
1 

 

Song, Ng, Tompa, Lee & Chan PLoS Comput Biol Polycation-π interactions in IDPs 

Text S1  

 

Supporting Information 

 
for PLoS Comput Biol article  

 
Polycation-π interactions are a driving force for molecular recognition 

by an intrinsically disordered oncoprotein family 

 
Jianhui Song, 1† Sheung Chun Ng, 2† Peter Tompa, 3,4  Kevin A. W. Lee, 2* and Hue Sun Chan1* 

 
1Departments of Biochemistry, Molecular Genetics, and Physics, University of Toronto, Toronto, Ontario 

M5S 1A8 Canada; 2Division of Life Science, Hong Kong University of Science and Technology, Clear 

Water Bay, Hong Kong S.A.R., China; 3VIB Department of Structural Biology, Vrije Universiteit Brussel, 

Building E, 1050 Brussels, Belgium; and 4Institute of Enzymology, Hungarian Academy of Sciences,  

H-1113 Budapest, Hungary. 

 
* To whom correspondence may be addressed.  

Email: bokaw@ust.hk or chan@arrhenius.med.toronto.edu 
† These authors contributed equally to this work. 

 

(Higher-resolution versions of the supporting figures and tables on pages 10-19 of this document are also provided 

 separately as individual files)  

 

Experimental and Computational Details and Rationale 

 
Experimental details 

 
General aspects of the methodology have been 

described previously [1,2]. Details that are spe-

cific to the present study are as follows. 

 

Plasmids. For the EAD variants that were de-

rived from the mammalian expression vector 

pSliencer 4.1-CMV neo (Applied Biosystems), 

pCMVvec contains unique HindIII and BglII 

sites between the CMV promoter and coding  

sequence of the ATF1 region present in the 

EWS/ATF1 oncoprotein except that the ATF1 

bZIP domain is replaced with the zta bZIP do-

main as previously descibed [3]. For construc-

tion of EAD mutants, HindIII/BglII ended syn-

thetic DNA fragments were obtained by com-

mercial gene synthesis (TOP Gene Technologies, 

Montreal, QC, Canada) and directly inserted into 

pCMVvec digested with HindIII/BglII. All pro-

teins also contained the KT3 monoclonal epitope 

PPPEPET [4] at the C-terminus adjacent to the 

zta bZIP domain. 

 

Proteins.  The complete amino acid sequences 

of all EAD mutants are shown in Fig. S1. 10Yn 

protein contains an EAD peptide identical to 

EAD N-terminal residues 1-66 except that the 

position of four of the ten Ys present is ex-

changed with nearby residues to give approxi-

mately even spacing of Y residues (Fig. 1 in the 

main text and Fig. S1A). For  9Yn-4Yn the cor-

responding number of Y residues in 10Y are 

substituted with prevalent residues in EAD 

(namely Ala, Gly, Thr, Ser or Gln) to maintain 

the overall composition and have regularly 

spaced Ys located in the middle of the peptide at 

the same density as 10Yn. 5Fn and 5Wn proteins 

correspond to 5Yn with all Ys replaced by F and 

W respectively. 5Y protein corresponds to native 

EAD1-66 with alternate Y residues replaced with 

prevalent residues in EAD. 7Yn/2 and 7Yn/4 are 

related to 7Yn and contain seven evenly spaced 

Ys with linear Y density (given by the distance 

between the first and last Ys) of approximately 

half (7Yn/2) and one quarter (7Yn/4) of that in 

7Yn. Extra sequences present in 7Yn/2 and 

7Yn/4 were derived from 7Yn (minus Ys) to 

maintain overall composition. Other EAD mu-
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tants shown in Fig. S1 are 10Y3D, 5Y5D, 

10Y3R, 10Y5R, 8YD, 8Y2RD and 6YD. 

 

Transactivation assays and Western blotting. 

Activity values were corrected for background 

activity determined by including the EAD-

negative protein ZΔE in transfections. In cases 

where EAD mutations resulted in significant 

changes in protein levels, protein expression in 

vivo was normalized by using different amounts 

of plasmid for transfection. Luciferase assays 

were performed at 40 h post-transfection. West-

ern blotting using primary antibody KT3 [4] and 

alkaline phosphatase conjugated anti-mouse sec-

ondary antibody (DAKO) were as previously 

described [5].  
 

 

 

Rationale and computational details 

of the chain simulation model 

 
Intra-EAD and EAD-target interaction poten-

tials. As outlined in Method of the main text, our 

chain simulation model describes binding of var-

ious EAD sequences (Fig. S1) with a generic 

target (binding partner) which is a sphere of ra-

dius Rp = 16.0Å. The total potential energy of the 

model system ET = Eintrachain + Echain-target is the 

sum of the intramolecular energy Eintrachain and 

the intermolecular chain-target energy Echain-target, 

where 

 

𝐸intrachain    =  ∑ 𝜀𝜃(𝜃𝑖 − 𝜃0)2
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Here n is the number of residues in the EAD 

sequence; i,j label residue positions; 𝜃𝑖 is the ith 

virtual bond angle (in radian), 𝜃0  = π/2 is the 

reference virtual bond angle, 𝑟𝑖𝑗  is the spatial 

distance between the ith and jth residues. 𝜀𝜃, 𝜀ex, 

and 𝜀h𝜑  are the interaction strengths for bond 

angle, excluded volume and hydrophobic inter-

actions, and are set to 1.0, 1.0, and ‒3.0 kBT re-

spectively (where kB is Boltzman constant and T 

is absolute temperature). The range of excluded 

volume repulsion rrep,ij = 5.0 Å if both i and j are 

charged residues; otherwise rrep,ij = 4.0 Å for all 

other residue pairs as in our previous protein 

chain models [6,7]. κi = 1 for hydrophobic resi-

dues, κi = 0 otherwise; and 2r0 = b = 3.8Å sets 

the range of the hydrophobic interactions. 𝜀c𝜋
𝑖𝑗

 is 

the cation-π interaction strength that depends on 

the aromatic residue and is nonzero only when 

(i,j) is a (cation, π) or (π, cation) pair; and 𝜎c𝜋 is 

set to 4.0 Å. In the electrostatic (last) term, qi (= 

0 or ±1) is the charge of residue i; 𝜖0 is vacuum 

permittivity, 𝜖d  = 40 is the dielectric constant; 

and 𝜆Dis the screening length, which we set to 

10.0Å to mimic physiological conditions. The 

EAD-target interaction is given by  
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which is a sum of energy terms for EAD-partner 

excluded volume, cation-π, excluded volume 

between charged residues (rrep = 5.0 Å), and 

electrostatic interactions (in the order given in 

the above equation). The index ν labels the 

charges (qνs) on the binding partner, riν is the 

distance between residue i in the EAD and 

charge ν on the partner, and rci is the distance 

between the center of the partner and EAD resi-

due i. 

