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NFsim implementation of the receptor lattice model 

NFsim [1] is a rule-based stochastic simulator of chemical reaction networks built on the 
BioNetGen language [2].  It is designed to efficiently simulate systems in which 
molecules may exist in large numbers of states, and in which these states affect the rates 
of the reactions in which molecules participate.  To illustrate the problem, we consider 
the case of a bacterial chemoreceptor in a MWC signaling complex.  The rate of CheR 
binding to the modification site depends on: (1) whether the receptor modification site is 
occupied (by CheR or CheB); (2) whether the enzyme active site is occupied (by CheR or 
CheB); (3) whether the enzyme is tethered to the receptor, tethered to a neighboring 
receptor, tethered to a non-neighboring receptor, or in the bulk; and (4) the methylation 
level of the signaling complex in which the receptor is located, which varies between 0 
and 48 for a complex of six dimers.  Accordingly, the reaction proceeds with a rate 
specific to each of the 3!3!4!49 = 1764 possible receptor-enzyme states. NFsim enables 
us to fully specify the above model with relatively few explicit reaction rules.  Moreover, 
the speed of simulation in NFsim scales nearly independently of the number of possible 
states [1]. 

In the simulation, chemoreceptor dimers are specified by objects of the form 
T(m,mc,as,teth,[loc],[hex]) in which m and mc denote the methylation level 
of the dimer (0 to 8) and the local MWC cluster (0 to 48), as and teth are binding sites 
representing the active site and tether respectively, and [hex] and [loc] are each a 
series of binding sites used to specify the organization of the receptor lattice.  While 
NFsim does not support spatially resolved simulations, we can specify the neighbors of a 
given dimer by creating bonds between it and all of its neighboring dimers.  Fig. S1A 
illustrates how a MWC cluster of six dimers is specified by creating bonds (blue lines) 
between the [loc] sites (blue squares) on each dimer.  Fig. S1B illustrates 21 MWC 
clusters assembled into a hexagonal lattice by specifying bonds (red lines) between the 
[hex] sites (red squares) of neighboring dimers.  All interior dimers are connected to 
six neighboring dimers.  These bonds need not correspond to chemical bonds in the 
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actual system; here they are a feature of the simulation language that we use to specify 
the lattice organization. 

To illustrate reaction rules, we consider the reaction in which a tethered CheR binds to 
the active site of a neighboring receptor.  The corresponding rule is 

R(as,teth!1).T(teth!1,hex!2).T%t(as,hex!2) ->  

            R(as!3,teth!1).T(teth!1,hex!2).T%t(as!3,hex!2) . 

CheR is represented by the object R with two binding sites as and teth.  The dot 
notation indicates that two objects are bound and the !n notation serves to label distinct 
bonds.  T%t indicates that the reaction rate is a function of the state of the object T, 
referenced as t in the function argument.  In this case, the reaction rate is a basal binding 
rate times one minus the activity of t, calculated in the simulation by evaluating Eq. (13) 
at the methylation level mc of t.  Functionally defined rate laws are a key feature of 
NFsim that in this illustrative case save us from having to define a separate reaction for 
each value of mc and m. 

For simplicity, we have assumed that each dimer has one modification site and one tether 
site.  This simplification should not affect the results significantly since the number of 
receptors greatly exceeds the number of adaptation enzymes [3].  The simulation 
described in this section and in the main text was used for models M1, M2, and M3.  
Parameters for these models are given in Tables S1, S2, S6 and are discussed below. 

 

Implementation of models with no enzyme localization 

The models B1 and B2 were also simulated using NFsim.  MWC signaling complexes 
were modeled as objects with a methylation level ranging from 0 to 48 and a 
modification site for enzyme binding.  The activity a was calculated for each signaling 
complex using Eq. (13).  Binding of CheR and CheB to the complex was taken to be 
proportional to 1 - a and a, respectively.  Parameters for these models are given in Tables 
S1, S3, S6.  B1 is adapted from an analytical model presented in a previous study [4]. 

