
ToPS User Guide

André Yoshiaki Kashiwabara
Ígor Bonadio
Vitor Onuchic

Alan Mitchell Durham

January de 2013

ii

Contents

1 Introduction 1
1.1 Supported Features . 1

2 Build and Installation 3
2.1 Requirements . 3
2.2 Building from Source . 3

3 Sequence Formats 5
3.1 FASTA format . 5
3.2 ToPS sequence format . 5

4 Describing Probabilistic Models 7
4.1 Independent Identically Distributed Model 7
4.2 Variable Length Markov Chain . 8
4.3 Hidden Markov Model . 8
4.4 Inhomogeneous Markov Model . 9
4.5 Pair Hidden Markov Model . 10
4.6 Profile Hidden Markov Model . 11
4.7 Generalized Hidden Markov Model . 13
4.8 Language Description (EBNF) . 15

5 Training Probabilistic Models 17
5.1 The train program . 18
5.2 Discrete IID Model . 18
5.3 Context Algorithm . 18
5.4 Fixed Length-Markov Chain . 18
5.5 Training the GHMM transition probabilities 19
5.6 Training HMM using algorithm Baum-Welch 19
5.7 Interpolated Markov Chain . 19
5.8 Profile HMM Maximum Likelihood . 19
5.9 Profile HMM Baum-Welch . 20
5.10 Weight Array Model . 20

iii

iv CONTENTS

5.11 Phased Markov Model . 20
5.12 Smoothed Histogram (Burge) . 21
5.13 Smoothed Histogram (Stanke) . 21
5.14 Smoothe Histogram (Kernel Density Estimation) 21
5.15 Similarity Based Sequence Weighting . 21
5.16 Using model selection when training a probabilistic model 22

6 Simulating Probabilistic Models 23

7 Evaluating probabilities of a sequence 25

8 Other Applications 27
8.1 Aligning Using Pair HMM . 27
8.2 Bayesing Classifier . 27
8.3 Sliding Window . 28
8.4 Viterbi Decoding and Posterior Decoding . 28

9 Design and Implementation 29
9.1 ProbabilisticModel hierarchy . 29

9.1.1 FactorableModel . 30
9.1.2 InhomogeneousFactorableModel . 31
9.1.3 DecodableModel . 31

9.2 ProbabilisticModelCreator and ProbabilisticModelParameterValue hierarchies
. 32

Bibliography 33

Chapter 1

Introduction

Probabilistic models for sequence data play an important role in many dicipline such
as natural language processing [MS99], computational music [KD06], and Bioinformatics
[DEKM98]. Examples of such models include hidden Markov models [Rab89], hidden semi-
Markov model [Gué03] also know as Generalized Hidden Markov Model [KHRE96, Bur97],
and variable-length Markov chain [Ris83].

This document describes the usage of ToPS (Toolkit of Probabilistic Model of Sequence)
that combines in a single environment the mechanisms to manipulate different probabilistic
models. Currently, ToPS contains the implementation of the following models:

1. Independent and identically distributed model

2. Variable-Length Markov Chain (VLMC)

3. Inhomogeneous Markov Chain

4. Hidden Markov Model

5. Pair Hidden Markov Model

6. Profile Hidden Markov Model

7. Generalized Hidden Markov Model (GHMM)

The user can implement models either by manual description of the probability values
in a configuration file, or by using training algorithms provided by the system. The ToPS
framework also includes a set of programs that implement bayesian classifiers, sequence
samplers, and sequence decoders. Finally, ToPS is an extensible and portable system that
facilitates the implementation of other probabilistic models, and the development of new
programs.

1.1 Supported Features
1. ToPS contains a simple language near to the mathematical notation that can be used

to describe the parameters of different type of models.

2. ToPS allows the use of any implemented model to represent the emissions of the
GHMM’s states.

3. Sequence samplers are available.

1

2 INTRODUCTION 1.1

4. ToPS contains the implementation of Viterbi decoding, forward and backward algo-
rithmhs for "decodable" models (HMM, pair-HMM, profile-HMM, and GHMM).

5. Baum-Welch training is implemented for HMM, and pair-HMM.

6. Maximum Likelihood training (profile-HMM, and Markov chains)

7. The object-oriented design of ToPS is extensible and developers are welcome to include
the implementation of other probabilistic models or algorithms.

8. The ToPS source-code is under the GiT version control system (http://git-scm.com).

9. ToPS provides the implementation of many distinct and different programs:

• aligner

• sequence sampler

• bayesian classifier

• sliding window analysis

• posterior decoding

• viterbi decoding

• path sampler given a sequence and a GHMM

http://git-scm.com

Chapter 2

Build and Installation

This chapter provides a complete guide to building and installing ToPS.

2.1 Requirements
ToPS was designed to run on Unix/Linux operating systems, but it should work on

Windows too. Tested platforms include: MacOS X and Ubuntu linux.
This framework was written in C++ and its requirements are listed below:

* G++ v4.2.1 - http://gcc.gnu.org/

* Boost C++ v1.52 - http://www.boost.org/

* CMake v2.8.8 - http://www.cmake.org/

* Git v1.7.9 - http://git-scm.com/

* GoogleTest v1.5.0 - http://code.google.com/p/googletest/

2.2 Building from Source
1. Download the last version of ToPS using Git

git clone git://tops.git.sourceforge.net/gitroot/tops/tops

This will create a directory named tops

2. Install the google test framework submodule.

git submodule update --init

3. Go to the tops directory:

cd tops

4. Run the configuration script:

cmake .

3

http://gcc.gnu.org/
http://www.boost.org/
http://www.cmake.org/
http://git-scm.com/
http://code.google.com/p/googletest/

4 BUILD AND INSTALLATION 2.2

5. Run make and make install

make
sudo make install

Chapter 3

Sequence Formats

ToPS can read two distinct text-based file format: (1) FASTA; (2) ToPS sequence format.

3.1 FASTA format
FASTA format has become a standard in the field of Bioinformatics and it represents

any sequence data such as nucleotide sequences or protein sequences.
A sequence in FASTA format always begins with a single-line description, followed by the

lines of the sequence data. The description line begins with the greater-than (">") symbol.
The sequence data ends when another ">" appears or when the end-of-file is encountered.

