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S1 Stochastic processes

To help readers, a short review of stochastic processes focusing on elements needed for this study is
presented following ‘Stochastic Processes in Physics and Chemistry’ by N.G. van Kampen [40]. The study
of stochastic dynamical systems is based on the Chapman-Kolmogorov equation [41]. For a continuous
state-space for the variable y and time ordering t3 ≥ t2 ≥ t1, this equation reads

P (y3, t3|y1, t1) =
∫
dy2P (y3, t3|y2, t2)P (y2, t2|y1, t1) (33)

Here P (yj , tj |yi, ti) represents the conditional probability that a system makes a transition to the state
yj at time tj if it was in state yi at time ti. The Chapman-Kolmogorov equation embodies the Markov
assumption in that only the present state is necessary to compute the future state; the past is irrelevant
to this computation. When the state space is discrete, equation (33) can be equivalently written as,

P (i, s|k, t) =
∑
j

P (i, s|j, δ)P (j, δ|k, t) (34)

Starting with the theory of discrete time Markov chains governed by equation (34), Kolmogorov de-
rived so-called forward and backward differential equations for two kinds of continuous time Markov
processes [41–43], depending on the assumed behavior over small intervals of time :
i) ‘Jump processes’ for which in a small time interval there is an overwhelming probability that the state
will remain unchanged; however if it changes, the change maybe radical.
ii) Processes such as those which are represented by diffusion and Brownian motion, for which some
change will occur in any interval of time, however small; it is certain, however, that changes during small
time intervals will also be small.

For a one-dimensional system, the generic forward differential equation can be written as,

∂

∂t
P (z, t|y, s) = − ∂

∂z
[A(z, t)P (z, t|y, s)] +

1
2
∂2

∂z2
[B(z, t)P (z, t|y, s)]

+
∫
dx [W (z|x, t)P (x, t|y, s)−W (x|z, t)P (z, t|y, s)] (35)

The conditional quantity W (x|z, t) represents the transition probability for discrete jumps in state space.
In this equation, the following definitions are assumed with ε = |x− z|,

lim
∆t→0

P (x, t+ ∆t|z, t)
∆t

= W (x|z, t)

lim
∆t→0

1
∆t

∫ z+ε

z

dx(x− z)P (x, t+ ∆t|z, t) = A(z, t) +O(ε) (36)

lim
∆t→0

1
∆t

∫ z+ε

z

dx(x− z)2P (x, t+ ∆t|z, t) = B(z, t) +O(ε)



The appropriate adjoint of equation (35) would then correspond to the backward differential equation.
For A(z, t) = 0 and B(z, t) = 0, equation (35) is known as a ‘master equation’ [40]. The system admits

solutions which are constants separated by finite jumps at discrete time points with density W (z|x, t)
and correspond to ‘jump processes’. On the other hand if W (z|x, t) = 0, then equation (35) reduces to
the Fokker-Planck equation. The process has continuous paths and the quantities A and B correspond
to the drift and diffusion respectively.

A deterministic system subject to external Gaussian white noise is described by a stochastic differential
equation (SDE) known as the Langevin equation:

dy

dt
= A(y) +B(y)ξ(t) (37)

where ξ(t) represents Gaussian white noise, with average < ξ(t) >= 0 and < ξ(t)ξ(t′) >= δ(t− t′).
When B(y) = 1, the noise is ‘additive’ and it can be shown that equation (37) is equivalent to the

Fokker-Planck equation,
∂

∂t
P (y, t) = − ∂

∂y
[A(y)P (y, t)] +

1
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∂2

∂y2
P (y, t) (38)

When applied to neuronal systems, if all the currents which depend on membrane potential are
included in the threshold nonlinearity, the noise is additive. However in the case of conductance based
synapses, synaptic currents depend on the membrane potential, so that multiplicative noise is present
(B(y) 6= 1) and two distinct formulations (Ito and Stratonovich calculus) exist for the description of the
SDE.