 

Parameter values  

1.  Parameter values common to all models 

Values in Table S1 were taken from experimental measurements presented in previous 
studies.  The basal protein counts (RTot, BTot, TTot) represent the mean counts per cell 
measured across a wild-type population by immunoblotting [3].  Parameters for the 
MWC model of Tar receptor clusters (!0, !1, N, K, K*) were obtained through FRET 
measurements of kinase activity in response to doses of the chemoattractant methyl-
aspartate [4].  The value of !1 reflects that in Eq. (13) a(m, L) is written in terms of the 
mean methylation level m per MWC signaling complex. 
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2.  Parameter values for numerical models of the receptor lattice and the analytical 
model with enzyme localization 

Parameter values for the adaptation kinetics were chosen to agree with recent in vivo 
measurements.  All parameter values for the analytical model with enzyme localization 
(Table S4) are taken to agree with corresponding parameters in the numerical model M1 
(Table S2).   The rates of localization of cytoplasmic CheR and CheB-P ar,b

t
 to the 

receptor cluster were taken from FRAP measurements [5].  We interpret these rates to 
represent enzymatic binding to the high-affinity tether sites.  The rates of localization by 
binding the lower-affinity modification sites ar,b

m  were taken to be slower.  Since few 
enzymes localize through this channel, their exact values do not affect the predictions of 
the model significantly.   

Key parameters for the model are Kr and Kb (Table S4), which characterize the affinity of 
tethered enzymes for the modification site and therefore the steepness of the relationship 
between receptor activity and the ratio of localized enzymes (Figs. 3B-D).  These 
affinities are related to the rates in model M1 (Table S2) via Kr,b = dr,b

m + kr,b( ) ar*,b*
m .  The 

values of Kr and Kb correspond to the Michaelis-Menten constants for the enzyme-
modification site interaction divided by the effective local concentration of the tethered 
enzyme.  Since the tether length is on the nanometer scale, these local concentrations are 
high: theoretical estimates based on the tether structure vary from 0.17mM [6] to 5M [7].  
Given this range of estimates, we chose the values of Kr and Kb conservatively (i.e., to be 
relatively large). For example, assuming Michaelis-Menten constants of 10µM, our 
values of Kr,b imply an effective local concentration of 0.33mM.  Smaller values of Kr,b 
would lead to a stronger dependence of receptor activity on the ratio of localized enzymes 
and correspondingly higher predictions for the level of signaling noise.   

For given values of the catalytic rates, Kr and Kb set the values of the binding rates of 
tethered enzymes to the modification sites and the rates of unbinding from the 
modification sites.  Additionally, the values of Kr,b constrain the values of the tether 
unbinding rates dr,b

t , as discussed in the main text.  Suitable choices of these rates ensure 
that the numbers of cytoplasmic and localized enzymes are comparable [5] and that the 
steady-state receptor activity is somewhat robust to variations in the expression levels of 
CheR and CheB.  Parameters related to CheB phosphorylation were primarily based on 
measured values (see below). 

Given values of the above parameters, the catalytic rates kr and kb of methylation and 
demethylation were calibrated by comparison with the measured responses of cell 
populations to exponential time-varying ramps of chemoattractant (Figs. 2A and S2) (Ref. 
[4], 32°C data).  Using a CheY-CheZ FRET pair, these measurements quantified changes 
in receptor activity in response to ramps of methyl-aspartate.  During stimulus, activity 
tended to reach steady-state values dependent on the speed of the ramp. These steady-
state values were determined by fitting the time trace of activity to an exponential decay 
(Fig. S2).  Our model agrees well with the experimental results over a wide range of 
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activity (Fig. 2A), but diverges for strong negative ramps because it does not include 
nonlinear CheB phosphorylation (see below). 

The remaining binding rates of Table S2 were chosen to be consistent with those  
discussed above by requiring ar

t ar
m = ar*

t ar*
m , ab

t ab
m = ab*

t ab*
m , ar

t ab
t = ar*

t ab*
t , 

ar
m ab

m = ar*
m ab*

m , which satisfies detailed balance.   

 

3.  Parameter values for models without enzyme localization 

Parameter values in Table S4 are used in the analytical model without enzyme 
localization and are taken from a previous study, in which they were calibrated to fit 
experimental measurements [4].  Parameter values (Table S5) for the numerical 
implementation of this model (B1) were derived from these values. 