Example:

>chr13_72254614
AGGAGAGAATTTGTCTTTGAATTCACTTTTTCTTACCTATTTCCC
TTCAAAAAGAAGGAGGGAGGCCGATCTTAGTATAGTTCTCGCTGT
TTCCCCTCCACACACCTTTCCTTATCATTCAGTTTAGAAAAACTG
AAATATTTAATAGCATAATTTGTTATATCATGAGGTATTAAAACA
AGGTAGTTGCTAACATTCTTATGAGAGAGTTAGAAGTAAGTTCTA
>chr12_54396566
ACTCTGGAGGGAGGAGGGTGTGGGGAACCCCCCAGAGATGGGCTT
CTTGGAGGCCTGAAACCACCGGAACGGAGGTGGGGCACTTGTTTC
CTGAGTCCGGGCTGGAAATCTCGGAGTTACCGATTCTGCGGCCGA
GTAGTGGAGAAAGAGTGCCTGGGAGTCAGGAGTCCTGGGCGCTGC
CGCTGACTTCCTGGCGTCCCTGAGTGAGTCCATTTCCCTCCCAGG

3.2 ToPS sequence format
ToPS sequence format assumes that each line contains a single sequence data. A sequence

in ToPS sequence format begins with a description followed by the two-dots (":") symbol,
followed by a space, followed by the sequence data. ToPS allows the presence of multiple-
character symbols, and the symbols in the sequence data are isolated by a space.

Example:

chr13_72254614: A G G A G A G A A T T T G T C T T T
seq1234: CPG CPG NOCPG CPG CPG CPG CPG NOCPG

5

6 SEQUENCE FORMATS 3.2

Chapter 4

Describing Probabilistic Models

ToPS uses its own language to describe models and configurations. This is a simple
language that will help users without previous knowledge in programming to define the
parameters of the model and to do sequence analysis experiments.

To use a model, you need to define a mandatory parameter called "model_name" to
specify which model you will use. Currently, available "model_name" values are:

• DiscreteIIDModel

• VariableLengthMarkovChain

• HiddenMarkovModel

• InhomogeneousMarkovChain

• PairHiddenMarkovModel

• ProfileHiddenMarkovModel

• GeneralizedHiddenMarkovModel
In this chapter we describe how the user can define the specific parameters of each model

using simple examples. Finally, we show the formal specification of the language in the
Extended Backus-Naur Form (EBNF).

4.1 Independent Identically Distributed Model
We specify a discrete i.i.d. model using a vector of probabilities values. The file fdd.txt

describes a distribution of two symbols: symbol Sun with probability 0.2, and symbol Rain
with probability 0.8.

fdd.txt
model_name = "DiscreteIIDModel"
alphabet = ("Sun", "Rain")
probabilities = (0.2, 0.8)

When the "alphabet" is not present, it means that we are describing the distribution
over non-negative integers numbers. For example, the file described below is specifying that
the probability of 0 is 0.2, the probability of 1 is 0.1, the probability of 2 is 0.3 and the
probability of 3 is 0.4.

model_name = "DiscreteIIDModel"
probabilities = (0.2, 0.1, 0.3, 0.4)

7

8 DESCRIBING PROBABILISTIC MODELS 4.3

4.2 Variable Length Markov Chain
VLMCs are described by specifying the distribution associated with each context. The

vlmc.txt file shows an example. We use the probabilities parameter to specify the
conditional probabilities, for example, line 9 specifies that the probability of Xn = 0 given
that Xn−1 = 1 and Xn−2 = 2 is 0.7.

vlmc.txt
1 model_name = "VariableLengthMarkovChain"
2 alphabet = ("0", "1")
3 probabilities = (
4 "0" | "": 0.5;
5 "1" | "": 0.5;
6 "0" | "1": 0.5;
7 "1" | "1": 0.5;
8 "0" | "0": 0.1;
9 "1" | "0": 0.9;

10 "0" | "1 0": 0.7;#P(X_n=0|X_{n-1}=1,X_{n-2}=0)=0.7
11 "1" | "1 0": 0.3;
12 "0" | "1 1": 0.4;
13 "1" | "1 1": 0.6)

4.3 Hidden Markov Model
A simple example where HMM can be used is in the dishonest casino problem. A dishonest

casino has two different dice, one is loaded and the other is fair. The casino can change the
die without the player knowing and the challenge is to predict when the casino has changed
the dice. Figure 4.1 shows the HMM for this problem. This model has two states (Fair, and
Loaded). When the model is in Loaded state there is a greater probability to observe the
number one than the other numbers, and when the model is in Fair state the numbers are
uniformly distributed. The file below shows an example of HMM described using ToPS:

"hmm.txt"
Dishonest Casino Problem
model_name="HiddenMarkovModel"
state_names= ("Fair", "Loaded")
observation_symbols= ("1", "2", "3", "4", "5", "6")
transition probabilities
transitions = ("Loaded" | "Fair": 0.1;

"Fair" | "Fair": 0.9;
"Fair" | "Loaded": 0.1;
"Loaded" | "Loaded": 0.9)

emission probabilities
emission_probabilities = ("1" | "Fair" : 0.166666666666;

"2" | "Fair" : 0.166666666666;
"3" | "Fair" : 0.166666666666;
"4" | "Fair" : 0.166666666666;
"5" | "Fair" : 0.166666666666;
"6" | "Fair" : 0.166666666666;
"1" | "Loaded" : 0.5;
"2" | "Loaded" : 0.1;

4.4 INHOMOGENEOUS MARKOV MODEL 9

"3" | "Loaded" : 0.1;
"4" | "Loaded" : 0.1;
"5" | "Loaded" : 0.1;
"6" | "Loaded" : 0.1)

initial_probabilities= ("Fair": 0.5; "Loaded": 0.5)

Figure 4.1: Dishonest Casino Problem

4.4 Inhomogeneous Markov Model
To create an inhomogeneous Markov model, we have to specify the conditional probabil-

ities for each position of the sequence. The file ihm.txt has an example of how we can specify
this model.

ihm.txt
model_name = "InhomogeneousMarkovChain"
p1 = ("A" | "" : 0.97;

"C" | "" : 0.01;
"G" | "" : 0.01 ;
"G" | "" : 0.01)

p2 = ("A" | "" : 0.01;
"C" | "" : 0.97;
"G" | "" : 0.01 ;
"G" | "" : 0.01)

p3 = ("A" | "" : 0.01;
"C" | "" : 0.01;
"G" | "" : 0.97 ;
"G" | "" : 0.01)

position_specific_distribution = ("p1","p2","p3")
phased =0
alphabet = ("A", "C", "G", "T")

The position_specific_distribution argument uses the parameters p1, p2, and p3 to spec-
ify respectively the distributions for the positions 1, 2, and 3 of the sequence.

10 DESCRIBING PROBABILISTIC MODELS 4.5

In this example the phased parameter, with value equals to zero, is specifying that the
model is describing fixed-length sequences. A model that represents fixed-length sequences
is useful when we want to model biological signal. Weight Array Model [ZM93] is an example
of this type of Inhomogeneous Markov Chain.

If the phased is equal to one, then the sequences are generated using periodically the
distribution p1, p2, and p3. This behaviour is useful to model coding regions of the gene.
Three-periodic Markov chain [BM93] is an example of a inhomogeneous Markov Chain with
phased equals to 1 and three position specific distributions.

