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1 Outline

Regarding the statistical model presented in the main paper, the present document provides additional
details on model validation, inference summaries, and prediction results. We employed a variety of
computer experiments for related purposes: (1) to test that our code was calculating what we intented
it to calculate, (2) to assess goodness-of-fit of the proposed model, (3) to check the robustness of
conclusions to various model assumptions, and (4) to obtain and evaluate model-based predictions,
including an application to HIV RNAi. This supplement also contains details of the model fit to the
influenza data.

2 Diagnostics

2.1 Consistency checks

The code base was relatively complex and required substantial testing. Among the basic checks was
a useful consistency check. In parametric models, the MLE is known to be consistent. Hence, if
we simulated sufficiently many draws from the 81-cell multinomial (i.e., sufficiently many genes), the
computed MLE would need to be close to the generating parameter vector. In one test, we increased
the genome size from 22000 to 10% or 107, generated the 81-pattern counts from various parameter
settings, and ran the optimization code to estimate the underlying parameters. Parameters values
were accurately recovered. Occasionally, nlminb would get stuck in local modes and multiple restarts
we required from independent random initial values. (See the nlogpost4 function of the metaflu R
package cited at the end of this supplement.)

2.2 Predictive checks

Model development was characterized by a series of tests of the model’s ability to recapitulate features
in the data, as well as to represent presumed structures in RNAi data. (i.e. we did not start with
a model as complex as the one finally presented here!) We employed forward simulation to generate
synthetic multi-study data: i.e., we repeatedly simulated latent involvement indicators, accessibility
indicators, and off-target counts, followed by detection and confirmation indicators, after fixing the
system-level parameters at certain values. based on various predictive checks. Table S2 shows observed
counts compared to estimates from 1000 multi-study simulations at the fitted parameter values. Dis-
crepancies in the generally good fit are attributable to Monte Carlo error and also the approximation
error originating in our treatment of the confirmation-screen data. Figure S3 is a marginal histogram,
from this same simulation, showing the number of confirmed genes from across the multiple studies (we
observed 614 and the fitted predictive distribution covers this value well.) Figure S2 reveals another
characteristic of the observed data that is well approximated by the fitted model; namely, the overall
numbers of detected and confirmed genes per study. These three basic checks indicate a good model
fit for the statistics considered. We note that a version of the model which did not allow parameter
heterogeneity among studies showed lack of fit in the detection/confirmation plot.



2.3 Leave-one-study-out diagnostics

As further validation of our model-based approach, we checked how well it estimated parameters
when data from three studies were used to fit the model. This cross-validation exercise provides some
assessment of the stability of inference. With four studies there are four leave-one-out cases; for each
we developed inference computations for model fitting. Some care was required to reduce from the
table of 81 (3%) four-study patterns to tables of 27 (33) three-study detection/confirmation patterns.

Following the posterior prediction strategy described below (Section 4), we simulated counts of
how many novel genes would be confirmed by a fourth study given data from three studies, and we
compared these predictions to available data (Table S3). In all four cases, the count predicted from
tri-study training data matched well to the observed test data that had been left out.

Parameter estimates from the four leave-one-out cases are shown in Table S4. Reflecting inferential
stability, these estimates are very similar to results based on all four studies. Sizes of detection and
confirmation patterns influence the results. For example, A549DFE has the most overlap with other
studies in confirmed genes, when it is excluded, the estimated 6 value is most affected.

2.4 Robustness checks

In developing model-based inference for factors affecting multi-study RNAi data, we had formulated
a range of models prior to the final model presented in the main paper. We settled on the final model
because it exhibited a goodness of fit, it made plausible predictions, and it captured what we could
formulate about the key systematic sources of variation. Earlier models (not shown) failed on one or
more of these criteria. We report here one additional test of the final model assumptions.

