Duatain ⁻¹	(9)
V _{crot}	3.0	µmoi.min .mgProtein	(9)
KM _{C16Enoyl} CoAMAT	150	μM	(9)
KM _{C14Enoy} ICoAMAT	100	μΜ	(9)
Km _{C12EnoylCoAMAT}	25	μM	(9)
Km _{C10Enoy} ICoAMAT	25	μΜ	(9)
Km _{C8EnoylCoAMAT}	25	μM	(9)
Km _{C6EnoylCoAMAT}	25	μM	(9)
Km _{C4EnoylCoAMAT}	40	μM	(9)
<i>Km</i> C16HydroxyacylCoAMAT	45	μΜ	(2)
Km _{C14HydroxyacylCoAMAT}	45	μΜ	(2)
Km _{C12HydroxyacylCoAMAT}	45	μΜ	(2)
<i>Кт</i> _{С10НуdroxyacylCoAMAT}	45	μΜ	(2)
<i>Кт</i> _{С8НуdroxyacylCoAMAT}	45	μΜ	(2)
<i>Кт</i> _{СбНуdroxyacylCoAMAT}	45	μΜ	(2)
<i>Кт</i> _{С4НуdroxyacylCoAMAT}	45	μΜ	(2)
KiacetoacetylCoAMAT	1.6	μΜ	(10)
Keq _{crot}	3.13		(2)
M/SCHAD			
sf _{mschadC16}	0.6		(11)
SfmschadC14	0.5		Estimated based on (11)
sfmschadC12	0.43		(11)
SfmschadC10	0.64		(11)
sfmschades	0.89		(11)
Sfmschadce	1		(11)
sf	0.67		(11)
Vmcchad	1	umol.min ⁻¹ mgProtein ⁻¹	(12)
	15	uM	(13)
	1.5 1 Q	иM	(13)
	27	иM	(13)
	0.7 Q Q	иM	(11)
Kmaau	0.0 16 2	μM	(11)
Km	10.5	μM	(11)
C6HydroxyacylCoAMAT	20.0	μινι	(11)
C4HydroxyacylCoAMAT	69.9 F0 F	μνι	(11)
KIII _{NADMAT}	20.5	μινι	(11) (12)
NIII _{C16Ketoacy} ICoAMAT	1.4	μινι	(13)
KIN _{C14Ketoacy} ICoAMAT	1.4	μivi	(13)
KM _{C12KetoacylCoAMAT}	1.6	μM	(13)
кт _{С10KetoacylCoAMAT}	2.3	μM	(13)
KM _{C8KetoacylCoAMAT}	4.1	μM	(13)
Km _{C6KetoacylCoAMAT}	5.8	μM	(13)
	100	1111	(11)
<i>Кт</i> _{С4Асеtоасу} ІСоАМАТ	16.9	μινι	
Кт _{С4Acetoacy} іСоамат Кт _{NADHMAT}	5.4	μM	(11)

Parameter	Value		Reference
МСКАТ			
<i>sf</i> _{mckatC16}	0		(11)
<i>sf</i> _{mckatC14}	0.2		Estimated based on (11)
<i>sf</i> _{mckatC12}	0.38		(11)
<i>sf</i> _{mckatC10}	0.65		(11)
<i>Sf</i> _{mckatC8}	0.81		(11)
<i>Sf</i> _{mckatC6}	1		(11)
<i>Sf</i> _{mckatC4}	0.49		(11)
V _{mckat}	0.377	µmol.min ⁻¹ .mgProtein ⁻¹	(14)
<i>Кт</i> _{С16Кеtоасу} соамат	1.1	μΜ	(15)
<i>Кт</i> _{С14KetoacylCoAMAT}	1.2	μΜ	Estimated based on (15)
Km _{C12KetoacylCoAMAT}	1.3	μΜ	(15)
<i>Кт</i> _{С10КеtoacylCoAMAT}	2.1	μΜ	(15)
Кт _{свкетоасу} соамат	3.2	μΜ	(15)
<i>Кт</i> СбкетоасуІСоАМАТ	6.7	μΜ	(15)
<i>Кт</i> _{С4Асеtоасу} соамат	12.4	μΜ	(15)
Кт _{соамат}	26.6	μΜ	Estimated based on (15)
<i>Кт</i> _{С16Асу} соамат	13.83	μΜ	(2)
<i>Кт</i> _{С14АсуІСоАМАТ}	13.83	μΜ	(2)
<i>Кт</i> _{С12АсуІСоАМАТ}	13.83	μΜ	(2)
Km _{C10ACylCoAMAT}	13.83	μΜ	(2)
Km _{c8AcylCoAMAT}	13.83	μΜ	(2)
Кт _{сбасуІсоамат}	13.83	μΜ	(2)
Km _{C4AcylCoAMAT}	13.83	μΜ	(2)
Km _{AcetylCoAMAT}	30	μM	(2)
Keq _{mckat}	1051		(2)
MTD			
Structo	1		(11)
sf	0 9		(11)
sf and size	0.5		(11)
s/mtpC12	0.01		(11)
sf	0.75		(11)
	2 84	umol min ⁻¹ mgProtein ⁻¹	(11)
	2.04		(9)
	25	uM	(9)
	25	uM	(9)
Kmchoenoulcoanat	25	uM	(9)
Kmcgepoulcoanat	25	μM	(9)
KmNADMAT	60	uM	(11)
Km _{Coondat}	30	uM	(15)
Kmc16ApulCoAbaat	13 83	uM	(2)
Kmc14AculCoANAT	13.83	uM	(2)
Kmc12AculcoANAT	13.83	uM	(2)
Kmc10AcylCoAMAT	13.83	μM	(2)
Kmcsaculcoanat	13.83	μM	(2)
Kmccacylcoanat	13.83	uM	(2)
Kmnadhmat	50	uM	(11)
Kmacebulconnat	30	uM	(2)
Keamta	0 71	m	Calculated by multiplying Keg
	0.71		Keamschad and Keamschat

