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1 Parameters for methods M1, M2, M3 and M4

1.1 Parameters for complementary replication

For method M1, we used the following parameters (or an appropriate subset of intermediates’ degradation
rates depending on the number of complementary pairs):

P = 1, kA = kB = kC = kD = 1

mA = 0.11; mB = 0.09; mC = 0.12; mD = 0.075.

dx1
= 0.12; dx2

= 0.09; dx3
= 0.11; dx4

= 0.10

dy1
= 0.10; dy2

= 0.13; dy3
= 0.08; dy4

= 0.11

dw1
= 0.08; dw2

= 0.13; dw3
= 0.11; dw4

= 0.09

dz1
= 0.12; dz2

= 0.10; dz3
= 0.09; dz4

= 0.13

dm1
= 0.09; dm2

= 0.10; dm3
= 0.10; dm4

= 0.12

dn1
= 0.08; dn2

= 0.12; dn3
= 0.11; dn4

= 0.09

dq1
= 0.12; dq2

= 0.09 dq3
= 0.11; dq4

= 0.10

dr1
= 0.07; dr2

= 0.12; dr3
= 0.09; dr4

= 0.11,

where the first sequence pair is denoted by x and y, the second is denoted by w and z, etc.
For method M2, we used random degradation rates for intermediates and monomers drawn from the

[0.05-0.15] interval with uniform distribution, other parameters (influx P, and elongation rates ki) were
the same as in M1.
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1.2 Parameters for non-complementary replication

For method M3, we used the same parameters as in M1 with the following extension of the degradation
rates of intermediates x and y (or an appropriate subset):

dx5 = 0.12; dx6 = 0.13; dx7 = 0.10; dx8 = 0.08; dx9 = 0.11

dy5 = 0.08; dy6 = 0.07; dy7 = 0.12; dy8 = 0.10; dy9 = 0.09.

For method M4, we used the same parameters for influx, elongations and monomer degradations as in
M1, random degradation rates of intermediates were drawn from the [0.05-0.15] interval with uniform
distribution (as in M2).

2 Non-complementary pairing with antiparallel polarity

According to methods M1 and M2 described in the main street, we analyzed the coexistence of different
number of pairs of sequences of length four with non-complementary replication and antiparallel polarity.
Similar to the case of complementary base pairing, increasing number of template-copy pairs reduces the
probability and stability of coexistence. On four different monomers a maximum of four different sequence
pairs can coexist. The results of the analysis can be seen in Tables S1 and S2 (methods M1 and M2,
respectively; the parameter values used are the same as in the main text, and are listed in the previous
section of Text S1). Comparing Tables 1, 2 and Tables S1, S2 (or Fig. 2 and Fig. S1), one can see that
the fraction of coexisting pairs and probability of coexistence of pairs with random rate constants are
significantly higher in case of non-complementary base pairing. The two strands of a non-complementary
pair have the same number of the different monomers (in reverse order) thus a better niche partitioning
is possible between the different sequence pairs.

Coexistence can be visualized in case of two coexisting sequence pairs of length L in two dimensions:
each cell of a 4L · 4L matrix represents a certain combination of two pairs, and is labeled by the first
sequence of the first pair (rows) and the first sequence of the second pair (columns). Sequences are
ordered according to standard lexicographic ordering along the horizontal and vertical axes (see Fig. S1).

We have tested whether long uniform and nonuniform sequence-pairs are able to coexist in case of
complementary pairing. In case of uniform sequences, according to our terminology, for 4 bases, there
could be only two different sequence-pairs (AAA . . .–BBB . . . and CCC . . .–DDD . . .). These always
coexist with any reasonable degradation rate set. (According to Method M2 we have not found such a
parameter set for which there is no coexistence.) In case of nonuniform sequences, based on our results,
we expect that longer sequences are able to coexist, though statistical analysis of such vast spaces is
impossible. For nonuniform sequences, we have tested lengths up to N = 30. We have found some
examples of coexistence using Method M2, with random search. Found coexisting cases all exhibit linear
asymptotic stability. Though these results are far from statistical significance, based only on these
successful simulation we found that the decrease in stability is slowing down with incresing chain length.
Since these examples exist, it is proven that stable coexistence is possible for longer sequences.