Our main computations treated the number T of influenza-involved off-targets of each first-round
siRNA pool as Poisson distributed (with mean of K6v to account for the pool size, the involvement
rate, and the overall rate of off targeting). A first-principles argument supports this assumption, and
experience suggests that the impact of violations in this assumption on other inferences is probably
minimal. However, the limited data on off-target rates suggests variation in 7, that is more extensive
than the Poisson (Kulkarni, et al. 2006). To check the robustness of our Poisson-based approach,
we investigated replacing the Poisson distribution with the Negative Binomial distribution to allow
potential overdispersion. Specifically, for a Gamma distributed random variable C, with both shape
and rate parameters equal to £ (and thus mean 1), we considered:

T,|[C =¢] ~ Poisson(K6vc),

which implies

T, ~ Negative Binomial </{, Kffj—/ﬁ)
and parameterized so the mean continues to be Kf0v. Small k > 0 corresponds to substantial overdis-
persion, while K — oo recapitulates the Poisson model. Complexity of the multi-study pattern
probabilities put a full analysis of the Negative Binomial model beyond our reach, though we were
able to obtain pattern probabilities in several boundary cases. As the siRNA pool size K gets large,
off-target counts Tj ; from different studies become independent, and thus data from the separate
studies become conditionally independent given the involvement indicators. In this limiting case,

40v7s )

T, s ~ Negative Binomial </@', m

and the simplifications arising from independent studies enabled us to compute all pattern probabil-
ities for likelihood analysis. In this independent-study case, we recomputed the maximum likelihood



parameter values over a grid of k values in (0,1000). We found very little dependendence of estimates
on the value of k. To link back to the actual case (among-study dependence, and small K'), we retained
the Poisson model but varied K over the range (4,1000). Again we saw very little dependence of the
MLESs on the value of K. This lack of sensitivity to K and x may be due to the data favoring very
small mean off-target rate v; with small v, the likelihood surface is relatively flat over the domains of
K and k.

As a further investigation of the off-target rate, we considered a range of values v (on a grid) and
at each one profiled the remaining parameters by maximum (profile) likelihood. Results shown in the
main text show that increasing v does not explain the data well (decreasing likelihood fit), and further
that a reason for this is the constrained model’s inability to explain the relatively high confirmation
rate. Figure S9 presents another view of this lack-of-fit, in the spirit of the goodness-of-fit plot in
Figure S2.

3 Inference summaries

Working on the log scale for v and the logit scale for all probabilities, the optimization code was
initiated at the zero vector to compute maximum likelihood estimates (MLEs). Numerical experiments
showed insensitivity to a range of starting configurations.

For the MCMC computation, the local sampler was initiated at the MLE parameter vector,
run for length 250000 scans, and subsampled every 100 scans for final output. Acceptance rates of
parameters was between 29% and 70%. Trace plots (Figure S4) and autocorrelation plots (Figure S5)
indicated good mixing properties within the dominant posterior mode.. The total number of involved
genes is a parameter whose distribution is induced by the distribution of other parameters; its posterior
was calculated after MCMC (Figure S8).

To assure that posterior summaries were not sensitive to starting position of the Markov chain, we
investigated sample behavior from random initial conditions, and noted that local could be drawn
into and trapped within a degenerate posterior mode near the boundary of the parameter space where
0, o, and all 55 were near unity. We thus applied a modifed sampler, called global, which incorprated
an independence-sampler move type, and we filtered the output to retain parameters only if 0, «,
and all s were less than 80% (Supplementary Text S1). Repeated runs of global from random
initial conditions (uniform on all rate parameters, standard exponential on v) demonstrates posterior
convergence, insensitivity to initial condition, and equivalence with the output of local run from the
MLE (Figure S6).