4.5 Pair Hidden Markov Model
A very common problem when analyzing biological sequences is that of aligning a pair

of sequences. This task can be done through the use of decodable models, although in this
case these models must be able to handle a pair of sequences simultaneously. Here we define
this kind of model a pair hidden Markov model (PHMM). This pairHMM has a Match state
(M), two insertion states (I1, I2), two deletion state (D1, D2) an initial state (B), and a final
state (E).

ihm.txt
model_name="PairHiddenMarkovModel"
state_names = ("M", "I1", "D1", "I2", "D2", "B", "E")
observation_symbols = ("A","C","G","T")
transitions = ("M" | "B" :0.9615409374;

"I1" | "B" : 4.537999985e-07;
"D1" | "B" : 4.537999985e-07;
"I2" | "B" : 0.01922916807;
"D2" | "B" : 0.01922916807;
"I1" | "M" : 0.01075110921;
"D1" | "M" : 0.01075110921;
"I2" | "M" : 0.008213998383;
"D2" | "M" : 0.008213998383;
"M" | "M" : 0.9619031182;
"I1" | "I1" : 0.3209627509;
"D1" | "D1" : 0.3209627509;
"I2" | "I2" : 0.3297395944;
"D2" | "D2" : 0.3297395944;
"M" | "I1" : 0.6788705825;
"M" | "D1" : 0.6788705825;
"M" | "I2" : 0.670093739;
"M" | "D2" : 0.670093739;
"E" | "M" : 0.000166667;
"E" | "I1" : 0.000166667;
"E" | "D1" : 0.000166667;
"E" | "I2" : 0.000166667;
"E" | "D2" : 0.000166667;)

emission_probabilities = ("AA" | "M" : 0.1487240046;
"AT" | "M" : 0.0238473993;
"AC" | "M" : 0.0184142999;
"AG" | "M" : 0.0361397006;

4.6 PROFILE HIDDEN MARKOV MODEL 11

"TA" | "M" : 0.0238473993;
"TT" | "M" : 0.1557479948;
"TC" | "M" : 0.0389291011;
"TG" | "M" : 0.0244289003;
"CA" | "M" : 0.0184142999;
"CT" | "M" : 0.0389291011;
"CC" | "M" : 0.1583919972;
"CG" | "M" : 0.0275536999;
"GA" | "M" : 0.0361397006;
"GT" | "M" : 0.0244289003;
"GC" | "M" : 0.0275536999;
"GG" | "M" : 0.1979320049;
"A-" | "I1" : 0.2270790040;
"T-" | "I1" : 0.2464679927;
"C-" | "I1" : 0.2422080040;
"G-" | "I1" : 0.2839320004;
"-A" | "D1" : 0.2270790040;
"-T" | "D1" : 0.2464679927;
"-C" | "D1" : 0.2422080040;
"-G" | "D1" : 0.2839320004;
"A-" | "I2" : 0.2270790040;
"T-" | "I2" : 0.2464679927;
"C-" | "I2" : 0.2422080040;
"G-" | "I2" : 0.2839320004;
"-A" | "D2" : 0.2270790040;
"-T" | "D2" : 0.2464679927;
"-C" | "D2" : 0.2422080040;
"-G" | "D2" : 0.2839320004;)

number_of_emissions = ("M" : "1,1";
"I1" : "1,0";
"D1" : "0,1";
"I2" : "1,0";
"D2" : "0,1";
"B" : "0,0";
"E" : "0,0")

4.6 Profile Hidden Markov Model
Biologial sequences usually come in families and a very common problem when analyzing

this sequences is identify the relationship of an individual sequence to a sequence family.
Profile HMMs turn a multiple sequence alignment into a position-specific scoring system on
which is possible to perform a database search for more members. This kind of model is
described in the profilehmm.txt file and has five match states M0,M1,M2,M3,M4 (M0
andM4 are modeled as the begin and end states respectively), four insert states I0, I1, I2, I3
and three delete states D1, D2, D3.

12 DESCRIBING PROBABILISTIC MODELS 4.6

profilehmm.txt
model_name = "ProfileHiddenMarkovModel"
state_names = ("M0","M1","M2","M3","M4","I0","I1","I2","I3",

"D1","D2","D3")
observation_symbols = ("A","C","G","T")
transitions = ("M1" | "M0": 0.625;

"I0" | "M0": 0.125;
"D1" | "M0": 0.25;
"M2" | "M1": 0.714286;
"I1" | "M1": 0.142857;
"D2" | "M1": 0.142857;
"M3" | "M2": 0.428571;
"I2" | "M2": 0.428571;
"D3" | "M2": 0.142857;
"M4" | "M3": 0.833333;
"I3" | "M3": 0.166667;
"M4" | "M4": 1;
"M1" | "I0": 0.333333;
"I0" | "I0": 0.333333;
"D1" | "I0": 0.333333;
"M2" | "I1": 0.333333;
"I1" | "I1": 0.333333;
"D2" | "I1": 0.333333;
"M3" | "I2": 0.272727;
"I2" | "I2": 0.545455;
"D3" | "I2": 0.181818;
"M4" | "I3": 0.5;
"I3" | "I3": 0.5;
"M2" | "D1": 0.25;
"I1" | "D1": 0.25;
"D2" | "D1": 0.5;
"M3" | "D2": 0.25;
"I2" | "D2": 0.5;
"D3" | "D2": 0.25;
"M4" | "D3": 0.666667;
"I3" | "D3": 0.333333)

emission_probabilities = ("A" | "M1": 0.5;
"C" | "M1": 0.125;
"G" | "M1": 0.25;
"T" | "M1": 0.125;
"A" | "M2": 0.25;
"C" | "M2": 0.125;
"G" | "M2": 0.5;
"T" | "M2": 0.125;
"A" | "M3": 0.125;
"C" | "M3": 0.625;
"G" | "M3": 0.125;
"T" | "M3": 0.125;
"A" | "I0": 0.25;

4.7 GENERALIZED HIDDEN MARKOV MODEL 13

"C" | "I0": 0.25;
"G" | "I0": 0.25;
"T" | "I0": 0.25;
"A" | "I1": 0.25;
"C" | "I1": 0.25;
"G" | "I1": 0.25;
"T" | "I1": 0.25;
"A" | "I2": 0.5;
"C" | "I2": 0.25;
"G" | "I2": 0.166667;
"T" | "I2": 0.0833333;
"A" | "I3": 0.25;
"C" | "I3": 0.25;
"G" | "I3": 0.25;
"T" | "I3": 0.25)

initial_probabilities = ("M0": 1)

4.7 Generalized Hidden Markov Model
GHMMs are useful in Bioinformatics to represent the structure of genes. As an illustra-

tive example we will use a simplified model for a bacterial gene. In bacteria, genes are regions
of the genome with a different composition, specific start and stop signals, and noncoding
regions separating different genes. Figure 4.2 illustrates this gene model. The model has
four states: NonCoding state, representing the intergenic regions, with geometric duration
distribution (represented by a self transition in the figure); Start and Stop states , repre-
senting the signals at the boundaries of a gene, with a fixed duration distribution ; Coding,
representing the coding region of a gene, with an i.i.d. duration distribution. Box ghmm.txt
shows the description of this GHMM.