3 Non-complementary pairing and uniform degradation rates:
analytical results

In this section we deal with a simplified system. Under the assumption of homologous pairing of monomers
and parallel orientation of strands template and copy become identical, thus one replicator implies one
sequence only (see Fig. 1 for broader applicability). By further assuming uniform degradation rate
constants, we can perform a fully analytic approach.



3

3.1 Coexistence on two monomers

Given a single-stranded sequence x1 of length L, using two monomers (A, B), assuming uniform degra-
dation rate, the reaction system is as follows:

w1 + x1

kw1−−→ x2

w2 + x2

kw2−−→ x3

. . .

wL + xL

kwL−−−→ 2x1 (1)

P−→ A,B

A,B
m−→ 0

xi
d−→ 0,

where xi denotes incomplete double-stranded replication intermediates (for i > 1), wi ∈ {A,B} the type
of the ith monomer, and kwi

= {kA, kB} the elongation rate constants for the given monomer types at
position i (i = 1 . . . L). The dynamics of intermediates is as follows (xi denotes concentration of xi, wi

denotes concentration of the ith monomer type):

ẋ1 = 2kwL
wLxL − (kw1w1 + d)x1 (2)

ẋi = kwi−1
wi−1xi−1 − (kwi

wi + d)xi (i = 2 . . . L). (3)

It can be deduced from (2), that in equilibrium:

x1
xL

=
2kwL

wL

kw1w1 + d
(4)

and from all the equations defined by (3):

x1
x2

x2
x3

. . .
xL−1
xL

=
(kw2w2 + d)(kw3w3 + d) . . . (kwL

wL + d)

kw1w1kw2w2 . . . kwL−1
wL−1

. (5)

As the lhs-s of equations (4) and (5) are identical, we get the following identity for the rhs-s:

2ΠL
i=1kwi

wi = ΠL
i=1(kwi

wi + d). (6)

To investigate coexistence, we introduce a second sequence y1 of length L. Note that due to homolo-
gous pairing of monomers, template and copy are identical, thus a pair of pairs imply only two different
sequences (instead of four, as it was for complementary pairing). Intermediates of this new sequence
are denoted by yi (for i > 1), their concentrations by yi, monomers are denoted by vi ∈ {A,B}, and
their concentrations by vi (i = 1 . . . L). The dynamics of the two sequences are similar to (1), thus an
analogous method provides the general equation for the monomer concentration:

2ΠL
i=1kvi

vi = ΠL
i=1(kvi

vi + d). (7)

Let us denote concentrations of monomers A and B as A and B, the number of A-s and B-s in the
first sequence as nA1 and nB1 , and in the second sequence as nA2 and nB2 . Equations (6)-(7) accordingly
simplify as:

2 =

(
1 +

d

kAA

)nA
1
(

1 +
d

kBB

)nB
1

(8)

2 =

(
1 +

d

kAA

)nA
2
(

1 +
d

kBB

)nB
2

. (9)
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The equations for equilibrium monomer-concentration (8)-(9) only have unique solutions if nA1 6= nA2 , i.e.
there is a different amount of A in the two sequences (and consequently, different amount of B as well).
nA1 = nA2 is the definition of compositional identity 1. Relying on that nAi + nBi = L, the equilibrium
monomer concentrations are (given that ρ = L

√
2):

Â =
d

(ρ− 1)kA
; B̂ =

d

(ρ− 1)kB
(if there is no compositional identity!) (10)

In light of the concentrations, let us investigate the dynamics. Note, that:

kwi
wi =

1

ρ− 1
d (11)

kwi
wi + d =

ρ

ρ− 1
d. (12)

Substituting these into Eqs. (2)-(3) (d 6= 0):

xi−1
xi

= ρ (i = 2 . . . L) (13)

xL
x1

=
1

2
ρ. (14)

Similar results can be deduced for the intermediates of the second sequence yi. For further advancement,
one has to calculate the dynamics of the generation of monomers. Based on (1), we can formally write
the following:

Ȧ = P − kAA
L∑

i=1

(δwi,Axi + δvi,Ayi)−mAA (15)