 

The model globular target. As outlined in the 

main text, the generic target is modeled by a 

sphere of radius Rp with positive and negative 

charges embedded on its surface (Fig. S2A). The 

EAD sequences are modeled as Cα chains (Fig. 

S2B). Taking a simple, minimalist approach, we 
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assume that the generic target is electrically neu-

tral with equal numbers of positive and negative 

charges, and that the charges are evenly distrib-

uted on the surface of the generic target.  We 

employed the “Golden Section Spiral Algorithm” 

[8,9] implemented in MATLAB (MathWorks, 

Natick, Massachusetts) to construct essentially 

even distributions for the charges. Most of the 

EAD binding simulations reported in this work – 

unless noted specifically otherwise – are for a 

generic target with 32 positive charges and 32 

negative charges, wherein the distances between 

two nearest neighboring charges of the same sign 

and of opposite signs are, respectively, 9.4 Å and 

5.1 Å. These distances were designed to mimic 

the charge distribution of RNA polymerase II 

subunits Rpb4/Rpb7 (PDB ID: 2C35) [10], for 

which the shortest distances between positive-

positive, negative-negative, and positive-

negative pairs are 9.4 Å (Fig. S2C), 7.7 Å, and 

5.7 Å, respectively. 

 
Model EAD chains. The Cα chain model for an 

EAD may be envisioned as a string of beads 

wherein the distance between the centers of two 

adjacent beads is equal to the Cα–Cα virtual bond 

length b = 3.8Å (Fig. S2B). Similar coarse-

grained Cα models have provided much biophys-

ical insight into protein folding and dynamics 

(see, e.g., [7] for a recent review). In the present 

EAD chain model, we set the reference virtual 

bond angle θ0 in Eq. (S1) to π/2 radian (90°), 

which coincides approximately with the peak 

value of the distribution of virtual bond angles in 

the Protein Data Bank (PDB) [11] but is some-

what smaller than the 106.3º [12] or 105º [13] 

used in other Cα chain models for proteins. To 

allow for more chain flexibility and efficient 

sampling of a large number of possible EAD 

conformations, we adopted a weak interaction 

strength 𝜀𝜃  = 1.0kBT for the virtual bond angle 

term in Eq. (S1). Consequently, every virtual 

bond angle θi can sample a range from π/4 (45º) 

to 3π/4 (135º) quite freely because it entails an 

energetic cost of at most ~0.6kBT.  

 

Types of interaction in the model. Both the 

intra-EAD and EAD-partner interactions [Eqs. 

(S1) and (S2) respectively] are dependent upon 

the EAD sequence. Pairwise interactions be-

tween amino acid residues (represented by their 

Cα positions) depend on whether they are aro-

matic (Y, F, W), hydrophobic (A, V, L, I, M, W, 

F, Y, P) — which include the aromatics [14], 

charged (D, E, R, K), or polar (N, C, Q, G, H, S, 

T). An EAD chain is considered to be bound to 

the generic target if at least one aromatic residue 

along the EAD sequence is spatially within a 

capture radius Rc = 6.0Å from a target cation 

(Fig. S2D). In the present model, the N- and C-

termini of the EAD chain carry a positive and a 

negative charge respectively. These charges par-

ticipate in intra-EAD and EAD-target electrostat-

ic interactions, but the N-terminal positive 

charge does not engage in cation-π interactions. 

 

Strengths of cation-π contacts in the model. In 

the present modeling setup, the total interaction 

between an aromatic residue and a cation is the 

sum of one of the 12-6 Lennard-Jones potentials 

in Fig. S2E and a general excluded volume term, 

which is equal to  𝜀ex(𝑟rep,𝑖𝑗/𝑟𝑖𝑗)12 for an intra-

EAD cation-π interaction [Eq. (S1)] and 

𝜀ex[(𝑟0 + 𝑅p)/𝑟c𝑖]
12

 for an EAD-target cation-π 

interactions [Eq. (S2)]. The effects of these two 

general excluded volume terms are similar and 

are relatively small, each amounting to a de-

crease of well depth by ≈ 0.16 kcal/mol relative 

to the potentials in Fig. S2E. The total intra-EAD 

cation-π potentials in Fig. 1B are practically 

identical to the corresponding total EAD-target 

cation-π potentials along the radial direction of 

the target. As discussed in the main text, the well 

depths of our model cation-π interactions (Fig. 

1B) are in line with published estimates of cati-

on-π potentials of mean force in aqueous envi-

ronments with well depths ≈ –3.0 to –5.5 

kcal/mol [15–17]. The differences in well depth 

among our model cation-Y, cation-F, and cation-

W interactions were designed in accordance with 

PDB statistics. We relied largely on the PDB 

cation-π contact frequencies compiled by Galli-

van and Dougherty [15] in this regard. Because 

the PDB structures were determined in aqueous 
environments, PDB statistics are more directly 

relevant to the aqueous cation-π potentials of 

mean force we aim to model than experimental 

and theoretical data on cation-π interactions in 

the absence of solvation effects [18]. In the da-

taset considered by Gallivan and Dougherty [15], 

the frequencies of R, K, Y, F, and W are, respec-

tively, p(R) = 10,919, p(K) = 13,446, p(Y) = 

8,309, p(F) = 9,162, and p(W) = 3,412; and the 

frequencies of R-Y, R-F, R-W, K-Y, K-F, and 

K-W contacts are, respectively, p(R-Y) = 749, 

p(R-F) = 630, p(R-W) = 609, p(K-Y) = 438,  

p(K-F) = 285, and p(K-W) = 283 (Table 1 of 

[15]). Using a simple formulation for statistical 

potential [19] and kBT ≈ 0.6 kcal/mol for T ≈ 

300K, the difference in cation-Y and cation-F 

contact energy (former minus latter) may be es-
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timated as –kBTln{[p(R-Y)/p(R-F)][p(F)/p(Y)]} 

= –0.16 kcal/mol for an R cation and as –kBT × 

ln{[p(K-Y)/p(K-F)][p(F)/p(Y)]} = –0.32 kcal/ 

mol for a K cation. These energy differences are 

consistent with the –0.07 to –0.37 kcal/mol range 

of well depth differences between cation-Y and 

cation-F interactions we adopted in Fig. 1B. 