Parameter Value			Reference
ACESINK			
Ks _{acesink}	6000000	µmol.min ⁻¹ .mgProtein ⁻¹	(1)
K1 _{acesink}	70	μΜ	(5)
FADHSINK			
<i>Ks</i> _{fadhsink}	6000000	µmol.min ⁻¹ .mgProtein ⁻¹	(1)
K1 _{fadhsink}	0.46	μΜ	(1)
NADHSINK			
Ks _{nadhsink}	600000	µmol.min ⁻¹ .mgProtein ⁻¹	(1)
K1 _{nadhsink}	16	μΜ	
Total concentrations of	of the conserved moiet	ies	
FADtMAT	0.77	μΜ	(1)
NADtMAT	250	μΜ	
CoAMATt	5000	μΜ	(16)
Fixed concentrations of	of metabolites		
CarCYT	200	μΜ	(1)
CoACYT	140	μM	(16)
CarMAT	950	μΜ	(1)
Volumes of various co	mpartments		
VCYT	2.2x10 ⁻⁶	L.mgProtein ⁻¹	(17)
VMAT	1.8x10 ⁻⁶	L.mgProtein ⁻¹	(18)

Glossary

Sf_enzymeCnSpecificity factor that determines the enzyme activity for the subst a specific chain length as a percentage of the V_{max} . The multiplicati factor with V_{max} will give the maximum enzyme rate for the substra C-atoms. V_{enzyme} The V_{max} of a particular enzyme.	rate with on of this ate with <i>n</i> specific e for the
V_{enzyme}	specific for the
V_{enzyme} The V_{max} of a particular enzyme.	pecific e for the
enzyme file v max of a particular chizyme.	specific e for the
Km constant (Km) of an enzyme for the metabolite with a s	e for the
chain length, <i>e.g.</i> Km _{C16AcylCarCYT} is the affinity constant of an enzymacyl carnitine in the cytosol with 16 C-atoms.	
<i>Keq</i> _{enzyme} The equilibrium constant (<i>Keq</i>) for a particular enzyme reaction.	
(Cn)MetaboliteMAT[t] Concentration of the metabolite in the mitochondrial matrix cytose it starts with Cn, this denotes the chain length of the metabolite. T between brackets at the end depicts that the metabolite is a time- dependent variable.	ol. When he t in
(Cn)MetaboliteCYT[t] Concentration of the metabolite in the cytosol. When it starts with denotes the chain length of the metabolite. The t in between brack end depicts that the metabolite is a time-dependent variable.	Cn, this tets at the
Ki _{Metabolite} Inhibition constant of an enzyme with respect to the metabolite. If metabolite starts with Cn, this denotes the chain length of the met	the abolite.
n _{cpt1} Hill coefficient of for the cooperative inhibition of CPT1 by malonyl Total concentration of oxidized and reduced FAD in the mitochond	-CoA. rial
FADtMAT matrix. Total concentration of oxidized and reduced NAD in the mitochono	Irial
NADtMAT matrix. Total concentration of all CoA-containing species in the mitochond	rial
<i>CoAMATt</i> matrix.	
<i>Car</i> Carnitine.	
CPT1 Carnitine-palmitoyl transferase 1.	
CACT Carnitine-acyl-carnitine translocase.	
CPT2 Carnitine-palmitoyl transferase 2.	
SCAD Short-chain acyl-CoA dehydrogenase.	
MCAD Medium-chain acyl-CoA dehydrogenase.	
LCAD Long-chain acyl-CoA dehydrogenase.	
VLCAD Very-long-chain acyl-CoA dehydrogenase.	
CROT Crotonase.	
M/SCHAD Medium/short-chain hydroxyacyl-CoA dehydrogenase.	
MICKATMedium-chain ketoacyl-CoA thiolase.MTPMitochondrial trifunctional protein.	
VCYT Volume of the cytosol.	
VMAT Volume of the mitochondrial matrix.	
v_{xsink} Rate of the sink reaction of metabolite x (x is either acetyl-CoA, NA FADH ₂).	DH or
Ks_xsinkRate constant of the sink reaction of metabolite x (x is either acety NADH or FADH2).	-CoA,
K1_xsinkConstant in the sink reactions that determines the concentration o either acetyl-CoA, NADH or FADH2).	f x (x is