Ḃ = P − kBB
L∑

i=1

(δwi,Bxi + δvi,Byi)−mBB, (16)

where δi,j = 1 if i = j, otherwise 0 (Kronecker delta), and m is the degradation rate of the monomers.
Since Eqs. (13) and (14) give the ratio of concentrations of “neighboring” intermediates, the concentration
of each intermediate can be expressed by using the last (Lth) concentration:

xi = ρL−ixL, yi = ρL−iyL (i = 1 . . . L). (17)

By substituting these into Eqs. (15) and (16), we get a set of linear equations of two variables, defining
the equilibrium values of x̂L and ŷL:

0 = kAÂ

L∑
i=1

(
δwi,Aρ

L−ix̂L + δvi,Aρ
L−iŷL

)
+mAÂ− P (18)

0 = kBB̂

L∑
i=1

(
δwi,Bρ

L−ix̂L + δvi,Bρ
L−iŷL

)
+mBB̂ − P. (19)

For example in case of the coexistence of BABA–AAAB (w2 = w4 = A, w1 = w3 = B, v1 =
v2 = v3 = A, v4 = B):

0 = kAÂ
[
(ρ2 + 1)x̂L + (ρ3 + ρ2 + ρ)ŷL

]
+mAÂ− P (20)

0 = kBB̂
[
(ρ3 + ρ)x̂L + ŷL

]
+mBB̂ − P. (21)

1In case of compositional identity, the equilibrium concentrations of monomers A and B are underdetermined, only the
ratio Â/B̂ is given.
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For the positivity test, we introduce the following notation for the constants of the power sum of ρ:

WA =

L∑
i=1

δwi,Aρ
L−i, WB =

L∑
i=1

δwi,Bρ
L−i (22)

V A =

L∑
i=1

δvi,Aρ
L−i, V B =

L∑
i=1

δvi,Bρ
L−i. (23)

With the notation introduced above, the solution of the system of Eqs. (18)-(19) provides the concen-
trations of the last intermediates of x and y:

x̂L =

∣∣∣∣∣ P−mAÂ

kAÂ

P−mBB̂

kBB̂

V A V B

∣∣∣∣∣∣∣∣∣ WA WB

V A V B

∣∣∣∣ =

P−mAÂ

kAÂ
V B − P−mBB̂

kBB̂
V A

WAV B −WBV A
(24)

ŷL =

∣∣∣∣∣ WA WB

P−mAÂ

kAÂ

P−mBB̂

kBB̂

∣∣∣∣∣∣∣∣∣ WA WB

V A V B

∣∣∣∣ =

P−mBB̂

kBB̂
WA − P−mAÂ

kAÂ
WB

WAV B −WBV A
, (25)

where Â and B̂ depend on parameters according to Eq. (10). A more concise determinant-formalism will
be used later on when we assume more than two monomers.

3.1.1 Criteria for coexistence

Let us assume that influx can counter degradation:

P > mAÂ, P > mBB̂ −→ P >
dmA

(ρ− 1)kA
, P >

dmB

(ρ− 1)kB
. (26)

Based on the equilibrium concentrations, the positivity criteria for x̂L are (Q = P−mAÂ

P−mBB̂

kBB̂

kAÂ
):

V A

V B
≶ Q and

V A

V B
≶
WA

WB
, (27)

similarly, ŷL is positive if:
WA

WB
≷ Q and

V A

V B
≶
WA

WB
. (28)

According to the above equations, the criteria of coexistence are:

V A ≶ QV B and WA ≷ QWB . (29)

To sum up, coexistence is possible if V A −QV B and WA −QWB are of different signs.
If the two elongation rate constants are identical (kA = kB) the parameter Q = 1, thus the simple

criteria of coexistence are the following:

V A ≶ V B , and WA ≷WB . (30)
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For example, given the sequences BABA and AAAB (L = 4) and kA = kB :

WA = ρ2 + 1, WB = ρ3 + ρ, V A = ρ3 + ρ2 + ρ, V B = 1. (31)

Since V A > V B and WA < WB , coexistence is present. Though in case of ABAA and AABB:

WA = ρ3 + ρ+ 1, WB = ρ2, V A = ρ3 + ρ2, V B = ρ+ 1. (32)

Since V A > V B and WA > WB , coexistence is not possible!