Figure 4.2: GHMM that represents protein-coding genes in bacteria.

The parameters state_names, observation_symbols, initial_probabilities, and transitions
are configured in the same way as in the case of the HMM model, described above.

We have to specify the models that the GHMM will use, either by naming a file that
contains its description or by inlining its description in the GHMM specification file. In our
example, the GHMM uses five submodels: (i) noncoding_model (a DiscreteIIDModel inlined
in the GHMM specification); (ii) coding_model (in file “coding.txt”) ; (iii) start_model (

14 DESCRIBING PROBABILISTIC MODELS 4.7

in file “start.txt”); (iv) stop_model (in file “stop.txt”); (v) coding_duration_model (in file
“coding_duration.txt”).

After specifying the models, we have to describe the configuration of each state. ToPS
assumes that the GHMM has two classes of states: (i) Fixed-length states, that emit fixed
length words, and (ii) variable-length states, that emit words with lengths given by a prob-
ability distribution. There are two types of variable-length states: states with geometric
distributed duration and states with non-geometric distributed duration. When specifying
any state, the user have to specify the observation model using the parameter observation.
States with geometric duration distribution are specified with a self transition, states with
fixed-length dueation the user should use the parameter sequence_length, and other states
should use the parameter duration.

In the file ghmm.txt, we have two fixed-length states (Start, and Stop) and two variable-
length states (NonCoding, and Coding):

• Start state, with start_model as the observation model.

• Stop state, with stop_model as the observation model.

• NonCoding state, with noncoding_model as the observation model, and durations
given by a geometric distribution in which the probability of staying in the same state
is 0.999.

• Coding state, with coding_model as the observation model, and durations given by
the coding_duration_model.

ghmm.txt
model_name = "GeneralizedHiddenMarkovModel"
state_names =

("NonCoding",
"Start",
"Coding",
"Stop")

observation_symbols =
("A", "C", "G", "T")

initial_probabilities =
("NonCoding": 1.0)

transitions =
("NonCoding" | "NonCoding": 0.999;

"Start" | "NonCoding": 0.001;
"Coding" | "Start": 1.0;

"Stop" | "Coding": 1.0;
"NonCoding" | "Stop": 1.0)

noncoding_model =
[model_name = "DiscreteIIDModel"

alphabet = ("A", "C", "G", "T")
probabilities=(0.25, 0.25, 0.25, 0.25)]

coding_model = "coding.txt"
start_model = "start.txt"
stop_model = "stop.txt"
coding_duration_model="coding_duration.txt"
NonCoding =

[observation = noncoding_model]

4.8 LANGUAGE DESCRIPTION (EBNF) 15

Start =
[observation =start_model

sequence_length = 15]
Stop =

[observation = stop_model
sequence_length = 15]

Coding =
[observation = coding_model

duration = coding_duration_model]

4.8 Language Description (EBNF)
The configuration file of ToPS contains a list of defined properties. Each property is

associated with a value that can be a string, integer, float number, a list of string, a list
of numbers, conditional probabilities, or a list of other properties. Below, we describe the
formal language description of ToPS in the Extended Backus-Naur Form (EBNF):

1 model : p r op e r t i e s
2 ;
3
4 p r op e r t i e s : property
5 | p r op e r t i e s property
6 ;
7
8 property : IDENTIFIER ’=’ va lue
9 ;

10
11 value : STRING
12 | INTEGER_NUMBER
13 | FLOAT_POINT_NUMBER
14 | l i s t
15 | probabil ity_map
16 | condit ional_probabi l i ty_map
17 | sub_model
18 | IDENTIFIER
19 ;
20
21 l i s t : ’ (’ l i s t_e l ement s ’) ’
22 ;
23
24 l i s t_e l ement s : l i s t_e l ement
25 | l i s t_e l ement s ’ , ’ l i s t_e l ement
26 ;
27
28 l i s t_e l ement : STRING
29 | INTEGER_NUMBER
30 | FLOAT_POINT_NUMBER
31 ;
32
33 probabil ity_map : ’ (’ p r o b a b i l i t i e s _ l i s t ’) ’
34 ;
35
36 p r o b a b i l i t i e s _ l i s t : p r o b a b i l i t i e s
37 | p r o b a b i l i t i e s ’ ; ’
38 ;

16 DESCRIBING PROBABILISTIC MODELS 4.8

39
40 p r o b a b i l i t i e s : p r obab i l i t y
41 | p r o b a b i l i t i e s ’ ; ’ p r obab i l i t y
42 ;
43
44 p r obab i l i t y : STRING ’ : ’ l i s t_e l ement
45 ;
46
47 condit ional_probabi l i ty_map : ’ (’ c o nd i t i o n a l_p r o b ab i l i t i e s_ l i s t ’) ’
48 ;
49
50 c o nd i t i o n a l_p r o b ab i l i t i e s_ l i s t : c o nd i t i o n a l_p r obab i l i t i e s
51 | c o nd i t i o n a l_p r obab i l i t i e s ’ ; ’
52 ;
53
54 c ond i t i o n a l_p r obab i l i t i e s : c ond i t i ona l_probab i l i t y
55 | c o nd i t i o n a l_p r obab i l i t i e s ’ ; ’

c ond i t i ona l_probab i l i t y
56 ;
57
58 cond i t i ona l_probab i l i t y : cond i t i on ’ : ’ probabil ity_number
59 ;
60
61 cond i t i on : STRING ’ | ’ STRING
62 ;
63
64 probabil ity_number : INTEGER_NUMBER
65 | FLOAT_POINT_NUMBER
66 ;
67
68 sub_model : ’ [’ p r op e r t i e s ’] ’
69 ;

And the tokens are defined by the following regular expressions:

1 IDENTIFIER : [a−zA−Z_] [a−zA−Z0−9_]∗
2 STRING : L?\" (\ \ . | [^ \ \ "]) ∗\"
3 COMMENTS : "#" [^\ r \n]∗
4 FLOAT_POINT_NUMBER : [0−9]+\.[0−9]+([Ee][+−]?[0−9]+) ?
5 INTEGER_NUMBER : [0−9]+

Chapter 5

Training Probabilistic Models

To train a probabilistic model using ToPS, you need to create a file that will contain
the parameters of the training procedure. In this file you have to specify the mandatory
parameter "training_algorithm" that indicates the algorithm to be used to estimate the
parameters of the model. Currently, the following "training_algorithm" values are available:

• ContextAlgorithm

• DiscreteIID

• WeightArrayModel

• GHMMTransition

• FixedLengthMarkovChain

• BaumWelchHMM

• MaximumLikelihoodHMM

• PHMMBaumWelch

• ProfileHMMMaxLikelihood

• ProfileHMMBaumWelch

• PhasedMarkovChain

• InterpolatedMarkovChain

• SmoothedHistogramKernelDensity

• SmoothedHistogramKernelStanke

• SmoothedHistogramKernelBurge

In this chapter we describe how the user can use each training algorithm.