4 Predicting outcomes in future siRINA studies

The model-based approach provides a mechanism for predicting outcomes of further siRNA studies.
We pursued posterior predictive simulation in which parameter draws from the MCMC output were
used to seed forward simulation of further siRNA studies (we mixed over the four posteriors for study-
specific error rates to incorporate parameter settings for these hypothetical future studies.) Specifically,
for each of 2000 posterior draws, we simulated a future trajectory of up to 50 future studies. Each
trajectory represented a state of nature, and so corresponded to a single draw of involvement indicators
{I,} and off-target numbers {7, }. Along each trajectory, we sampled accessibilities and study-specific
off-target numbers T}, ; at each step, and we generated detections and confirmations. We kept track
of how many novel genes were confirmed along the way. A subtlety of the computation was making it
posterior predictive. There were up to 81 different kinds of trajectories, depending on the four-study
data on a given gene from the existing data; and each kind corresponded to different involvement and
off-target inferences.



5 Application to HIV studies

As a further validation exercise we checked how the model-based approach worked on an independent
collection of three RNAi experiments from the study of HIV (Brass et al. 2008; Zhou et al. 2008;
Konig et al. 2008). These studies used similar two-stage designs and experimental procedures to the
four influenza studies, and so we organized the mult-HIV-study data into a table holding patterns of
detection/confirmation across the three studies and we fit the proposed model to these data.

Because only one of the three HIV studies reported data on both primary and secondary screens,
we did not have access to all 32 = 27 counts, and were forced to use a reduced set of 12 pattern
counts (see Table S5). Recall that in original patterns, digits 0, 1,2 refer to respectively detection
and confirmation status {Dgs = Cys = 0},{Dys = 1,Cys = 0},{Dys = Cys = 1}. For instance,
that a gene has pattern 201 means that it is detected and confirmed by study 1, not detected nor
confirmed by study 2, and detected but not confirmed by study 3. Suppose we only have detection
and confirmation data from study 3 in HIV meta analysis, then we are able to identify detection and
confirmation status 0, 1, or 2 for only study 3. For the other 2 studies, we are only able to identity
if the status is 2 or not, but not able to differentiate 0 from 1. Therefore, what have previously been
patterns 201 and 211 need to be collapsed into one single pattern which is collapsed pattern 9 in
Table S5. Because of the limited available pattern information, we used a common false negative error
B instead of 4 study specific ones for a better model fit.

Estimated parameters, number of involved genes, error rates and their 95% credible intervals are
summarized in Table S6. We use acronyms to refer to the 3 studies (SCI: Brass et al. 2008; CHM:
Zhou et al. 2008; CEL: Konig et al. 2008). Error rates are calculated based on accessibility rate
estimated for CHM study.
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Tables and Figures: Supplementary Text S2

Table S2. Observed and fitted multi-study influenza counts.

Table S3. Cross validation, predictions for left-out studies.

Table S4. Cross validation, estimated parameters.

Table S5. HIV data, pattern structure.

Table S6. HIV data, estimated parameters.

Figure S2. Goodness-of-fit predictions for detection/confirmation counts.
Figure S3. Predicted number of genes detected in four studies.

Figure S4. MCMC trace plots, local sampler.

Figure S5. Autocorrelation plots for MCMC output, local sampler.

Figure S6. Convergence of MCMC from random starts (global sampler) compared to results
from local sampler started at MLE.

Figure S7. Estimated probabilities, 81-cell table.
Figure S8. Posterior distribution of number of influenza involved genes.

Figure S9. Lack of fit when off-target rate constrained to be large.



Table S2: Comparison between the observed 81-pattern counts, their estimated values from the fitted
model and the empirical estimates from 1000 simulations. Code: 0-not detected or confirmed; 1-
detected not confirmed; 2-detected and confirmed.