Similarly, the difference in cation-Y and cation-

W contact energy (former minus latter) may be 

estimated as –kBTln{[p(R-Y)/p(R-W)]× 

[p(W)/p(Y)]} = +0.41 kcal/mol for an R cation 

and –kBTln{[p(K-Y)/p(K-W)][p(W)/p(Y)]} = 

+0.27 kcal/mol for a K cation. These energy dif-

ferences are quite similar to the +0.42 kcal/mol 

well depth difference between cation-Y and cati-

on-W in Fig. 1B. In the PDB analysis of Crow-

ley and Golovin [17], W is also seen to interact 

significantly stronger with R than Y or F for pro-

tein complexes and homodimers, but the trend is 

less clear for the interaction of W, Y, or F with K 

(Table III in [17]). 

 
Hydrophobic and electrostatic interactions. 
The functional forms for the hydrophobic and 

electrostatic potentials in the present model (Fig. 

S2F) are similar to those we used in previous 

coarse-grained modeling studies [20,21]. For 

most of the present simulations, we used a hy-

drophobic interaction strength 𝜀h𝜑 =  ‒3.0 kBT 

and a dielectric constant 𝜖d = 40. We chose an 𝜖d 

value intermediate between the dielectric con-

stant  ≈78.5 for bulk water and ~ 2 – 4 for the 

interior of a folded protein [22] because physi-

cally both the intra-EAD and EAD-target elec-

trostatic interactions take place in an aqueous 

environment (not the interior of a folded protein) 

but with significant effective local protein (IDP) 

concentration.  

 

Varying the hydrophobic interaction strength. 
To assess the robustness of our model predic-

tions and to better delineate the conditions for 

the validity of the predictions, we have conduct-

ed control simulations using alternative values of 

𝜀h𝜑 and 𝜖d. We found that strengthening the hy-

drophobic interaction strength from 𝜀h𝜑 = ‒3.0 

kBT  (well depth ≈0.25 kcal/mol) to 𝜀h𝜑 = ‒7.0 

kBT  (well depth ≈ 0.9 kcal/mol) while keeping 

other modeling parameters unchanged did not 

have much effect on the binding of the 4Yn –

10Yn sequences in Fig. 1B. However, binding 

became very weak when hydrophobic interaction 

was strengthened to 𝜀h𝜑 = ‒13.0 kBT (well depth 

≈2.0 kcal/mol) because in that case the aromatics 

would interact strongly with other aromatics 

and/or other hydrophobic residues and are se-

questered in the interior of compact confor-

mations instead of undergoing cation-π interac-

tions with the target. 

 

Varying the electrostatic interaction strength. 

We have also considered two alternative 𝜖d val-

ues while keeping other modeling parameters 

unchanged. First, application of the distance-

dependent dielectric constant of Jha and Freed, 

viz., 𝜖d(𝑟) = (𝜖d
b − 𝜖d

0)[(𝑠𝑟)2 + 2𝑠𝑟 +

2] exp(−𝑠𝑟/2), where 𝜖d
b = 78.5 is the dielectric 

constant of bulk water, 𝜖d
0 = 1.77 and s = 0.274 

[23] led to an even shallower attractive well for 

the electrostatic interactions than 𝜖d = 40. Using 

this 𝜖d(𝑟) led only to small changes to the simu-

lated binding probabilities for the 4Yn –10Yn 

sequences in Fig. 1B. Second, we tested 𝜖d = 20. 

This 𝜖d value led to a deeper attractive well of ≈ 

1.5 kcal/mol for the electrostatic interactions 

(blue dashed curve in Fig. S2F), which is  

≈1.5/3.6 ~ 40% of the cation-π well depth in our 

model. This ratio of ~40% is relevant because a 

quantum mechanical calculation of the me-

thylammonium-acetate and the methyl- ammoni-

um-benzene potentials of mean force in water by 

Gallivan and Dougherty suggests the same ratio 

(−2.2 kcal/mol / −5.5 kcal/mol = 40%) of well 

depths between typical salt-bridge and cation-π 

interactions [16]. For a test set of EAD sequenc-

es that include the highly charged 10Y5R, 

10Y3R, and 10Y3D in Fig. 3 and Fig. S1, the 

simulated binding probabilities using 𝜖d = 20 are 

quite similar to the corresponding probabilities 

simulated using 𝜖d = 40. Specifically, the simu-

lated Pb values of 4Yn, 5Yn, 6Yn, 7Yn, 8Yn, 

9Yn, and 10Yn are, respectively, 0.011, 0.025, 

0.057, 0.109, 0.196, 0.297, and 0.427 for 𝜖d = 40 

(data plotted in Fig.1B) and are 0.008, 0.029, 

0.059, 0.098, 0.165, 0.312, and 0.471 for 𝜖d = 20. 

For the charged sequences 10Y3D, 5Y5D, 

10Y3R, 10Y5R, 8YΔD, 6YΔD, and 8Y2RΔD, 

the simulated Pb values are, respectively, 0.370, 

0.003, 0.070, 0.005,  0.057, 0.017, and 0.019 for 

𝜖d  = 40 and 0.386, 0.003, 0.084, 0.006, 0.049, 

0.021, and 0.025 for 𝜖d  = 20. Taken together, 

results from our control simulations suggest that 

the trends predicted by our model should be ro-

bust inasmuch as the EAD does not undergo a 

hydrophobic collapse and that cation-π interac-

tions are significantly stronger than salt-bridge 

interactions as stipulated by theoretical consider-

ations [16]. 
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Conformational sampling. Monte Carlo sam-

pling of EAD conformations was conducted at T 

= 300K in a 600Å×600Å×600Å simulation box 

with periodic boundary conditions and the target 

fixed at its center. The EAD is defined to be 

bound if at least one aromatic on it is within a 

capture radius Rc = 6.0Å from a target cation 

(Fig. S2D). Binding probabilities were computed 

accordingly. Four types of chain moves were 

used for conformational sampling with equal 

attempt probabilities: rigid rotations, pivot 

moves, kink-jumps [24,25] and translation 

moves. In a translation move, a random direction 

and a random distance ≤ 1Å is selected. This 

random vector of displacement is then applied to 

every bead of the chain. All four types of at-

tempted chain moves were accepted or rejected 

by applying the standard Metropolis criterion [26] 

to the total energy ET = Eintrachain + Echain-target in 

Eqs. (S1) and (S2). The acceptance rate is ~50%. 

In a typical binding simulation with the generic 

target, ~20 million attempted chain moves were 

used for initial equilibration and data collection 

was conducted during the subsequent ~80 mil-

lion attempted chain moves. For each of the 

binding simulation with an IDP target (see be-

low), ~40 million attempted chain moves were 

used for initial equilibration and ~40 million 

subsequent attempted chain moves were used for 

data collection. Because the excluded volume 

and hydrophobic terms are of short spatial range, 

a 10.0Å cutoff was applied to the 𝜀ex  and 𝜀h𝜑 

terms in Eq. (S1) and a 2r0 + Rp = 19.8Å cutoff 

was applied to the 𝜀ex term in Eq. (S2) for com-

putational efficiency. 