17

18 TRAINING PROBABILISTIC MODELS 5.4

5.1 The train program
ToPS provides a program, called "train", that receives a file with the parameters of a

training procedure and returns the model description to the standard output. The command
line below is an example of how you can run the program.

Command line
train -c training_specification.txt > model.txt

The command line parameter of the train program is:

• -c specifies the name of the file containing the training parameters

5.2 Discrete IID Model
To train discrete i.i.d. model, you need to specify the training set and an alphabet. The

DiscreteIID algorithm estimates the probability of each symbol using maximum likelihood
method and it returns the DiscreteIIDModel specification.

trainiid.txt
training_algorithm="DiscreteIIDModel"
alphabet = ("A", "C", "G", "T")
training_set="sequence_from_discreteiid.txt"

5.3 Context Algorithm
To train variable length Markov chains, you can use the algorithm Context [Ris83, GL08].

It receives a training set, the alphabet, and the parameter cut. The cut specifies a thresh-
old for the pruning of the probabilistic suffix tree. The greater the value of the cut, the
smaller will be the tree, because more nodes will be considered indistinguishable with their
descendents. The output of this algorithm is a "VariableLengthMarkovChain" description.

bic.txt
training_algorithm = "ContextAlgorithm"
training_set = "sequences.txt"
cut = 0.1
alphabet = ("0", "1")

5.4 Fixed Length-Markov Chain
To train a fixed order Markov chain, you can use the algorithm FixedLengthMarkovChain.

It receives a training set, the alphabet, and the parameter "order". The output of this al-
gorithm is a "VariableLengthMarkovChain" specification where the contexts have length
equals to the value specified using the order parameter. The file fdd.txt is describing the
training of a Markov chain of order 1.

5.8 TRAINING THE GHMM TRANSITION PROBABILITIES 19

fdd.txt
training_algorithm = "FixedLengthMarkovChain"
training_set = "sequences.txt"
order = 1
alphabet = ("0", "1")

5.5 Training the GHMM transition probabilities
To estimate the transition probabilities of a GHMM using maximum likelihood method,

you can use the algorithm GHMMTransition. It receives a training set containing the a
set of sequences of states and an initial ghmm model. It returns a new GHMM with the
estimated transition probabilities.

train_transitions.txt
training_algorithm="GHMMTransitions"
training_set="train.txt"
ghmm_model="ghmm.txt"

5.6 Training HMM using algorithm Baum-Welch
To estimate the parameter of a HMM, given an initial HMM, you can use the algorithm

BaumWelchHMM. It receives a training set, an initial HMM model, and the maximum
number of iteration. It returns a new HiddenMarkovModel with the estimated parameters.

train.txt
training_algorithm = "BaumWelchHMM"
training_set = "trainhmm_bw.sequences"
initial_specification = "initial_hmm.txt"
maxiter=300

5.7 Interpolated Markov Chain
To train the parameters of an interpolated Markov chain [SDKW98], you can use the

InterpolatedMarkovChain training algorithm. It receiveis a training set, the order of the
Markov chain, and it will return a VariableMarkovChain specification with the estimated
parameters.

train.txt
training_algorithm="InterpolatedMarkovChain"
training_set="intergenic.fasta"
alphabet=("A", "C", "G", "T")
pseudo_counts=1
order=4

5.8 Profile HMM Maximum Likelihood
To estimate the parameters of a Profile HMM, you can use de ProfileHMMMaxLikelihood

algorithm. It receives an alignment in the fasta format file, the alphabet of the model, the

20 TRAINING PROBABILISTIC MODELS 5.11

residue fraction which is used to decide what multiple alignment columns assign as match,
insert and delete states, and the pseudocounts value. It returns a Profile HMM with the
estimated parameters.

train.txt
training_algorithm="ProfileHMMMaxLikelihood"
fasta_file="fasta_alignment.txt"
alphabet="A,C,G,T"
residue_fraction=0.7
pseudocounts=1

5.9 Profile HMM Baum-Welch
You can also use de ProfileHMMBaumWelch algorithm to estimate the parameters of a

profile. It receives an initial Profile HMM model, the training set that should be formated in
the ToPS sequence format file, the threshold, the maximum number of iterations, and the
pseudocounts value. It returns a new Profile HMM with the estimated parameters.

train.txt
training_algorithm="ProfileHMMBaumWelch"
initial_model="profile.txt"
training_set="training_sequences.txt"
threshold = 0.03
maxiter= 500
pseudocounts = 1

5.10 Weight Array Model
Weight array models [Bur97, ZM93] are inhomogeneous Markov models that represent

fixed-length sequences. It is useful to model biological signal, such as splicing sites, branch
points sites, and stop codons. To train a WAM, you can use theWeightArrayModel algorithm,
it receives a set of sequences with length specified using the length parameter. This training
algorithm returns a InhomogeneousMarkovChain description with the estimated parameters.

train.txt
training_algorithm = "WeightArrayModel"
training_set="sequences.txt"
length=3
alphabet=("0", "1")
order=1

5.11 Phased Markov Model
Phased Markov Model is an Inhomogeneous Markov Model for which the positional distri-

butions are periodically reused to generate the sequences. Three-periodic Markov Model [BM93]
is an example of this model and it is useful to represent protein-coding regions of the gene.

train.txt
training_algorithm="PhasedMarkovChain"
training_set="sequence.fasta"

5.15 SMOOTHED HISTOGRAM (BURGE) 21

alphabet=("A", "C", "G", "T")
order=4
pseudo_counts = 0
number_of_phases=3
phased = 1

5.12 Smoothed Histogram (Burge)
To create a smoothed histogram of positive integers, you can use the SmoothedHistogram-

Burge [Bur97]. It receives a training set containing a sequence of positive integers and it
returns a DiscreteIIDModel with the estimated probabilities of for each number.

train.txt
training_algorithm = "SmoothedHistogramBurge"
training_set = "lengths.txt"
C=1.0

