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Let us first consider a single protein network, consisting of n residues connected by a certain number of
elastic bonds. Np is the total number of residue pairs, and is equal to n(n − 1)/2. The total energy of the
network, Etot, is constant at a given temperature, and can be expressed as the sum of the energies associated
with each bond in the network:

Etot =

Np∑
ij

Ebond
ij . (S1)

In the overdamped limit:

Ebond
ij =

1

2
κijσ

2
rij = kBT

κij
γij

, (S2)

where κij is the stiffness of the spring connecting residues i and j. It is equal to zero for residue pairs that
are not connected. σ2

rij is the variance of the distance between residues i and j in the equilibrium ensemble,
and γij is the apparent stiffness of the pair (i, j).

Assuming that relevant experimental data about the equilibrium ensemble of the protein is available, σ2
rij

and γij can be computed for each pair of residues (i, j). However, this does not allow to directly identify the
values of the spring constants κij that would ensure an optimal reproduction, by the ENM, of the observed
dynamical behavior of the protein. For example, two pairs (a, b) and (c, d) may be connected by elastic
bonds of equal stiffness (κab = κcd), but experience differently the influence of the network and thus behave
differently, i.e. be characterized by different γij values. On the other hand, from any set of spring constants
κ′ij , the ENM can be built and employed to compute the apparent stiffness γ′ij of each pair (i, j). The optimal
set of spring constants that we wish to determine is the one that leads to predicted values (γ′ij) as close as
possible to the corresponding experimental values (γij). Valuable information may thus be retrieved from
the comparison of γ′ij and γij and used to refine an initial, approximately chosen, set of the spring constants
κ′ij .

If we focus on a given pair of residues (a, b), we can rewrite eq. S1 as follows:

Etot = Ebond
ab + Enetwork

ab , (S3)

where Enetwork
ab is simply the sum of the energies associated with all other bonds in the network:

Enetwork
ab =

Np∑
ij 6=ab

Ebond
ij = Etot − Ebond

ab . (S4)

If the residues (a, b) are not directly connected by an elastic spring, Enetwork
ab = Etot. On the other hand,

if the network consists of only two beads connected by an elastic spring, Ebond
ab = Etot. Note that both

Ebond and Enetwork depend on the choice of a particular pair (a, b), whereas Etot is identical for all pairs.
Enetwork

ab can thus be understood as the influence that the network as a whole has on the individual pair
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(a, b). Indeed, since Etot is constant at a given temperature, the value of Enetwork
ab determines Ebond

ab , and
thus the amplitude of the fluctuations of the distance rab.

If we build the ENM using an approximate set of spring constants κ′ij , and follow the procedures de-
scribed in the main text of the manuscript (Methods), we may compute the covariance matrix of the spatial
coordinates C (eqs. 7, 8) and, subsequently, the apparent stiffness of each pair of residues (i, j), γ′ij (eqs.

1, 10). This allows the obtention of an estimation of both Enetwork
ab and Ebond

ab :

E′ network
ab =

Np∑
ij 6=ab

kBT
κ′ij
γ′ij

= Etot − kBT
κ′ab
γ′ab

, (S5)

E′ bond
ab = kBT

κ′ab
γ′ab

, (S6)

E′ network
ab is determined by the overall architecture of the network, and by the spring constants κ′ij assigned

to all other bonds, but depends only marginally on the value of κ′ab. Therefore, in view of refining the value
of κ′ab, we may consider that E′ network

ab is a good approximation of E network
ab . If we set Enetwork

ab = E′ network
ab

in eq. S3, we find with eqs. S5 and S6:

E′ bond
ab = E bond

ab , (S7)

and consequently:

κab = κ′ab
γab
γ′ab

. (S8)

The idea is thus that E′ bond
ab is a relatively good approximation of E bond

ab , even if κ′ab 6= κab. Indeed, since
the contribution of the network is mostly independent of the error on κ′ab, this error should be (mostly)
compensated by the resulting error on γ′ab. For example, if the stiffness of the spring connecting residues a
and b is underestimated (κ′ab < κab), the pair (a, b) should appear as less rigid in the ENM than in the real
protein (γ′ab < γab).

Eq. S8 allows to compute a new estimation of κab, which is dependent on the overall quality of the
initial set of spring constants κ′ij . It is thus necessary to devise an iterative procedure. At each step of this
procedure, the values of the apparent stiffness γ′ij predicted using approximate values of the spring constants,
κ′ij , are compared with the experimental values γij , in order to obtain refined approximations of the spring
constants, κij , which will be used as κ′ij during the next step. This procedure is expected to converge when
γ′ij → γij , that is, when the predictions of the model agree with the experimental observations.

Other methods have been proposed to identify the optimal value of the spring constant to be assigned
to each bond in a given protein, using for example entropy maximization [1]. However, our purpose here is
more general, as we wish to derive a set of spring constants κ(s, d) that depend only on the nature of the
amino acids (s) and on the interresidue distances (d), and that may be applied to any protein. For that
purpose, we consider that the optimal value of κ for one given pair (s, d) is the one that leads to the most
efficient reproduction of the dynamical behavior of this type of residue pair in a mean protein environment.

By analogy with eq. S3, we may write:

E = E
bond

(s, d) + E
network

(s, d) (S9)

E
bond

is the energy of the elastic spring connecting two residues of type (s, d), in a mean protein environment:

E
bond

(s, d) =
1

2
κ(s, d)σ2

r(s, d) = kBT
κ(s, d)

γ(s, d)
. (S10)

where κ(s, d) is the value that we want to identify for each type of pairs (s, d), and γ(s, d) the apparent

stiffness extracted from the dataset of 1500 NMR ensembles. E
network

(s, d) represents the influence of the
mean protein environment on pairs of a given type (s, d), and is considered to depend only marginally on the

stiffness of the bond between this particular type of pairs (although any estimation of E
network

will depend
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more generally on the set of κ values for all types of pairs). E is to the mean protein environment what Etot

is to a single protein, and is assumed to be constant and equal for all types of pairs (s, d).
Starting from an approximate functional form of the spring constants, κ′(s, d), we can compute an

estimation of the apparent stiffness of each type of pairs in a mean protein environment, γ′(s, d). By analogy
with eq. S8, we find:

κ(s, d) = κ′(s, d)
γ(s, d)

γ′(s, d)
(S11)

which can be used to devise an iterative procedure in which the functional form of κ(s, d) is updated at each
step k by confronting the predicted values of the apparent stiffness, γk(s, d), with the experimental ones,
γ(s, d):

κk+1(s, d) = κk(s, d)
γ(s, d)

γk(s, d)
(S12)

The procedure is thus expected to converge when γk(s, d) → γ(s, d), that is, when the predictions of the
model agree with the experimental observations.
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