Observation Model Fit Simulation
DL-1 U208 A549DE A549US Pattern Mean Std
0 0 0 0 0 21016 20999.02 20799.02 34.35
0 0 0 1 1 71 75.8 98.84 9.87
0 0 0 2 2 179 180.96 165.38 12.27
0 0 1 0 10 106 109.12 185.22 13.8
0 0 1 1 11 0 0.61 2.66 1.63
0 0 1 2 12 6 4.06 10.62 3.2
0 0 2 0 20 126 138.24 130.39 11.51
0 0 2 1 21 2 0.86 2.44 1.6
0 0 2 2 22 18 12.16 11.77 3.53
0 1 0 0 100 113 104.34 168.22 13.07
0 1 0 1 101 0 0.56 2.32 1.53
0 1 0 2 102 1 3.71 9.4 3.13
0 1 1 0 110 0 1.24 7.29 2.78
0 1 1 1 111 0 0.01 0.13 0.36
0 1 1 2 112 0 0.08 0.62 0.78
0 1 2 0 120 2 2.83 7.37 2.68
0 1 2 1 121 0 0.02 0.13 0.36
0 1 2 2 122 0 0.25 0.67 0.82
0 2 0 0 200 111 105.26 99.19 9.88
0 2 0 1 201 1 0.65 1.96 1.39
0 2 0 2 202 3 9.26 8.93 3.03
0 2 1 0 210 2 2.36 6.41 2.56
0 2 1 1 211 0 0.02 0.1 0.32
0 2 1 2 212 0 0.21 0.6 0.8
0 2 2 0 220 3 7.09 6.91 2.5
0 2 2 1 221 0 0.04 0.13 0.36
0 2 2 2 222 3 0.63 0.62 0.84
1 0 0 0 1000 80 74.85 96.79 10.16
1 0 0 1 1001 0 0.37 0.98 1.01
1 0 0 2 1002 2 1.15 2.97 1.68
1 0 1 0 1010 0 0.58 2.47 1.61
1 0 1 1 1011 0 0.01 0.04 0.2
1 0 1 2 1012 0 0.03 0.18 0.44
1 0 2 0 1020 1 0.88 2.42 1.59
1 0 2 1 1021 0 0.01 0.04 0.2
1 0 2 2 1022 0 0.08 0.21 0.47
1 1 0 0 1100 0 0.54 2.15 1.49
1 1 0 1 1101 0 0 0.04 0.18
1 1 0 2 1102 0 0.02 0.17 0.44
1 1 1 0 1110 0 0.01 0.12 0.33
1 1 1 1 1111 0 0 0 0.04
1 1 1 2 1112 0 0 0.01 0.1
1 1 2 0 1120 0 0.02 0.14 0.36
1 1 2 1 1121 0 0 0.01 0.09
1 1 2 2 1122 0 0 0.01 0.11
1 2 0 0 1200 0 0.67 1.83 1.34
1 2 0 1 1201 0 0 0.04 0.18
1 2 0 2 1202 0 0.06 0.17 0.42
1 2 1 0 1210 0 0.02 0.1 0.32
1 2 1 1 1211 0 0 0.01 0.08
1 2 1 2 1212 0 0 0.01 0.09
1 2 2 0 1220 0 0.04 0.12 0.35
1 2 2 1 1221 0 0 0 0.07
1 2 2 2 1222 0 0 0.01 0.09
2 0 0 0 2000 127 126.22 116 10.51
2 0 0 1 2001 1 0.79 2.1 1.45
2 0 0 2 2002 2 11.09 10.34 3.16
2 0 1 0 2010 4 2.83 7.45 2.69
2 0 1 1 2011 0 0.02 0.13 0.37
2 0 1 2 2012 0 0.25 0.64 0.79
2 0 2 0 2020 6 8.49 8.12 2.88
2 0 2 1 2021 0 0.05 0.14 0.37
2 0 2 2 2022 3 0.75 0.72 0.83
2 1 0 0 2100 4 2.59 6.66 2.57
2 1 0 1 2101 0 0.02 0.12 0.35
2 1 0 2 2102 0 0.23 0.55 0.73
2 1 1 0 2110 0 0.06 0.42 0.64
2 1 1 1 2111 0 0 0.01 0.08
2 1 1 2 2112 0 0.01 0.03 0.17
2 1 2 0 2120 1 0.17 0.46 0.69
2 1 2 1 2121 0 0 0.01 0.08
2 1 2 2 2122 0 0.02 0.04 0.2
2 2 0 0 2200 2 6.46 6.16 2.56
2 2 0 1 2201 0 0.04 0.12 0.34
2 2 0 2 2202 0 0.57 0.56 0.75
2 2 1 0 2210 0 0.14 0.34 0.56
2 2 1 1 2211 0 0 0.01 0.09
2 2 1 2 2212 1 0.01 0.04 0.19
2 2 2 0 2220 2 0.44 0.43 0.67
2 2 2 1 2221 0 0 0.01 0.08
2 2 2 2 2222 1 0.04 0.05 0.22