 

CheB phosphorylation 

CheB is phosphorylated by the kinase CheA.  Since only phosphorylated CheB is able to 
efficiently dock with and demethylate chemoreceptors [5], this arrangement constitutes a 
negative feedback loop.  We implemented a simple CheB phosphorylation loop in our 
numerical models (M1, M2, M3) and in the analytical model with enzyme localization, 
following previous theoretical studies [8-11].  We model CheB phosphorylation through 
the reaction T + CheB " T + CheB-P with rate ap !a(T)  in which a(T) is the activity of 
the receptor T.  The rate of CheB-P autodephosphorylation dp has been measured by 
previous independent studies with excellent agreement [12,13].  We estimated the 
maximum phosphorylation rate ap using a simple model that considered CheA, CheB and 
CheY phosphorylation. Let active CheA autophosphorylate with rate ka, CheA-P (Ap) 
phosphorylate CheY with rate ky = 100 µM-1 s-1 [14], and CheY-P (Yp) dephosphorylate 
via CheZ with rate kz = 3 s-1 [12].  Then at steady state 

aka ATot ! Ap( ) ~ kyAp YTot !Yp( )  

kyAp YTot !Yp( ) = kzYp , 

in which ATot = 5.3 µM and YTot = 9.7 µM are the total concentrations of CheA and CheY 
[3] for a cell volume of 1.4 fL [15].  Solving these equations with the requirement that Yp 
= 2.6 µM at a = 0.5 implies that ka ~ 3 s-1, which in turn implies that Ap ~ 0.2 µM ! a for 
most values of a.  Since CheA-P phosphorylates CheB with rate 15 µM-1 s-1 [14], this 
estimate implies that ap = 3 s-1 /TTot.  In our implementation, then, the fast 
phosphorylation of CheA is effectively at steady state, an approximation that serves to 
reduce the number of parameters and significantly speed simulation. 

In vivo measurements of activity (as measured through the CheY-CheZ interaction via 
FRET) suggest that the rate of CheB phosphorylation has nonlinear dependence on kinase 
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activity.  Specifically, this dependence is inferred from: (1) significant asymmetry in the 
rate of the adaptation response to positive and negative step stimuli [16]; (2) a sharp 
increase in the demethylation rate at high kinase activities, measured through stimulation 
by exponential time-varying ramps of chemoattractant [4].  Comparison of results from 
the ramp stimulus experiments to a theoretical model indicates that CheB 
phosphorylation only affects the adaptation kinetics at high activities (a > 0.74).  Since 
the molecular processes underlying this nonlinearity are currently unknown, we included 
simpler, linear CheB feedback in our models.  As a result, while our model agrees well 
with measurements over a wide range of activities, it deviates at the highest activities  
(Fig. 2A).  These activities are higher than the mean activities of typical, unstimulated 
wild-type cells, which are the primary focus of our study. 

 

Analytical models 

1.  Fluctuations without enzyme localization 

The model in this section is an analytical treatment of B1.  We consider a model of MWC 
signaling complexes each consisting of N = 6 receptor dimers.  Let m be the average 
methylation level per signaling complex, varying between 0 and 8N.  We begin by 
studying the dynamics of the total methylation level M = mTTot/2N, the total number of 
methyl groups bound to receptors.  To the equation of motion for the mean of M, we can 
apply the linear noise approximation (LNA) directly to obtain a stochastic differential 
equation for the dynamics of M.  From this basis, we can then calculate fluctuations in 
both m and the fraction of active receptor clusters a. 

In this model we neglect the localization of the cytoplasmic enzymes with the tether site 
and simply assume that CheR binds the receptor modification site with affinity (1-a)/Kr 
and CheB binds with affinity a/Kb.  Then the number of CheR-receptor complexes is 
RT/Kr and CheB-receptor complexes is BT*/Kb, in which R and B are the numbers of free 
enzymes and T and T* are the numbers of inactive and active receptors.  Kr and Kb are 
Michaelis-Menten constants.  Then for catalytic rates kr and kb, the change in M is given 
by dM dt = kr RT Kr ! kb BT

* Kb .  Using the conservation of enzymes 
RTot = R 1+T /Kr( )  and BTot = B 1+T

* /Kb( )  yields the equation 

dM
dt

=
krRTotT
Kr +T

!
kbBTotT

*

Kb +T
* , (S2) 

which has appreared in numerous previous models. 

Using the LNA, we convert Eq. (S2) into the stochastic differential equation 
dM = !Mdt + DM dW , in which W(t) is the Wiener process.  The relevant noise intensity 
is  
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DM =
krRTotT
Kr +T

+
kbBTotT

*

Kb +T
* . (S3) 

Since we are ultimately considering small fluctuations around the steady state, the 
quantities appearing in DM are evaluated at their steady-state values.   

To calculate the variation in the fraction of active receptors 

a m( ) = T *(1+B /Kb ) TTot , (S4) 

we apply It!’s Lemma to the function a(m), yielding 

da = !a
!m

dM
TTot 2N

+
1
2
!2a
!m2

DM

TTot 2N( )2
dt = 2N

TTot

!a
!m

krRTotT
Kr +T

dt " kbBTotT
*

Kb +T
* dt + DM dW

#

$
%

&

'
(

+
1
2
!2a
!m2

DM

TTot 2N( )2
dt .