5.13 Smoothed Histogram (Stanke)
To create a smoothed histogram of positive integers, you can use the SmoothedHistogram-

Stanke [Sta03]. It receives a training set containing a sequence of positive integers and it
returns a DiscreteIIDModel with the estimated probabilities of for each number.

train.txt
training_algorithm = "SmoothedHistogramStanke"
training_set = "lengths.txt"

5.14 Smoothe Histogram (Kernel Density Estimation)
To create a smoothed histogram of positive integers, you can use the SmoothedHis-

togramKernelDensity [She04]. It receives a training set containing a sequence of positive
integers and it returns a DiscreteIIDModel with the estimated probabilities of for each num-
ber.

train.txt
training_algorithm = "SmoothedHistogramKernelDensity"
training_set = "lengths.txt"

5.15 Similarity Based Sequence Weighting
To create a Similarity Based Sequence Weighting [SW03], you can use the SBSW training

algorithm. It receives a training set containing fixed length sequences, the alphabet, the
specification of the subsequence (offset, length, and sequence) to be skipped. This algorithm
returns a SBSW with the estimated parameters.

22 TRAINING PROBABILISTIC MODELS 5.16

train.txt
training_algorithm="SBSW"
training_set="donor.fasta"
alphabet=("A", "C", "G", "T")
skip_offset=3
skip_length=2
skip_sequence="GT"

5.16 Using model selection when training a probabilistic
model

Many models would have different dimensionality which are defined by the user during
the training procedure. Typical example includes Markov chain models in which the user
has to choose the value of the order. To help find the best set of such parameters. ToPS
contains two model selection criteria that the user can use with a training algorithm.

• Bayesian Information Criteria (BIC) [Sch78]: This criteria selects the model with the
largest value for the formula below:

log(Maximum Likelihood)− 1

2
(number of independently adjusted parameters)

× log(sample size)

• Akaike Information Criteria (AIC) [Aka74]: This criteria selects the model with the
smallest value for the formula:

(−2) log(Maximum Likelihood) + 2(number of independently adjusted parameters)

To run a model selection procedure the user have to specify four arguments:

• model_selection_criteria specifies the model selection criteria: BIC, or AIC.

• begin specifies the set of parameters to be tested and their initial values.

• end specifies the final values for the parameters specified above

• step specifies the increment on the values of each of the parameters being tested.

For example, the file bic.txt specifies that ToPS will use BIC selection criteria. The
training procedure will calculate the BIC values for the estimated VLMC for each cut in the
set {0.0, ..., 1.0}, and it will return the model with the preferred BIC value.

bic.txt
training_algorithm = "ContextAlgorithm"
training_set = "sequences.txt"
model_selection_criteria = "BIC"
begin = ("cut": 0.0)
end = ("cut": 1.0)
step = ("cut": 0.1)
alphabet = ("0", "1")

Chapter 6

Simulating Probabilistic Models

ToPS provides a program, called simulate, which samples sequences from a probabilistic
model, requires as parameters the length and the number of sequences to be generated.
For example, the command line below determines the generation of 10 sequences, each with
length 1000, using the HMM (hmm.txt), in standard output (screen). In this case, since we
are using an HMM, the output consists of pairs of sequences (the second sequence of the
pair corresponding to the hidden state labels).

Command line
simulate -m cpg_island.txt -n 10 -l 1000 -h

The command line parameters of the simulate program are:

• -m specifies the name of the file containing the model description.

• -n specifies the number of sequences that will be generated.

• -l specifies the length of each sequence.

• -h determines the generation of the symbols and the hidden state labels.
hmm.txt

model_name="HiddenMarkovModel"
state_names= ("1", "2")
observation_symbols= ("0", "1")
transition probabilities
transitions = ("1" | "1": 0.9;

"2" | "1": 0.1;
"1" | "2": 0.05;

"2"| "2": 0.95)
emission probabilities
emission_probabilities = (

"0" | "2" : 0.95;
"1" | "2" : 0.05;
"0" | "1" : 0.95;
"1" | "1" : 0.05)

initial_probabilities= ("1": 0.5; "2": 0.5)

The simulate program is not limited to the use with HMM, any probabilistic model
description works as an input.

23

24 SIMULATING PROBABILISTIC MODELS 6.0

Chapter 7

Evaluating probabilities of a sequence

ToPS provides a program, called evaluate, which calculates the probability of sequences
given a probabilistic model, requires as parameters the model description and a set of se-
quences. For example, the command line below determines the probabilities of a set of
sequences (sequences.txt) given the HMM model.

Command line
evalulate -m hmm.txt < sequences.txt

The command line parameter of the evaluate program is:

• -m specifies the name of the file containing the model description.
hmm.txt

model_name="HiddenMarkovModel"
state_names= ("1", "2")
observation_symbols= ("0", "1")
transition probabilities
transitions = ("1" | "1": 0.9;

"2" | "1": 0.1;
"1" | "2": 0.05;

"2"| "2": 0.95)
emission probabilities
emission_probabilities = (

"0" | "2" : 0.95;
"1" | "2" : 0.05;
"0" | "1" : 0.95;
"1" | "1" : 0.05)

initial_probabilities= ("1": 0.5; "2": 0.5)

The evaluate program is not limited to the use with HMM, any probabilistic model
description works as an input.

25

26 EVALUATING PROBABILITIES OF A SEQUENCE 7.0

Chapter 8

Other Applications

Here we describe other functionalities of ToPS.

8.1 Aligning Using Pair HMM

8.2 Bayesing Classifier
When we have a set of pre-defined sequence families each specified by a different prob-

abilistic model, we can use a Bayesian classifier to decide to which family a given sequence
belongs. For each sequence, the Bayesian classifier selects the family that corresponds to
the model with the highest posterior probability. In ToPS, the program bayes_classifier im-
plements the Bayesian classifier. Based on a configuration file containing a list of specified
probabilistic models and the a priori probabilities, this program reads sequences from the
standard input and returns, for each sequence, the posterior probabilities of each model. In
box bayes_classifier.txt, we show an example of such a configuration file. Using our CpG
island example we can model it with two Markov chains [DEKM98], one to characterize
CpG islands and another to characterize general genomic sequences. Then we can build a
Bayesian classifier using the two models, and apply this classifier to candidate sequences.
We will need then first to describe two Markov models, train each one, and with the trained
files, build a classifier:

bayes_classifier.txt
classes =
("CPG": "cpg_island_markov_chain.txt";

"NONCPG": "uniform_markov_chain.txt")
model_probabilities =
("CPG": 0.5;

"NONCPG": 0.5)

The program reads from standard input and prints to standard output, so a sample
would be:

Command line
bayes_classifier -c bayes_classifier.txt \
< sequences.in

27

28 OTHER APPLICATIONS 8.4

sequence name logP (S|CPG) P (CPG|S) logP (S|NONCPG) P (NONCPG|S) classification
seq1 -141.029 0.0831703 -138.629 0.916827 NONCPG
seq2 -132.381 0.9981 -138.629 0.00192936 CPG

Table 8.1: An example of bayesian_classifier’s output.