Table S3: Predicted number of extra genes confirmed by a

three studies.

4th

Leave Out | Predicted Additional | 95% Prediction Interval | Observed Additional
DL-1 139 (56, 253) 136
U208 143 (67, 253) 114
A549DE 156 (57, 330) 131
A549U8S 131 (55, 240) 188

Table S4: Estimated parameters by four ways of leaving out one study.

study based on modeling the other

Leave out 0 o w I5} 1% Q
DL-1 U20S A549DE A549US DL-1 U20S A549DE A549US
DL-1 0.106 - 0.367  0.350 0.111 | 0.896 - 0.118  0.144 0.112 | 0.010 | 0.003
U208 | 0.102 | 0.190 - 0.368 0.127 | 0.885 | 0.096 - 0.159 0.120 | 0.010 | 0.003
A549DE | 0.192 | 0.203 0.422 - 0.129 | 0.892 | 0.054 0.079 - 0.066 | 0.013 | 0.003
A549US | 0.115 | 0.121 0.380  0.337 - 0.890 | 0.075 0.113  0.129 - 0.013 | 0.003

Table S5: HIV analysis: relation between collapsed patterns and original patterns.
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Table S6: Estimated parameters, number of involved genes and error rates and their 95% credible
intervals in HIV studies.

Parameter Point Estimate 95% C.I.

0 0.285 (0.209, 0.390)
& 0.002 (0.000, 0.003)
B8 0.078 (0.009, 0.154)
4 :8CI 0.051 (0.036, 0.070)
4:CEL 0.055 (0.038, 0.074)
4:CHM 0.043 (0.030, 0.058)
w 0.833 (0.651, 0.990)
1% 0.017 (0.000, 0.061)
Number of Involved Genes | Point Estimate 95% C.I

N 6277 (4591, 8620)
Error Rate of CHM Study | Point Estimate 95% C.I.
FDR 0.008 ( 0.000, 0.032)
FNDR 0.278 (0.201, 0.384 )
TP 0.037 ( 0.026, 0.051 )
TN 1.000 ( 1.000, 1.000 )
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Figure S2: Observed numbers of detections/confirmations over four studies (black dots) compared to
simulated values (colored symbols) from fitted model.



Distribution on predicted number of confirmed genes by 4 similar studies
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Figure S3: Goodness-of-fit simulations. Histogram of number of genes confirmed jointly by all 4 studies
from 1000 simulations based on the fitted model.
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Figure S5: Autocorrelation plots of MCMC output, local sampler.
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Figure S6: MCMC convergence of global sampler from four random starts (red) and the local sampler
started from the MLE (green). All chains were run for 10° scans and subsampled every 10% scans.
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Figure S7: Data and estimated frequencies, 81 cell table. Except for the null cell (genes never detected
by any study), shown are data (top panel), model fits (2nd panel), and the fit decomposed into involved
and non-involved genes.
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Posterior Distribution on Number of Involved Genes (N)
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Figure S8: Posterior distribution of number N of involved genes
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Figure S9: Lack-of-fit consequence of raising off-target rate v. In profile computations, we fixed
v at a moderately large value, and estimated other parameters by maximum likelihood. Shown is a
scatterplot revealing the constrained model’s inability to explain the high confirmation rate. (Compare
to Figure S2.)
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