         

                                                       (S5) 

The derivatives of receptor activity a(m, L), Eq. (13) of the main text, with respect to the 
methylation level per cluster m may be written in terms of the activity as 

!a
!m

= !1a 1" a( ) > 0
       

                                                        !
2a

!m2 = !1
2a 1" a( ) 1" 2a( ) . (S6) 

Using Eqs. (S3-6) and the conservation of receptor number 

TTot = T 1+ RTot
Kr +T

!

"
#

$

%
&+T * 1+

BTot
Kb +T

*

!

"
#

$

%
& , (S7) 

we can express da in terms of only a and constants.  Linearizing the resulting expression 
around the steady state of a yields an equation of the form d !a( ) = ! !a "( )dt + DadW  
from the which the expression for the relaxation time can be read off.  The variance of 
this process is var !a( ) =" aa = #Da 2  with Da = !a !m( )2 DM TTot 2N( )2 .  For receptor 
activity a < 0.74 and the parameters in Table S4, this model is equivalent to a recent 
model calibrated from population responses to exponential ramps of attractant [4].  For a 
> 0.74, that model included a nonlinear CheB-P feedback term, which we have neglected 
here for simplicity and since we are primarily interested in comparisons at lower 
activities where signaling noise is higher.  

As previously discussed [8], the noise level ! aa  increases with the dependence of the 
activity at steady state on the number of CheR, a0(RTot).  In Fig. S3A, a0(RTot) is plotted 



! (!

both for the Michaelis-Menten constants in Table S3 and reduced by a factor of 10 (Table 
S6).  As known from Goldbeter and Koshland [17], reducing Kr and Kb steepens a0(RTot) 
and correspondingly increases the noise level in activity (Fig. S3B).  This model with 
increased affinities corresponds to the numerical model B2. 

 

2.  Fluctuations in the enzyme localization model 

The dynamics of the analytical model with enzyme localization are given by the 
stochastic Eqs. (S8-10), adapted here from the chemical Langevin Eqs. (8-10) of the main 
text   

dM =
krRTot

* (1! a)
Kr +1! a

!
kbBp, Tot

* a
Kb + a

"

#
$

%

&
'dt + DM dWM   (S8)

 

dRTot
* = ar

tTTotR! dr
t Kr

Kr +1! a
RTot
*

"

#
$

%

&
'dt + DrdWr   (S9)

 

dBp, Tot
* = ab

tTTotBp ! db
t Kb

Kb + a
Bp, Tot
*

"

#
$

%

&
'dt + DbdWb ,           (S10)

 

in which Wi(t) are independent Wiener processes.  The derivation is given in the main 
text. Additionally, enzyme numbers are conserved according to RTot = R+ RTot

*  and 

BTot = B+Bp +Bp, Tot
* .  Applying It!’s lemma to Eq. (S8), we find that receptor activity 

evolves according to 

da = 2N
TTot

!a
!m

krRTot
* (1" a)

Kr +1" a
dt "

kbBp, Tot
* a

Kb + a
dt + DM dW

#

$
%

&

'
(+
1
2
!2a
!m2

DM

TTot 2N( )2
dt .     (S11) 

The derivatives of activity a with respect to m may be expressed using Eq. (S6) as in the 
previous section.  Equations (S9-11) may then be rewritten in the form 

dX = F X( )dt +BdW ,  (S12) 

in which X = a,RTot
* ,Bp, Tot

*( )
T

 and the components of the diffusion matrix B are calculated 

by the LNA [18,19] 

B = diag 2N
TTot

!a
!m

krRTot
* (1" a)

Kr +1" a
+
kbBp, Tot

* a
Kb + a

#

$
%

&

'
(

1/2

, ar
tTTotR+ dr

t Kr

Kr +1" a
RTot
*

#

$
%

&

'
(

1/2

, ab
tTTotBp + db

t Kb

Kb + a
Bp, Tot
*

#

$
%

&

'
(

1/2)

*

+
+

,

-

.

.