 

Radii of gyration of the model EAD chains. 
For the 4Yn–10Yn EAD sequences in Fig. 1, the 

simulated mean radii of gyration   (using   𝜀h𝜑 =  

‒3.0 kBT and  𝜖d = 40) for unbound EADs are 

~21Å, whereas the simulated mean radii of gyra-

tion for bound EADs vary slightly from ≈22.5Å 

for 4Yn to ≈20.3Å for 10Yn. For the EAD se-

quences with positively charged Rs in Fig. 3 of 

main text, intra-EAD cation-π contacts lead to 

more compact unbound conformations. For 

8Y2RΔD (with two Rs), 10Y3R (with three Rs), 

and 10Y5R (with five Rs), the simulated mean 

radii of gyrations are, respectively, 17.6, 15.6, 

and 12.1Å. In contrast, the simulated mean radii 

of gyration for 10Y3D and 8YΔD (with no R) 

are 21.7 and 21.1Å, respectively, which are prac-

tically identical to the ~21Å mentioned above for 

the 4Yn–10Yn sequences in Fig. 1.  

 

Matching chain simulation results with exper-

imental data. The chain simulation model de-

scribed above was applied to analyze the exper-

imental activity measurements reported in the 

main text. In addition, the model was also used 

to re-analyze earlier experimental activity data [1] 

(Fig. S3), to address the similarities and differ-

ences in the binding properties of monomer and 

dimer EADs (Fig. S4), to motivate our analytical 

model (discussion below and Figs. S5–S7), and 

to study possible association of EAD with IDP 

targets (Fig. S8) including the RGG3 sequence in 

the Ewing’s sarcoma RNA-binding domain 

[27,28]. Although how precisely real EAD bind-

ing triggers specific functional events is not 

known, we recognize that the energetics of on-

cogenic EAD processes is unlikely to comprise 

solely of the interactions included in our model. 

For instance, a certain energetic contribution can 

be associated with a specific functional event, 

similar to the contact energy Eb in the polyelec-

trostatics model [29]. In the approach adopted 

here, we assume as a first approximation that this 

unknown energy (let us denoted it as Eb,EAD for 

the discussion at hand) is a constant irrespective 

of the bound EAD conformation. Because we did 

not include such an energy in our model, the 

binding free energy ∆Gb = ‒kBTln[Pb/(1 ‒ Pb)] in 

our model (Fig. 2D and Fig. S4) was computed 

without regard to Eb,EAD. In view of this limita-

tion, the ∆Gb values in the present work were 

used to address only relative, but not absolute, 

activities of real EAD, because the true binding 

free energy could have been ∆Gb + Eb,EAD. 

 

 

 

Rationale and constructional details of 

the analytical model  
 
Overall goal, strengths and limitations. The 

analytical model in this work [Eq. (1) in the main 

text] was developed as a complement to the 

chain simulation. Our goal in developing the 

analytical model is to provide further insights 

into the trends observed in simulations and ex-

periments. The analytical model addresses multi-

site EAD binding by considering the balance 

among the energetic contributions from cation-π 

contacts, translational and conformational entro-

pies of the EAD as well as intra-EAD and EAD-

target excluded-volume effects. For simplicity, 

hydrophobic and electrostatic interactions are not 

incorporated in the present analytical model. As 

a model for chain behavior, the analytical model 
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lacks an explicit representation of the polymer 

chain and thus is less accurate than the chain 

simulation model. Despite its reliance on approx-

imations, the analytical model is valuable be-

cause it offers conceptual clarity and computa-

tional efficiency. Its tractability allows for effi-

cient exploration of model parameters and, there-

fore, a more comprehensive assessment of the 

robustness of the model’s predictions.   

 

Conformational entropic effects of EAD bind-

ing. Multisite binding of EAD entails large 

changes in its conformational ensemble upon 

binding. Therefore, unlike the mean-field poly-

electrostatic model for the Sic1-Cdc4 system [29] 

that assumes no significant changes in the con-

formational shape of the IDP ligand upon bind-

ing, we now need to estimate the change in con-

formational entropy upon binding of an EAD to 

its target. As outlined in the main text, in order to 

afford a rudimentary account of excluded vol-

ume effects on conformational freedom, we 

adopted exact lattice enumeration to assist in the 

necessary entropy estimations. Exact enumera-

tion of lattice conformations is a powerful and 

versatile technique that has contributed to fun-

damental advances in polymer physics and in the 

study of protein structure and stability [30–32]. 

 

A simple model of the EAD sequence. All in-

gredients of the analytical model have been in-

troduced in the main text. Again, for simplicity, 

the present formulation of the analytical model 

considers only EAD sequences with Nπ equally 

spaced aromatics separated by the same number 

of amino acid residues (k bonds between two 

successive aromatics), as illustrated by Fig. S5A. 

If necessary, this restriction can be relaxed as the 

model can readily be generalized to tackle EAD 

sequences with any set of aromatic positions. In 

our analytical model, the aromatic positions 

along the EAD define a set of possible loops of 

EAD chain segments by having two or more 

EAD aromatics contacting the cations on the 

target. The conformational entropy of such a 

loop is determined by the length l of the loop and 

the distance Rj between the two cation-aromatic 

contacts. We used the geometry of the generic 

target in the chain simulation model to determine 

the distribution 𝑛c(𝑅𝑗) for Rj (Fig. S5B).  

 

Lattice estimation of conformational entropy. 

Exact enumeration of conformations in the pres-

ence of an impenetrable infinite planar surface 

[33] was utilized to provide a general approxima-

tion of the loop conformational entropy that we 

can readily apply to targets with different geome-

tries. We first obtained the numbers of confor-

mations (self-avoiding flights) configured on a 

simple cubic lattice that are (i) subject to no con-

straint, i.e., it is free to configure on an infinite 

lattice subject only to the condition that it cannot 

intersect itself, (ii) constrained to have one end 

of the chain contacting the impenetrable plane, 

as illustrated in Fig. S5C, and (iii) constrained to 

have the middle of the chain contacting the im-

penetrable plane, as illustrated in Fig. S5D. We 

denote the number of such conformations, as a 

function of chain length n, by Ω0(𝑛), Ωa
0(𝑛), and 

Ωa
m(𝑛) , respectively. These conformational 

counts are given in Table S1 for n = 4 to n = 17. 