3.2 Coexistence on four monomers

In this section we extend the formalism used so far and reformulate the dynamics introduced in the
previous section to four monomers A, B, C, D. First, we modify the notation by introducing the
upper index j describing different sequences. The descriptor of the ith monomer in the jth sequence is
wj

i ∈ {A,B,C,D} and its concentration is wj
i . Similarly, the descriptor of the intermediates and their

corresponding concentrations are xj
i and xji , respectively. The reaction-scheme of the jth sequence is (cf.

Eq. (1))

wj
1 + xj

1

k
w

j
1−−→ xj

2

wj
2 + xj

2

k
w

j
2−−→ xj

3

. . .

wj
L + xj

L

k
w

j
L−−−→ 2xj

1 (33)

P−→ A,B,C,D

A,B,C,D
m−→ 0

xj
i,y

j
i

d−→ 0,

where kwj
i
∈ {kA, kB , kC , kD} is the elongation rate constant corresponding to monomer wj

i . The dynam-

ics of the intermediates of sequence j is (cf. Eqs. (2)-(3))

ẋj1 = 2kwj
L
wj

Lx
j
L −

(
kwj

1
wj

1 + d
)
xj1 (34)

ẋji = kwj
i−1
wj

i−1x
j
i−1 −

(
kwj

i
wj

i + d
)
xji (i = 2 . . . L). (35)

By calculating the ratio xj1/x
j
L from Eq. (34) and from Eq. (35) we get the following formula (see Eqs.

(4)-(5)):
2ΠL

i=1kwj
i
wj

i = ΠL
i=1(kwj

i
wj

i + d). (36)

We denote the number of monomer A in the first sequence by nA1 , etc. In case of coexistence of four
sequences, we have (cf. Eqs. (8)-(9)):

2 =

(
1 +

d

kAA

)nA
j
(

1 +
d

kBB

)nB
j

·
(

1 +
d

kCC

)nC
j
(

1 +
d

kDD

)nD
j

, (j = 1 . . . 4). (37)

These four equations (j = 1 . . . 4) have a unique solution iff

∆ =

∣∣∣∣∣∣∣∣
nA1 nA2 nA3 nA4
nB1 nB2 nB3 nB4
nC1 nC2 nC3 nC4
nD1 nD2 nD3 nD4

∣∣∣∣∣∣∣∣ 6= 0. (38)
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In this case, the equilibrium concentrations of the monomers are

Â =
d

(ρ− 1)kA
; B̂ =

d

(ρ− 1)kB
(39)

Ĉ =
d

(ρ− 1)kC
; D̂ =

d

(ρ− 1)kD
, (40)

for details and proof, see Eqs. (8)-(10) and the next section. Using these equilibrium values of monomer
concentrations, it is easy to see that

kwj
i
wj

i =
1

ρ− 1
d, (41)

kwj
i
wj

i + d =
ρ

ρ− 1
d. (42)

Back-substituting the results into Eqs. (34) and (35), the ratios of the concentration of neighboring
intermediates are (i = 2 . . . L):

xji−1

xji
= ρ, (43)

xjL
xj1

=
1

2
ρ. (44)

Consequently, concentrations of all intermediates can be expressed by the intermediate concentration of
the last step (xjL) as:

xji = ρL−ixjL. (45)

From the reaction scheme (33), the dynamics of monomers has a compact form (cf. Eqs. (15)-(16))

Ȧ = P − kAA
L∑

i=1

4∑
j=1

δwj
i ,A
xji −mAA (46)

Ḃ = P − kBB
L∑

i=1

4∑
j=1

δwj
i ,B
xji −mBB (47)

Ċ = P − kCC
L∑

i=1

4∑
j=1

δwj
i ,C
xji −mCC (48)

Ḋ = P − kDD
L∑

i=1

4∑
j=1

δwj
i ,D
xji −mDD, (49)

where R ∈ {A,B,C,D} and δwj
i ,R

is 1 if wj
i is R, and zero otherwise (Kronecker delta) and m indicates

monomer degradation rate. We introduce an abbreviation similar to Eqs. (22)-(23):

WR
j =

L∑
i=1

δwj
i ,R
ρL−i. (50)

For example, if the first sequence (j = 1) is ABBCDAAC the W ’s have the following formulae:

WA
1 = ρ7 + ρ2 + ρ, WB

1 = ρ6 + ρ5, WC
1 = ρ4 + 1, WD

1 = ρ3, (51)
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where ρ = 8
√

2 and L = 8.
As one can prove (e.g. by direct back-substitution), the equilibrium concentrations of the last step of

the intermediate of sequences 1, 2, 3, and 4 are (note that the superscript of x is the sequence number is
not a power!):

x1L =
1

H

∣∣∣∣∣∣∣∣∣

(
P−mAÂ

kAÂ

) (
P−mBB̂

kBB̂

) (
P−mCĈ

kCĈ

) (
P−mDD̂

kDD̂

)
WB

1 WB
2 WB

3 WB
4

WC
1 WC

2 WC
3 WC

4

WD
1 WD

2 WD
3 WD

4

∣∣∣∣∣∣∣∣∣ (52)

x2L =
1

H

∣∣∣∣∣∣∣∣∣
WA

1 WA
2 WA

3 WA
4(

P−mAÂ

kAÂ

) (
P−mBB̂

kBB̂

) (
P−mCĈ

kCĈ

) (
P−mDD̂

kDD̂

)
WC

1 WC
2 WC

3 WC
4

WD
1 WD

2 WD
3 WD

4

∣∣∣∣∣∣∣∣∣ (53)

x3L =
1

H

∣∣∣∣∣∣∣∣∣
WA

1 WA
2 WA

3 WA
4

WB
1 WB

2 WB
3 WB

4(
P−mAÂ

kAÂ

) (
P−mBB̂

kBB̂

) (
P−mCĈ

kCĈ

) (
P−mDD̂

kDD̂

)
WD

1 WD
2 WD

3 WD
4

∣∣∣∣∣∣∣∣∣ (54)

x4L =
1

H

∣∣∣∣∣∣∣∣∣
WA

1 WA
2 WA

3 WA
4

WB
1 WB

2 WB
3 WB

4

WC
1 WC

2 WC
3 WC

4(
P−mAÂ

kAÂ

) (
P−mBB̂

kBB̂

) (
P−mCĈ

kCĈ

) (
P−mDD̂

kDD̂

)
∣∣∣∣∣∣∣∣∣ , (55)

where

H =

∣∣∣∣∣∣∣∣
WA

1 WA
2 WA

3 WA
4

WB
1 WB

2 WB
3 WB

4

WC
1 WC

2 WC
3 WC

4

WD
1 WD

2 WD
3 WD

4

∣∣∣∣∣∣∣∣ . (56)

The four sequences can coexist if x1, x2, x3 and x4 concentrations are all positive. From Eq. (37) it
is straightforward to conclude that only a maximum of four sequences can coexist on four monomers.
Numerical investigations over the range of L = 3 . . . 6 (15000 independent runs for each L with random
parameters) have confirmed that five sequences can not coexist. In case of identical degradation rates,
the coexistence of five sequences is structurally unstable.

In the range of L = 3 . . . 6 (15000 independent runs for each L with random parameters) we have con-
firmed that in case of four monomers (if the coexistence is locally asymptotically stable) the numerically
and analytically derived monomer concentrations are the same.

4 Proofs

4.1 Proof of criterion of irregular coexistence

According to Eq. (29), the criterion of the coexistence of two sequences is (we only use the relation of
one direction, the other can be devised by swapping A↔ B):

WA > WB and V A < V B . (57)

It can be assumed that if a sequence (e.g. W) has for example more A than B then WA > WB . Let’s
investigate how this principle can be violated. For sake of simplicity, let us take a sequence that has x
A-s in its ,,head” and L− x B-s in its ,,tail”. In this case
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WA = ρL−1 + ρL−2 + · · ·+ ρL−x (58)

WB = ρL−x−1 + · · ·+ ρ+ 1. (59)

The question is: what values of x yield WA > WB? Using the sum formula of the geometric progression:

WB =
ρL−x − 1

ρ− 1
(60)

WA =
ρL − 1

ρ− 1
−WB =

2− ρL−x

ρ− 1
, (61)

where we used ρL = 2. After simplification: WA > WB if

x >
ln 4− ln 3

ln 2
L ≈ 0, 415L. (62)

Thus if there is a continuous, homogeneous subsequence (containing one monomer only) of at least length
d0, 415Le in the head of the sequence then this sequence dynamically behaves (concerning coexistence) as
if it had this monomer in majority. This behavior can be the result of a non-homogeneous subsequence
in the head if the sequence length is large enough.