The program output is a table in CSV (comma separated values) format, which is com-
patible with most spreadsheet programs. The rows are showing, from left to right the name
of each sequence, the log-likelihood of the sequence given each model, the a posteriori prob-
abilities of each model, and the predicted classification of the sequence. An example of result
produced by the command above is at Table 8.1.

8.3 Sliding Window

8.4 Viterbi Decoding and Posterior Decoding
With probabilistic models for which the states do not correspond to individual symbols,

decoding is an essential part of the recognition problem. In ToPS, decoding uses the Viterbi
algorithm [Rab89], implemented by the program viterbi_decoding. In this case, the input
model is an HMM or a GHMM. With the command line below, the program viterbi_decoding
reads the file in.txt and, using the model specified in the file cpg_island generates the
sequence of states visited in the most probable path of the model for each sequence. The
result is presented in standard output.

Command line
viterbi_decoding -m cpg_island.txt < in.txt

The command line parameter for the viterbi_decoding program is:

• -m specifies the file containing the model.

ToPS also implements the posterior decoding algorithm that provides the more probable
state for each position of the sequence.

Command line
posterior_decoding -m cpg_island.txt < in.txt

The command line parameter for the posterior_decoding program is:

• -m specifies the file containing the model.

Chapter 9

Design and Implementation

The object-oriented architecture of ToPS was essential for the seamless integration of
the models in a single system that included facilities for training, simulating, decoding,
integration in GHMMs and construction of Bayesian classifiers.

ToPS’s architecture includes three main class hierarchies: ProbabilisticModel, to represent
model implementations; ProbabilisticModelCreator, to specify the on-the fly creation of mod-
els based on configuration files; and ProbabilisticModelParameterValue, to enable the parsing
of the configuration files. These three hierarchies are used by a set of 13 application programs
that implement the framework’s user functionalities (align, bayes_classifier, choose_path,
evaluate, kullback_positional, mea _decoding, posterior_decoding, posterior_probabilities,
pred_align, simulate, simulate_alignment, train, viterbi_decoding) .

9.1 ProbabilisticModel hierarchy
In ToPS every model is implemented as part of ProbabilisticModel hierarchy, shown

in Figure 9.1. At the root of the hierarchy we have the abstract class ProbabilisticModel,
with methods that characterize any generative model. In particular, ProbabilisticModel has
two important abstract methods: evaluate, and choose. The evaluate method, in subclasses,
should calculate the probability of a sequence given the model and the choose method should
sample a new sequence given the model. This class is used by other parts of the system to
ensure that new probabilistic models are included seamlessly in the framework and benefit
from all current functionality.

Figure 9.1: Class diagram representing the ProbabilisticModel hierarchy.

29

30 DESIGN AND IMPLEMENTATION 9.1

At the second level of the hierarchy, there are three other abstract classes that imple-
ment both the choose method, and the evaluate method: FactorableModel, Inhomogeneous-
FactorableModel, and DecodableModel.

The last level of the hierarchy contains the implementation of the models currently avail-
able in ToPS in the form of concrete classes: DiscreteIIDModel, VariableLengthMarkovChain,
InhomogeneousMarkovChain,HiddenMarkovModel, PairHiddenMarkovModel andGeneralizedHidden-
MarkovModel. In particular, GeneralizedHiddenMarkovModel uses the Composite pattern
[GHJV94], which guarantees that any new probabilistic model incorporated into the hi-
erarchy can be used as a submodel of GHMMs. The implementation of new models will
involve extending this hierarchy, and implementing the abstract methods. Using this hier-
archy guarantees that new models will work smoothly with the other components of the
framework.

In the next sections we will describe each of the main remaining classes of the hierarchy.

9.1.1 FactorableModel

In FactorableModel, the evaluate method calculates the following formula:

Prob(S|FactorableModel) =
L∏
i=1

f(S, i)

In which f is a function of a sequence S and a position i of that sequence. The choose
method will generate a new sequence by sampling each symbol using the distribution given
by the function f .

FactorableModel also includes two abstract methods: choosePosition and evaluatePosi-
tion. The choosePosition receives a sequence and a position i and samples a new symbol for
the position i of the sequence using the function f . The evaluatePosition receives a sequence
and a position i and it returns the probability of the symbol at position i of the sequence
using the function f . Examples of “factorable models” are:

• VariableLengthMarkovChain, which can capture variable-length dependencies. The
function f in this case is equal to:

fV LMC(s, i) = p(si|si−1 · · · si−l)

Where p(si|si−1 · · · si−l) is the probability of the symbol si given the past sequence,
and l = l(si−1, · · · , s1) is itself a function for the past.

• DiscreteIIDModel, which is equivalent to order zero Markov chains, where l = 0. The
function f for this model is:

fDiscreteIID(s, i) = p(si)

Where 0 ≤ p(σ) ≤ 1 is the probability of the letter σ ∈ Σ.

Although DiscreteIIDModel is equivalent to the zero order Markov chain, we have chosen
to independently implement it, because it provides more efficient algorithms for sampling
symbols when l = 0. We have also implemented training procedure that generates other
types of Markov models:

9.1 PROBABILISTICMODEL HIERARCHY 31

• Fixed Length Markov Chains of order k can be implemented as a VariableLength-
MarkovChain where l = k for all the past sequences.

• Interpolated Markov Model of order k is a Fixed Length Markov Models of order k, in
which the probability of observing si for context patterns si−k · · · si−1 was estimated
by interpolating the estimates of smaller context patterns si−j−k · · · si−1 (0 ≤ j ≤
k + 1) [SDKW98].

9.1.2 InhomogeneousFactorableModel

This abstract class represents models that are time-inhomogeneous, and factorable. In
this class the evaluate method calculates the following formula:

Prob(S|InhomogeneousFactorableModel) =
L∏
i=1

gt(S, i) (9.1)

where g is a function of the sequence S, a position i ∈ {1, · · · , L}, and a time t ∈
{0, · · · ,M − 1} (M − 1 is the maximum value of t). The choose method will sample a new
sequence by sampling each symbol for a specific time using the distribution given by the
function g. Times can be used, for example, to determine different distributions for each
codon position in a DNA sequence.