References

1. Modre-Osprian R, *et al* (2009) Dynamic simulations on the mitochondrial fatty acid beta-oxidation network. *BMC Syst Biol* 3: 2.

2. Kohn MC & Garfinkel D (1983) Computer simulation of metabolism in palmitate-perfused rat heart. I. palmitate oxidation. *Ann Biomed Eng* 11: 361-384.

3. Fraser F, Padovese R & Zammit VA (2001) Distinct kinetics of carnitine palmitoyltransferase i in contact sites and outer membranes of rat liver mitochondria. *The Journal of Biological Chemistry* 276: 20182-20185.

4. Norum KR (1964) Palmityl-CoA:Carnitine palmityltransferase. purification from calf-liver mitochondria and some properties of the enzyme. *Biochimica Et Biophysica Acta* 89: 95-108.

5. van Vlies N, Ruiter JPN, Doolaard M, Wanders RJA & Vaz FM (2007) An improved enzyme assay for carnitine palmitoyl transferase I in fibroblasts using tandem mass spectrometry. *Molecular Genetics and Metabolism* 90: 24-29.

6. Miyazawa S, Ozasa H, Osumi T & Hashimoto T (1983) Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. *Journal of Biochemistry* 94: 529-542.

7. Izai K, Uchida Y, Orii T, Yamamoto S & Hashimoto T (1992) Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. *The Journal of Biological Chemistry* 267: 1027-1033.

8. Ikeda Y, Okamura-Ikeda K & Tanaka K (1985) Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. *J Biol Chem* 260: 1311-1325.

9. Furuta S, Miyazawa S, Osumi T, Hashimoto T & Ui N (1980) Properties of mitochondria and peroxisomal enoyl-CoA hydratases from rat liver. *Journal of Biochemistry* 88: 1059-1070.

10. Waterson RM & Hill RL (1972) Enoyl coenzyme A hydratase (crotonase). catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. *The Journal of Biological Chemistry* 247: 5258-5265.

11. Uchida Y, Izai K, Orii T & Hashimoto T (1992) Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. *The Journal of Biological Chemistry* 267: 1034-1041.

12. Osumi T & Hashimoto T (1980) Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. *Archives of Biochemistry and Biophysics* 203: 372-383.

13. Kobayashi A, Jiang LL & Hashimoto T (1996) Two mitochondrial 3-hydroxyacyl-CoA dehydrogenases in bovine liver. *Journal of Biochemistry* 119: 775-782.

14. Middleton B (1973) The oxoacyl-coenzyme A thiolases of animal tissues. *Biochemical Journal* 132: 717.

15. Miyazawa S, Furuta S, Osumi T, Hashimoto T & Ui N (1981) Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver. *Journal of Biochemistry* 90: 511-519.

16. Horie S, Isobe M & Suga T (1986) Changes in CoA pools in hepatic peroxisomes of the rat under various conditions. *Journal of Biochemistry* 99: 1345-1352.

17. Stoll B, Gerok W, Lang F & Häussinger D (1992) Liver cell volume and protein synthesis. *The Biochemical Journal* 287 (Pt 1: 217-222.

18. Gear AR & Bednarek JM (1972) Direct counting and sizing of mitochondria in solution. *The Journal of Cell Biology* 54: 325-345.