4.2 Proof of condition Eq. (38)

The solution of the system of Eq. (37) is:

Â =
d

kA

[
2

∆A
∆ − 1

]−1
(63)

B̂ =
d

kB

[
2

∆B
∆ − 1

]−1
(64)

Ĉ =
d

kC

[
2

∆C
∆ − 1

]−1
(65)

D̂ =
d

kD

[
2

∆D
∆ − 1

]−1
, (66)

where

∆A =

∣∣∣∣∣∣∣∣
1 1 1 1
nB1 nB2 nB3 nB3
nC1 nC2 nC3 nC3
nD1 nD2 nD3 nD3

∣∣∣∣∣∣∣∣, ∆B =

∣∣∣∣∣∣∣∣
nA1 nA2 nA3 nA4
1 1 1 1
nC1 nC2 nC3 nC4
nD1 nD2 nD3 nD3

∣∣∣∣∣∣∣∣ (67)

∆C =

∣∣∣∣∣∣∣∣
nA1 nA2 nA3 nA4
nB1 nB2 nB3 nB4
1 1 1 1
nD1 nD2 nD3 nD4

∣∣∣∣∣∣∣∣, ∆D =

∣∣∣∣∣∣∣∣
nA1 nA2 nA3 nA4
nB1 nB2 nB3 nB4
nC1 nC2 nC3 nC4
1 1 1 1

∣∣∣∣∣∣∣∣ (68)

and

∆ =

∣∣∣∣∣∣∣∣
nA1 nA2 nA3 nA4
nB1 nB2 nB3 nB4
nC1 nC2 nC3 nC4
nD1 nD2 nD3 nD4

∣∣∣∣∣∣∣∣. (69)
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As the total number of monomers is L, we get

nDi = L− nAi − nBi − nCi , (i = 1, 2, 3, 4)

and from this it is easy to see that

∆A = ∆B = ∆C = ∆S =
1

L.
∆.

Thus there is no unique solution if ∆i = 0.

5 Fitness landscape

The fitness (φxi
) of the sequence pair (defined by the first strand xi) is the leading eigenvalue of the

dynamical matrix of the system of complementary pairing, four bases and antiparallel strand polarity.
We assume a non-regulated system as the resource concentrations are fixed at a constant value. For decay
rates, see the first section of Text S1, elongation rates are kA = 1.12, kB = 0.95, kC = 0.86, kD = 1.47
after Deck et al. ( [1], Table S1), multiplied by 10, assuming enzyme-free elongation and A ∼ A, B ∼ U ,
C ∼ C and D ∼ G monomer correspondence with RNA bases. We have measured the fitness difference
of all possible sequence pairs (xi, xj) with Hamming distance HD(xi, xj) = d, (d = 1 . . . L). The number
of such pairs for a given d is denoted as Nd, the fitness of a sequence is denoted by φxi . The calculated
differences were normalized, according to the formula:

Cd =

√√√√ ∑
(xi,xj)∈HD(xi,xj)=d

(
φxi − φxj

)2
Nd

(70)

yielding the normalized average correlation value for a given Hamming distance d (see Fig. S3).

6 Examples of coexistence of longer sequences

We have tested whether long non-uniform sequences are able to coexist (assuming complementary strand
pairing). For each sequence-pair group (4 pairs) we have generated a set of degradation rates for all
components with uniform distribution from the [0.05, 0.15] interval, as in Method M2. As the full
combined sequence space for such lengths is enormous, we have not performed exhaustive search for
coexisting cases. For the different lengths we have found a few examples of coexistence with brute force
search (see Tables S3, S4 and S5 for L = 20, 25 and 30, respectively). Our results show that 8 sequences
(4 sequence pairs) of length up to L = 30 can stably coexist (linear asymptotic stability was explicitly
tested). Since these examples exist it is proven that stable coexistence is possible for longer sequence
lengths. Based on these results, we expect that the trend is true for higher sequence lengths as well,
though statistical analysis of such vast spaces is not possible. Though we have demonstrated the gradual
decrease of stability as a function of the growing sequence length, we do not dare to extrapolate from
these data to much longer sequences.
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