The quantity Ω0(𝑛) has been studied extensively 

before. The Ω0(𝑛) counts in Table S1 are con-

sistent with an early n ≤ 16 enumeration by 

Sykes [34] and a more recent enumeration by 

Clisby et al [35]. More specifically, our  Ω0(𝑛) is 

equivalent to the coefficient for xn-1 in Eq. 2.1 of 

[34].  Ω0(17) was also provided in this reference 

but the coefficient 100,117,875,366 for x16 was 

incorrect.  Our Ω0(𝑛) corresponds to the variable 

cn-1 in Table A5 of [35], which provides Ω0(𝑛) 

for n ≤ 31. Note, however, that the variable n in 

Clisby et al [35] is the number of bonds and thus 

is equivalent to our n – 1.  

 

The quantity ln [Ωa
0(𝑛)/Ω0(𝑛)]  represents the 

change in conformational entropy, in units of kB, 

upon bringing a free, unconstrained chain to the 

vicinity of the impenetrable surface and making 

a first contact with the surface at a chain end. 

Likewise, ln [Ωa
m(𝑛)/Ω0(𝑛)] represents a similar 

entropy change but the first contact with the 

plane is made at mid-chain. For random flights, 

the corresponding conformational entropy 

change scales as – (ln n)/2 irrespective of which 

point along the chain makes the contact with the 

plane [36]. However, for self-avoiding flights, 

the difference between ln [Ωa
m(𝑛)/Ω0(𝑛)]  and 

ln [Ωa
0(𝑛)/Ω0(𝑛)]  is significant and increases 

with n (Fig. S5E). In the present formulation of 

the analytical model, we used ln [Ωa
m(𝑛)/Ω0(𝑛)] 

to provide a general approximation for the con-

formational entropy change upon the formation 

of the first chain-plane contact [see Eq. (1) of 

main text]. The reason for this choice is that for 

the chain lengths we studied, a chain-plane con-

tact is more likely to be sufficiently far away 

from the chain ends to be better represented by a 

mid-chain contact rather than a chain-end con-

tact. Accordingly, in binding free energy calcula-

tions using Eq. (1) of main text, ln [Ωa
m(𝑛)/

Ω0(𝑛)] was determined using the data in Table 
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S1 for n ≤ 17 and estimated for n > 17 by extrap-

olating the fitting equation for ln [Ωa
m(𝑛)/Ω0(𝑛)] 

provided in the caption for Fig. S5.  

 

After the first EAD-target contact has been 

made, EAD loops can form on the target surface, 

leading to further reduction in conformational 

entropy. We estimated such entropy reduction by 

enumerating Ω(𝑙, 𝑅𝑗|𝑛), which is the number of 

conformations with one chain end anchored to 

the impenetrable surface while a loop of length l 

is formed by a second contact at a distance Rj 

from the anchored chain end (Fig. S6, top left 

drawing). Examples of such conformational 

counts are provided in Table S2; and a complete 

listing of  Ω(𝑙 = 𝑛 − 1, 𝑅𝑗|𝑛) counts for n = 17 is 

included in Table S3 to illustrate our method. 

Values for ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ]  from n = 4 

through n = 17 were then grouped by loop length 

l and plotted in Fig. S6. Recognizing that 

ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ] for a given l is not very 

sensitive to chain length n, we obtained quadratic 

fits for ln[Ω(𝑙, 𝑅𝑗) Ωa
m⁄ ]  in the form of 

−𝑎(𝑙)[𝑅𝑗 − 𝑏(𝑙)]
2

+ 𝑐(𝑙) for l ≤ 16 (caption of 

Fig. S6). We then extrapolated the fitting param-

eters a(l), b(l), and c(l) for l > 16 (Fig. S7A,B,C) 

to obtain the necessary Ω(𝑘𝑙𝑖 , 𝑅𝑗|𝑛)/Ωa
m(𝑛) val-

ues (now approximated as independent of n) that 

enter Eq. (1). It should be noted here that 𝑅𝑗 was 

measured in units of lattice bond length in the 

enumeration data, and that the lattice bond length 

is taken to be equivalent to the Cα–Cα virtual 

bond length b = 3.8Å in our analysis. It follows 

that the 𝑅𝑗  values in the 𝑛c(𝑅𝑗) distributions in 

Fig. S5B have to be converted to lattice units (𝑅𝑗 

→ 𝑅𝑗/𝑏 =  𝑅𝑗/3.8Å) before they enter Eq. (1). 

 

Robustness of the predicted binding free en-

ergies. For the EAD sequences studied in this 

work, we found that the binding free energy is 

not very sensitive to the functional form of 

ln[Ω(𝑙, 𝑅𝑗) Ωa
m⁄ ]  for large l. To evaluate this 

sensitivity, we have compared binding free ener-

gies calculated using the above procedure and 

one that used exact enumeration 

ln[Ω(𝑙, 𝑅𝑗) Ωa
m⁄ ]  for l ≤ 16 but substituted  

ln[Ω(𝑙, 𝑅𝑗) Ωa
m⁄ ] with the random-flight expres-

sion ln [Ω(𝑙, 𝑅𝑗|𝑛)/Ω0(𝑛)] = (3/2)   [ln(3/

2𝜋) − ln(𝑙) − 𝑅𝑗
2/𝑙] for l > 16. [The latter ex-

pression follows from the random-flight proba-

bility (3/2𝜋)3/2exp (−3𝑅𝑗
2/2𝑙)  for a chain of 

length l starting from the origin and ending at a 

position that is at a distance 𝑅𝑗 from the origin.] 

Despite the appreciable difference between the 

two entropy expressions for large l (Fig. S7D), 

the calculated binding free energies using the 

two different schemes are nearly identical for the 

set of sequences tested in Fig. S7E. 

 

Energetic and entropic components of the 

binding free energy. ∆𝐺b  can readily be ex-

pressed as a sum of an energy and an entropy, 

with the binding energy (enthalpy) given by 

 

∆𝐸b =  
𝐸c𝜋

𝑄b
′ {𝑁𝜋  + ∑(𝑛loop + 1)  

{𝑙𝑖}

× ∏

             

𝑒−𝐸c𝜋/𝑘B𝑇 ∑ 𝑛c

𝑗𝑖

(𝑅𝑗)

× [
Ω(𝑘𝑙𝑖 , 𝑅𝑗|𝑛)

Ωa
m(𝑛)

]} 

                                                                      (S3)                                                                                                                                        

 

where 𝑛loop = ∑ 1𝑖  is the number of loops and 

𝑛loop + 1 is the number of cation-π contacts, and 

𝑄b
′ =  𝑁𝜋 + ∑ ∏ 𝑒−𝐸c𝜋/𝑘B𝑇 

𝑖{𝑙𝑖}

× ∑ 𝑛c

𝑗

(𝑅𝑗) [
Ω(𝑘𝑙𝑖 , 𝑅𝑗|𝑛)

Ωa
m(𝑛)

] .   