 

                (S13) 
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and evaluated at the steady state, F(X0) = 0.  To consider small deviations x = X - X0, we 
linearize Eq. (S12) by calculating the Jacobian A of F.  The resulting linear system 

dx = Axdt +BdW  (S14) 

is a multivariate Ornstein-Uhlenbeck process.  The steady state variance in the output of 
the system is obtained by solving the Lyapunov equation [20,21] 

A! +! AT +BTB = 0  (S15) 

for the covariance matrix ".  The autocorrelation matrix C at steady state may also be 
calculated by  

C(t) = exp At( )! . (S16) 

 

3.  Detailed model of enzyme localization 

The analytical model of the previous section incorporates the features responsible for 
increased signaling noise when enzyme localization and brachiation are included in our 
simulation of the bacterial chemotaxis system.  However, it also overestimates the 
magnitude of this noise.  Two reasons exist for this overestimate.  First, the model 
assumes that all receptors are equally accessible to all localized enzymes, meaning that 
methylation is fully distributive.  In this picture, enzymes bind the receptors for which 
they have the highest affinity (low methylation level for CheR and high methylation level 
for CheB) regardless of the state of the receptor to which they are tethered.  The result is 
an overestimate of the binding affinity of localized enzymes  for the receptor substrate.  
Second, the previous analytical model does not consider a distribution of methylation 
levels.  Rather, !a /!m  is evaluated at only a single methylation level corresponding to 
the mean activity of the system.  This approximation tends to overestimate !a /!m , most 
significantly for systems with mean activity of a ~ 0.5, where !a /!m  is largest.  
Addressing these issues requires a model that considers the dynamics of MWC 
complexes of each methylation level m individually.  Additionally, the model must track 
the numbers of enzymes localized to complexes at each methylation level.  To tune the 
processivity of methylation, we introduce a parameter # representing the rate at which 
localized enzymes randomize their position. The value # = 0 corresponds to completely 
processive methylation and the limit # " # corresponds to purely distributive 
methylation, reducing the model to Eqs. (8-10) of the main text. 

Let TTot, m be the total number of receptor monomers within MWC signaling complexes 
of methylation level m.  Also let Rm

*  and Bp,m
*  be the number of CheR and CheB-P 

localized within clusters of methylation level m but not bound to modification sites.  For 
simplicity, we consider only the case of a tethered enzyme binding a modification site in 
the same cluster that it is localized.  This binding of the modification site forms 
complexes denoted by Rm

*Tm and Bp,m
* Tm .  The changes in the number of these complexes 

due to modification site (un)binding and catalysis is then: 
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d
dt
Rm
*Tm = ar*

m 1! am( )Rm* ! dr
m + kr( )Rm*Tm        

 
d
dt
Bp,m
* Tm = ab*

mamBp,m
* ! db

m + kb( )Bp,m
* Tm

            
(S17)

 

Taking the approximation dRm
*Tm dt = dBp,m

* Tm dt = 0
 
as in Eqs. (5-7) of the main text,

 changes in TTot, m, are given by
 

d
dt
TTot,0 = !

kr
Kr

R0
* 1! a0( )+ kb

Kb

Bp,1
* a1

!
d
dt
TTot,m =

kr
Kr

Rm!1
* 1! am!1( )! kr

Kr

Rm
* 1! am( )! kb

Kb

Bp,m
* am +

kb
Kb

Bp,m+1
* am+1

!
d
dt
TTot,8N =

kr
Kr

R8N!1
* 1! a8N!1( )! kb

Kb

Bp,8N
* a8N

           (S18) 

in which the cluster activity am = a(m, L).  All parameters are defined in the same manner 
as those for the previous analytical model given in Table S4.

 

We now write the analogs of Eqs. (1, 2) in the main text, which here describe the binding 
and unbinding of cytoplasmic CheR (R) and CheB-P (Bp) to tether sites within signaling 
complexes of methylation level m.  The quantities  

RTot,m
* = Rm

* 1+1! am
Kr

"

#
$

%

&
' ,        

Bp,Tot,m
* = Bp,m

* 1+ am
Kb

!

"
#

$

%
&       (S19) 

denote the total numbers of localized enzymes at each methylation level.  These total 
localized enzyme counts evolve according to 

 

d
dt
RTot,m
* = ar

tRTTot,m ! dr
tRm

* +
kr
Kr

Rm!1
* 1! am!1( )! Rm* 1! am( )"# $%+! !Rm

* + R*
TTot,m
TTot

&

'
(

)

*
+

 

   (S20) 
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d
dt
Bp,Tot,m
* = ab

t BpTTot,m ! db
tBp,m

* +
kb
Kb

!Bp,m
* am +Bp,m+1

* am+1( )+! !Bp,m
* +Bp

* TTot,m
TTot

"

#
$

%

&
'  

                             (S21). 