ToPS currently implement only one subclass of the InhomogeneousFactorableModel, In-
homogeneousMarkovChain for which the g function is:

gt(s, i) = pt(si|si−1 · · · si−l)

here pt(si|si−1 · · · si−l) is the probability of the symbol si for the time t and given the
past sequence. The time t = t(i) is itself a function for the position, t(i) = (i− 1) mod M ,
and order l = l(si−1 · · · s1) is itself a function for the past.

Inhomogeneous Markov chains are widely used in Bioinformatics, of which the most
notable examples are:

• Weight Matrix Model [Sta84], which is an InhomogeneouMarkovChain of order
zero, l = 0 for all the past sequences.

• Weight Array Model [ZM93], which is an InhomogeneousMarkovChain with order
greater than zero, l = k for all the past sequences, k is a constant greater than zero.

• Three-periodic Markov Chain [BM93], which is an InhomogeneousMarkovChain
with M equals to three and isPhased is true.

ToPS provides specific training algorithms to create any of these models as an Inhomo-
geneousMarkovChain.

9.1.3 DecodableModel

This abstract class represents models that are used to decode sequences. Hidden Markov
Model and Generalized Hidden Markov Model are examples of decodable models. There are
three important algorithm for these models:

• forward algorithm, that calculates the probability αk(i) of observing the sequence
s1 · · · si and ending in state k at position i.

32 DESIGN AND IMPLEMENTATION

• backward algorithm, that calculates the probability βk(i) of observing the sequence
si+1 · · · sL given the state k at position i.

• viterbi algorithm, that calculates the probability γk(i) of the most probable path
ending in state k with observation s1 · · · si.

In this class, the methods forward, backward, viterbi, chooseObservation, chooseState, and
chooseFirstState are abstract methods.

The evaluate method is implemented by using the result of the forward algorithm, re-
turning the value:

Prob(S|DecodableModel) =
∑
k

αk(L)f(k) (9.2)

where f(k) is the probability of terminating in state k.
ToPS implements two DecodableModels : Hidden Markov Model and Generalized Hidden

Markov Model.

9.2 ProbabilisticModelCreator and ProbabilisticModel-
ParameterValue hierarchies

The ProbabilisticModelCreator abstracts the process of instantiating members of Prob-
abilisticModel hierarchy from configuration files, implementing the Factory Method design
pattern [GHJV94]. Training algorithms are concrete classes of this hierarchy. The Proba-
bilisticModelParameterValue was designed to facilitate the parsing of configuration files and
allow them to be close to the mathematical notation of the models. This hierarchy includes
8 concrete classes that can be examined in the system’s webpage.

Additionally, ToPS uses two classes Symbol, and Alphabet that enable the use of any
arbitrary discrete input values by the models. Therefore the user can design system that can
use as input, nucleotides, aminoacids, codon names, etc.

Bibliography

[Aka74] H Akaike. A new look at the statistical model identification. IEEE transactions
on automatic control, AC-19:716–723, Dec 1974.

[BM93] M. Borodovsky e J. McIninch. Genmark: Parallel gene recognition for both DNA
strands. Computer Chem, 17:123—133, 1993.

[Bur97] C. Burge. Identification of genes in human genomic DNA. Tese de Doutorado,
Stanford University, 1997.

[DEKM98] R. Durbin, S. R. Eddy, A. Krogh e G. Mitchison. Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press,
1998.

[GHJV94] E. Gamma, R. Helm, R. Johnson e J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[GL08] Antonio Galves e Eva Löcherbach. Stochastic chains with memory of variable
length. arXiv, math.PR, Apr 2008. 17 pages.

[Gué03] Y. Guédon. Estimating hidden semi-Markov chains from discrete sequences.
Journal of Computational and Graphical Statistics, 12(3):604–??, Setembro
2003.

[KD06] A. Klapuri e M. Davy. Signal processing methods for music transcription.
Springer-Verlag New York Inc, 2006.

[KHRE96] D. Kulp., D. Haussler., M. G. Reese. e F. H. Eeckman. A generalized hidden
Markov model for the recognition of human genes in DNA. Proc Int Conf Intell
Syst Mol Biol, 4:134–142, 1996.

[MS99] C.D. Manning e H. Schütze. Foundations of statistical natural language process-
ing. MIT Press, 1999.

[Rab89] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recoginition. Em Proccedings of the IEEE, volume 77, páginas 257–286,
February 1989.

[Ris83] J. Rissanen. A universal data compression system. Information Theory, IEEE
Transactions on, 29(5):656–664, 1983.

[Sch78] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464, Mar 1978.

[SDKW98] S. Salzberg, A. L. Delcher, S. Kasif e O. White. Microbial gene identification
using Interpolated Markov Models. Nucleic Acids Research, 26:544–548, 1998.

33

34 BIBLIOGRAPHY

[She04] S.J. Sheather. Density estimation. Statistical Science, 19(4):588–597, 2004.

[Sta84] R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic
Acids Res, 12:505–519, 1984.

[Sta03] M. Stanke. Gene prediction with a hidden Markov model. Tese de Doutorado,
Universität Göttingen, 2003.

[SW03] M. Stanke e S. Waack. Gene prediction with a hidden Markov model and a new
intron submodel. Bioinformatics, 19 Suppl 2:II215–II225, Oct 2003.

[ZM93] M. Q. Zhang e T. G. Marr. A weight array method for splicing signal analysis.
Computer Applied in Bioscience, 9:499—509, 1993.

	Introduction
	Supported Features

	Build and Installation
	Requirements
	Building from Source

	Sequence Formats
	FASTA format
	ToPS sequence format

	Describing Probabilistic Models
	Independent Identically Distributed Model
	Variable Length Markov Chain
	Hidden Markov Model
	Inhomogeneous Markov Model
	Pair Hidden Markov Model
	Profile Hidden Markov Model
	Generalized Hidden Markov Model
	Language Description (EBNF)

	Training Probabilistic Models
	The train program
	Discrete IID Model
	Context Algorithm
	Fixed Length-Markov Chain
	Training the GHMM transition probabilities
	Training HMM using algorithm Baum-Welch
	Interpolated Markov Chain
	Profile HMM Maximum Likelihood
	Profile HMM Baum-Welch
	Weight Array Model
	Phased Markov Model
	Smoothed Histogram (Burge)
	Smoothed Histogram (Stanke)
	Smoothe Histogram (Kernel Density Estimation)
	Similarity Based Sequence Weighting
	Using model selection when training a probabilistic model

	Simulating Probabilistic Models
	Evaluating probabilities of a sequence
	Other Applications
	Aligning Using Pair HMM
	Bayesing Classifier
	Sliding Window
	Viterbi Decoding and Posterior Decoding

	Design and Implementation
	ProbabilisticModel hierarchy
	FactorableModel
	InhomogeneousFactorableModel
	DecodableModel

	ProbabilisticModelCreator and ProbabilisticModelParameterValue hierarchies

	Bibliography