                                                                      (S4)                                                                                                                                         

After ∆𝐸b has been determined, the binding en-

tropy ∆𝑆b  can be calculated using the standard 

relation 

                     𝑇∆𝑆b = ∆𝐸b − ∆𝐺b ,                 (𝐒𝟓) 

                                                                                                                                                                                                         

where ∆𝐺bis given by Eq. (1) in the main text. 

These expressions were used to compute the ∆𝐸b 

and 𝑇∆𝑆b values in the inset of Fig. 2A. 

 

Possible interference among multiple 

Ys interacting with same cation 

Our present simulation model is seen to overes-

timate the affinity of 5YP in Fig. 4 of the main 
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text. The experimental activity of 5YP is approx-

imately the same as that of 10Yn, but the simu-

lated Pb for 5YP is more than double that of 

10Yn. To address this mismatch, we note that in 

the present formulation of our model, two se-

quentially adjacent Ys are assumed to be able to 

interact strongly and simultaneously with the 

same cation as if the two Ys were far apart along 

the sequence and interacting with different cati-

ons. But in reality, the two adjacent Ys would 

most likely interfere with each other, resulting in 

weakened individual interactions with the same 

cation, as cation-π interactions are strongly ori-

entation dependent [37]. This issue did not arise 

for the other EAD sequences we have simulated 

in this work because the individual Ys are well 

separated in those sequences. As a first attempt 

to explore this issue, we have performed addi-

tional simulations using a modified model in 

which the well depth for an individual cation-Y 

interaction is reduced from the full strength of 

3.58 kcal/mol  (Fig. 1B) when the given cation is 

interacting with two or more Ys. By considering 

a class of such models we found that if the re-

duced individual well depth is 2.86 kcal/mol for 

multiple Y contacting the same cation (represent-

ing a ≈20% reduction), the simulated binding 

probability for 5YP (Pb = 0.46) would be similar 

to that for 10Yn (Pb = 0.43). To account for the 

behavior of the 5YP sequence in the analytical 

model, we considered a model with Nπ = 5 and k 

= 12, but with Ecπ replaced by an energy 𝐸cπ
(2)

 for 

the combined cation-π interaction energy when a 

pair of Y’s contact a cation simultaneously. If we 

take 𝐸cπ
(2)

= 2𝐸cπ = 2(−3.5𝑘B𝑇) =  −7.0 𝑘B𝑇 , 

5YP is predicted by our analytical model to bind 

much more tightly (ΔGb = −11.7kBT ) than 10Yn 

(ΔGb = −3.2kBT). However, if 𝐸cπ
(2)

= −5.2 𝑘B𝑇 

(≈74% of 2Ecπ), the corresponding binding free 

energy ΔGb ≈ −3.1kBT for 5YP is similar to that 

for 10Yn as observed in the activity experiments. 

𝐸cπ
(2)

 is slightly weaker for the open circle data 

point that was included in Fig. 4 of the main text 

as an example (𝐸cπ
(2)

= −5.1 𝑘B𝑇, ≈73% of 2Ecπ), 

resulting in slightly weaker binding with ΔGb ≈ 

−2.6kBT. These considerations indicate that an 

interference effect between two aromatics con-

tacting the same cation that amounts to a ~20– 

30% moderate reduction in the individual cation-

π interaction strengths would be sufficient to 

provide a quantitative account for the experi-

mental activity of 5YP in the context of a poly-

cation-π model. 
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Supporting Figures 

 
 

 

 
Figure S1. Proteins and EAD sequences used in the present study. Transcriptional activator proteins 

(Top) contain the experimental sequences related to the N-terminal 66 residues of EAD1-66 (box with pur-

ple Ys), the region of ATF1 protein (ATF1) present in the EWS/ATF1 oncogene and the DNA-binding 

domain of zta protein (ztaDBD). In (A)–(C), amino acid residues are denoted by the standard one-letter 

code. Sequences for Figs. 1, 3, and 4 in the main text are listed, respectively, under (A), (B) and (C). 
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Figure S2. The chain simulation model. (A) The generic EAD binding target (partner) is a sphere of radi-

us Rp = 16Å with essentially evenly distributed positive and negative charges (represented by blue and red 

beads respectively). (B) An EAD sequence is modeled as a Cα chain (beads on a string) that can engage in 

cation-π, electrostatic, hydrophobic, and excluded-volume interactions as specified in the main text and 

Text S1. In this figure and subsequent supporting figures, aromatic (Y in this drawing) and hydrophobic 

(hφ) residues are shown in magenta and orange, respectively, whereas positively and negatively charged 

residues are shown in blue and red respectively. All other residues are shown in grey. (C) The distribution 

of positively charged residues on the heterodimer of the Rpb4/Rpb7 subunits of human RNA polymerase II 

was used as a reference for the design of the charge density on the generic EAD binding target. The histo-

gram here shows the shortest distance from each of the 32 positively charged amino acid residues (R or K) 

on Rpb4/Rpb7 (16 each along the Rpb4 and Rpb7 chains) from another positively charged residue, based 

on the X-ray crystal structure (PDB ID: 2C35) determined by Meka et al. (ref. [10] of Text S1). The dis-

tances are measured between the atoms that have the positive charges. The red dashed horizontal line marks 

the average shortest distance which is ≈ 9.4Å. (D) EAD-target binding is defined in the model as having at 

least one EAD aromatic residue (magenta circle) within a capture radius Rc = 6Å from a positive charge 

(blue circle) on the target. One such cation-π contact between an EAD sequence (brown string connecting 

magenta circles) and the target (large shaded circle with embedded blue circles) is shown in this schematic 
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drawing. (E,F) Energetic components of the interaction potential, the horizontal variable r here corresponds 

to 𝑟𝑖𝑗  in Eq. (S1) or 𝑟𝑖𝜈  in Eq. (S2). (E) Model cation-π interaction potentials in the form of 

 𝜀c𝜋
𝑖𝑗

[(𝜎c𝜋/𝑟𝑖𝑗)
12

− (𝜎c𝜋/𝑟𝑖𝑗)
6

] or   𝜀c𝜋
𝑖𝜈 [(𝜎c𝜋/𝑟𝑖𝑗)

12
−  (𝜎c𝜋/𝑟𝑖𝑗)

6
] in Eqs. (S1) and (S2) respectively [i.e., 

equivalent to Fig. 1B in the main text minus the 𝜀ex(𝑟rep,𝑖𝑗/𝑟𝑖𝑗)12 term]. The green and blue curves show 

the potentials for cation-W and cation-Y, respectively, as in Fig. 1B, whereas the red curve corresponds to 

the weakest among the model cation-F interactions considered in Fig. 1B. (F) Total interaction potential 

between hydrophobic residues and between charged residues in the simulation chain model, including their 

respective excluded-volume interactions. Solid curves show potential functions used for all simulation re-

sults presented in this work except specifically noted otherwise. Dashed curves show alternative potential 

functions that we have used for the control simulations reported in Text S1. The potential functions used 

for hydrophobic interaction are shown in magenta. The solid curve is for hydrophobic interaction strength 

𝜀h𝜑 = ‒3.0 kBT [Eq. (S1)] whereas the dashed curve is for 𝜀h𝜑 = ‒7.0 kBT. The potential functions for elec-

trostatic interactions between like charges and between opposite charges are shown, respectively, in red and 

blue. The solid curves are for 𝜖d = 40 whereas the dashed curves are for 𝜖d = 20.  