The first term two terms of the right hand side arise from the binding and unbinding of 
localized enzymes from the tether site.  As in the previous model, we here assume the 
number of free tethers to be large compared to the number of localized enzymes and

 therefore ~TTot,m.  The third and fourth terms (multiplied by kr,b/Kr,b) represent the 
localized enzyme (de)methylating the complex within which it is localized.  The last two 
terms introduce a redistribution of localized enzymes between the receptor clusters 
occurring at a rate #.  The probability of a given complex receiving a new enzyme is 
proportional to its relative abundance TTot,m/TTot.   
Molecule counts are conserved according to  

RTot = R+ RTot,m
*

m
!    

BTot = B+Bp + Bp,Tot,m
*

m
!  (S22)              

TTot = TTot,m
m
!                  

and the overall activity a is calculated according to 

a = 1
TTot

amTTot,m
m
! . (S23) 

In the limit # " #, Eqs. (S18, S20, S21) reduce to Eqs. (8-10) of the main text.  
Summing Eqs. (S20, S21) over m and using the definitions R* = Rm

*

m
! and 

Bp
* = Bp,m

*

m
! reduces them to Eqs. (9, 10) describing the dynamics of the total number of 

localized enzymes.  To recover Eq. (8), we note that as #  " #, it follows from Eqs. (S20, 
S21) that Rm

* ~ R*TTot,m TTot and Bp,m
* ~ Bp

*TTot,m TTot .  Inserting these values into Eq. 

(S18) and summing dm / dt ~ m !TTot,m TTot
m
! yields Eq. (8) for a(m = 0) ~ 0 and a(m = 

8N) ~ 1 [8].  This limit corresponds to fully distributive methylation in which localized 
enzymes are completely redistributed between each methylation event according to the 
abundances TTot,m.

 
For calculations about the steady state with no stimulus, only methylation levels up to m 
~ 16 must be considered, since a(16, L = 0) ~ 1 guarantees that CheR will not methylate 
clusters beyond this limit.  Signaling noise in the overall activity a is calculated by 
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linearizing and applying the linear noise approximation to Eqs. (S18, S20, S21).  The 
variance in the overall activity "aa is calculated from the covariances of the TTot,m.  
Results of this calculation for # = 0 (fully processive) and # = 20 s-1  (more distributive) 
are shown in Fig. S4.  The more distributive model exhibits larger fluctuations and a 
higher affinity of the localized enzymes for the receptor substrate. 

 

Comparing the dependence of receptor activity on the localized enzyme ratio  

When calculating the localized CheR to CheB-P ratio for the numerical models (Fig. 4C, 
D), we ignore the population of “inert” CheR and CheB-P localized respectively within 
fully methylated or demethylated assistance neighborhoods or, for the model M2 lacking 
assistance neighborhoods, tethered to fully methylated or demethylated receptor dimers.  
While these inert enzymes are able to bind the modification sites of the receptors, they 
are unable to participate in methylation-demethylation and therefore do not affect the 
activity of the receptor cluster.  This consideration provides the best comparison to Fig. 
4B, since the analytical model assumes all bound enzymes will (de)methylate receptors at 
the same rate, Eq. (7).  The population of inert CheR is small for all models, but the 
fraction of inert CheB is high for the processive models since many receptors are fully 
demethylated (Fig. S6).  We note that since the simulated MWC complexes in the 
absence of stimulus are half active when the methylation of the complex is m = 6 (out of 
a possible 48) and almost fully active with m = 12, fully demethylated receptors are 
common even when the activity of the receptor cluster is high. 

 

Comparing adaptation rates between the numerical models 

When presented with a large attractant stimulus, the numerical models clearly displayed 
different rates of adaptation with the most distributive model M1 reaching its adapted 
level of activity first (Fig. 2B).  Fig. S7 shows the mean methylation level per MWC 
complex versus time for the simulations plotted in Fig. 2B, which clearly shows that M1 
(black) has the highest overall methylation rate during adaptation.  We note that since the 
enzymes in model M3 have lower rates of tether  unbinding, ~30% more enzymes are 
localized to the cluster than in M1.  This leads to the slightly faster initial rate of 
methylation for M3 compared to M1.  This rate, however, drops due to the processivity 
of methylation in M3, as localized CheR is unable to escape from pockets of high 
methylation.  In contrast, the methylation rate of the most distributive model M1 remains 
nearly constant during adaptation. 
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