 

 

 

 

 

 

 
 

 

Figure S3. Evidence for the polycation-π hypothesis from a re-analysis of early experiments on 33-

residue EAD sequences. Sequences and experimental data were taken from ref. [1] of Text S1. Simula-

tions were conducted using the same chain model as described in Text S1 and the main text in a (600Å)3 

simulation box. (A) The sequences are defined in the above reference. The experimental relative activities 

and the simulated relative binding probabilities are represented by the black and grey bars respectively. (B) 

The sequences in (A) are grouped according to their Y number nY. Plotted are the simulated binding proba-

bility (solid squares) and the relative experimental activity (open circles) averaged over sequences belong-

ing to each given nY. For the simulation results, the averages are over all possible permutations of Y posi-

tions for a given nY, including those not studied by experiments. Note that both Y number and Y density 

are varied among this set of sequences (unlike the set in Fig. 1 that varies only the Y number while keeping 

Y density constant). Error bars show variation among sequences with the same nY. Lines joining the solid 

squares are merely a guide for the eye. 
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Figure S4. Simulated binding probabilities of monomer and dimer EAD sequences follow similar 

trends. Similar dependences on nY are observed for cis-duplication of small EAD elements in a single di-

mer. The monomer sequences used in the present simulations are the same 33-residue sequences based on 

the construction by Feng and Lee (ref. [1] of Text S1) studied in Fig. S3. As for the simulations in Fig. S3, 

all possible permutations of Y positions are considered. Each dimer was constructed by joining the C-

terminus of a given monomer sequence to the C-terminus of another copy of the same monomer sequence 

by a linker chain. The linker consists of six residues that are neither charged nor hydrophobic; all reference 

bond angles within the linker are equal to 165° with a stiff bond-angle force constant equal to 10.0kBT. 

Thus, in this figure, a dimer sequence with Y number 2nY is equivalent to two identical monomer sequenc-

es with Y number nY connected by such a linker. (A) A snapshot of an nY = 5 monomer bound to the target. 

(B) A snapshot of the corresponding nY = 10 dimer bound to the target. The EAD chains are depicted in a 

tube representation with the color code for different residue types specified in Fig. S2B. (C) Free energies 

of binding were computed under the same conditions as those used for Fig. S3. ΔGb values averaging over 

sequences with the same nY are plotted. 
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Figure S5. Components of the analytical model. (A) Schematic of cation-π contacts along the IDP. Here 

we only consider IDP chains with evenly spaced aromatics that are k residues apart; thus the contour length 

between two cation-contacting aromatics is always in the form of kli where li is a positive integer. Three 

example contact patterns are shown, wherein the aromatics and cations are depicted as magenta and blue 

circles respectively. (B) Distribution of cation-cation distance Rj on the target. Each Rj value is the distance 

in Å from a given cation to a different cation, measured on the spherical surface of the model target (left 

drawing). The distribution nc(Rj) is shown (histograms) for three different targets of the same size but dif-

ferent cation densities. As for the target with Nc = 32 cations in most of our simulations, the cations are 

essentially evenly distributed on the surface for the Nc = 8 and Nc = 96 targets. The approximately even 

distribution of charges on the target sphere was achieved by a numerical algorithm (see Text S1). As can be 

seen from the histograms, only a few of the Rj values are exactly identical. (C) An example conformation 

configured in the simple cubic lattice with one end of the chain touching a plane. The number of such con-

formations is referred to as Ωa
0(𝑛) in this work. (D) An example simple cubic lattice conformation with two 

of its mid-chain sites in contact with a plane. We denote the number of such conformations as Ωa
m(𝑛). (E) 

Change in conformational entropy (in units of the Boltzmann constant kB) upon bringing a free lattice con-

formation to form a contact at a chain end (squares) or at mid-chain (circles) with an infinite impenetrable 

plane that imposes excluded volume on the other side of the plane (the space underneath the plane is not 

accessible to the chain). The data points (squares or circles) were computed using exact enumeration data in 

Table S1. The curves through the data points were generated by fitting the assumed relation  

y = ln[Aexp(‒ωn) + Bexp(‒σn)]. The fitting parameters here are  A = 0.5365, B = 0.53139, ω = 0.02786, 

and σ = 0.33604 for 𝑦 = ln [Ωa
0(𝑛)/Ω0(𝑛)]; and  A = 0.40915, B = 1.12627, ω = 0.05373, and σ = 0.39353 

for 𝑦 = ln [Ωa
m(𝑛)/Ω0(𝑛)].  
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Figure S6. Conformational entropy loss upon loop formation. The quantity Ω(𝑙, 𝑅𝑗|𝑛) is the number of 

simple cubic lattice conformations of length n (n is the total number of beads along the chain) that have one 

chain end (bead number 1) touching an excluded-volume plane at a given point (as in Fig. S5C) and, at the 

same time, bead number l + 1 also making a contact with a given point on the plane at a distance Rj from 

where bead number 1 touches the plane, thus forming a loop of length l that spans a distance Rj on the plane 

(top left drawing). Note that conformations that form other chain-plane contact(s) in addition to these two 

are included in the Ω(𝑙, 𝑅𝑗|𝑛) count. As discussed in the main text and in Text S1, the vertical variable 

ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ] for the plots in this figure corresponds approximately to the conformational entropy 

change, in units of kB, upon making an additional chain-plane contact to form a loop of length l along a 

chain that has already made at least one contact with the plane. Each of the plotting panels provides the 

conformational entropy change upon forming a loop of a given length l as a function of Rj. Both l and Rj are 

shown in units of the lattice bond length (nearest distance between two beads on the simple cubic lattice). 

Data points (open circles) in the plotting panels were computed by exact enumeration of lattice confor-

mations with chain lengths from n = 4 through n = 17 (see Text S1 and Tables S2 and S3). Multiple data 

points for the same Rj value represent results from different n values. The continuous curves are quadratic 

fits in the form of ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ] = −𝑎(𝑙)[𝑅𝑗 − 𝑏(𝑙)]

2
+ 𝑐(𝑙). The l-dependent fitting parameters 

𝑎(𝑙), 𝑏(𝑙), and 𝑐(𝑙) are provided in Fig. S7. In view of the clustering of data points from different n values, 

we have made an approximation in the analytical model that ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ] is independent of n.  
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Figure S7. Applying the lattice conformational entropy estimates to the analytical model. (A–C) The 

fitting parameters 𝑎(𝑙), 𝑏(𝑙), and 𝑐(𝑙) for the conformational entropy changes shown in Fig. S6 are provid-

ed as data points in (A), (B), and (C), respectively. The continuous fitting curves are given by (A) 𝑎(𝑙) =
𝐴 + 𝐵exp (−𝐶𝑙), where A = 0.13748, B = 7.04181, and C = 0.52115; (B) 𝑏(𝑙) = 𝐴 + 𝐵ln(𝐶𝑙), where A = 

0.97499, B = 0.93564, and C = 0.97495; and (C) 𝑐(𝑙) = 𝐴 + 𝐵exp [−𝐶(𝑙 − 𝐷)], where A = ‒5.19530, B = 

2.98286, C = 0.31975, and D = 2.79004. These expressions were used to estimate ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ] 

for l > 16 by extrapolation. (D) The extrapolated ln[Ω(𝑙, 𝑅𝑗|𝑛) Ωa
m(𝑛)⁄ ] function (black curve) is compared 

against the corresponding random-flight expression ln[(3 2𝜋𝑙⁄ )3 2⁄ exp(− 3𝑅𝑗
2 2𝑙⁄ )] (red dashed curve) for l 

= 60. (E) Two methods for estimating the entropic cost of loop formation in the analytical model are com-

pared. Plotted are the binding free energies of the model EAD chains in Fig. 1 for Ecπ = ‒3.5kBT. The black 

data points (circles) were computed by using entropy estimates from exact enumeration for l ≤ 16 and ex-

trapolated estimates for l > 16, whereas the red data points (triangles) were obtained by using entropy esti-

mates from exact enumeration for l ≤ 16 but random-flight estimates for l > 16. The plot here shows that 

the predicted ∆Gb values based on the two different loop entropy estimates are very similar. 
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Figure S8. Exploring other EAD-target binding scenarios. The EAD sequences are the same as those in 

Fig. 1. (A) Simulated EAD binding probability Pb with a hypothetical target in which the surface charges 

are not evenly distributed but confined to a patch. Two such hypothetical patch partners were considered, 

both with 12 cations localized on a patch with the same local cation density as the generic target with 32 

cations (Fig. S2A) that we have used for most of the simulations. One of the targets (referred to as the posi-

tive patch target) contains 12 cations and no anions on the patch whereas the other (referred to as the neu-

tral patch target) contains 12 cations and 12 anions. Plotted here are the simulated binding probabilities for 

the positive (squares) and neutral (circles) patch targets in either a simulation box of size of (300Å)3 (black 

symbols) or (600Å)3 (blue symbols).  (B) A snapshot of an nY = 10 EAD sequence (tube representation) 

bound to the neutral patch target. (C)  Simulated EAD binding probability Pb with hypothetical disordered 

(IDP) partners. The EAD sequences and simulation conditions are the same as those in Fig. 1B,C, using a 

simulation box of size (600Å)3. During the binding simulations, both the EAD and the hypothetical IDP 

target were allowed to sample all accessible conformations while the center of mass of the IDP target was 

kept at a fixed position in the center of the simulation box. We considered a class of such targets, each of 

which is a chain consisting of 64 alternating cations and anions (32 cations and 32 anions). The adjacent 

cation and anion are connected by a 5Å virtual bond with a stiff bond-angle force constant equal to 10.0kBT. 

Shown here are binding probabilities for four different such IDP targets with equilibrium bond angles that 

equal, respectively, to 105° (crosses), 120° (diamonds), 135° (squares) and 150° (circles). A general trend 

of increasing binding with increasing nY is observed for all four hypothetical IDP targets. Not surprisingly, 

the quantitative details of this trend are sensitive to the persistence length of the IDP target. Binding in-

creases with the flexibility of the IDP target. Also included for comparison (blue triangles) are the simulat-

ed probabilities of EAD binding with the RGG3 sequence in the Ewing’s sarcoma RNA-binding domain 

GGDRGRGGPGGMRGGRGGLMDRGGPGGMFRGGRGGDRGGFRGGRGMDRGGFGGGRRGGPGG 

(refs. [27,28] in Text S1). Here the RGG3 sequence was modeled as a Cα chain using the same modeling 

scheme as that for the EAD sequences. (D) A snapshot of an nY = 10 EAD sequence (tube representation) 

bound to a hypothetical IDP target (red and blue beads) with 150° bond angles.  
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Table S1. Numbers of conformations, or self-avoiding flights, on the simple cubic lattice. Conforma-

tional counts as functions of chain length (number of beads) n are obtained by exact enumeration. A chain 

with n beads has n – 1 bonds. Here, Ω0 is the number of unconstrained conformations; Ωa
0 is the number of 

conformations that have one chain end anchored onto an impenetrable plane (Fig. S5C); and Ωa
m is the 

number of conformations that have the mid-chain bead [(n/2)th bead if n is even, {(n+1)/2}th bead if n is odd] 

making a contact with an impenetrable plane (Fig. S5D). 
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Table S2. Loop probabilities determined by exact lattice conformational enumeration. Tabulated here 

are examples (not a complete list) of conformational counts Ω(𝑙, 𝑅𝑗|𝑛) used in Fig. S6. Here one chain end 

is always in contact with the origin (0,0) of a two-dimensional coordinate system for the impenetrable plane. 

In this table, the positions on the impenetrable plane where another contact with the chain existed are indi-

cated by the (x,y) coordinates. In the present treatment of our analytical model, 𝑅𝑗 values from all combina-

tions of x,y (where x < y) that have nonzero Ω(𝑙, 𝑅𝑗|𝑛) counts for n ≤ 17 were used to estimate the confor-

mational entropic cost of loop formation (Figs. S6 and S7). 

 

 

 
 

Table S3. Exact lattice enumeration data for loop formation probability. Tabulated here as examples 

are the exact Ω(𝑙, 𝑅𝑗|𝑛) counts for l = 16 and n = 17. The horizontal and vertical labels correspond, respec-

tively, to the x and y coordinates of the positions on the impenetrable plane.  One end of the chain (first 

bead) is always anchored at the origin (0,0). In this table, the entry at a given position (x,y) is the number of 

conformations that have the chain’s last (nth) bead contacting the given position and thus making a loop 

with 𝑅𝑗 =  √𝑥2 + 𝑦2.  Data are shown only for x ≤ y because of the obvious rotational symmetry.  


