
Pseudo code and additional details of the MERLIN algorithm

As described in the text the MERLIN algorithm is an iterative algorithm that infers module-constrained
per-gene regulatory networks. Here we describe the pseudo code for the MERLIN algorithm. There are
two phases in the network inference: learning the regulators per gene (Steps 7-13) given the current module
membership, and updating the module membership given the current regulator network (Steps 15-18). The
algorithm starts with an empty regulator set Ri for each gene Xi. During the regulator identification steps
(Step 6-11), it updates the Ri by identifying the next best regulator that improves the score of a gene Xi.
It repeats this procedure for each target gene either until there is no more score improvement for Xi or
a fixed number of steps have been executed. While it is adding regulators to a gene, it also updates the
regulator-module relationship, which influences which regulators get selected for subsequent genes.

Once the regulator sets of all variables have been examined, we update the module memberships (Steps
13-16). This is done efficiently by making use of a min-heap data structure. We also do not merge any
nodes that have a greater than the specified threshold of clustering. When we merge two nodes, k and l in
the hierarchy we use average linkage to define the distance of the new node, m from all other nodes, n (Step
15-16). This step defines our modules. Next using these modules we update the regulators associated with
each gene to see if adding more regulators helps improve the score associated with a gene.

Algorithm 1 Learning in MERLIN
1: Input:

Initial module assignment for each gene, Minit

Dataset D
Candidate regulatorsR
Sparsity: p, Module prior: r, Minimum similarity between two modules: h

2: Output:
Inferred module for each gene, Mfinal

Regulatory network, specifying the set of regulators, R) per gene as well as
their parameters, θi

3: Mcurr = Minit

4: Ri = ∅, ∀i /*Initialize regulators for each gene*/
5: while not converged do
6: /*Update regulators Ri ∀Xi given Mcurr.*/
7: for Xi ∈ X do
8: repeat
9: Xk = arg maxXj∈R\Ri

S(Xi; Ri ∪Xj)− S(Xi; Ri)
10: Ri = Ri ∪ {Xk}.
11: Add Xk to Xi’s module, Mi.
12: until A fixed number of iterations or until adding regulators does not improve

Xi’s score
13: end for
14: /*Hierarchically cluster genes using co-expression and co-regulator for pairs

of genes to obtain new Mcurr*/.
15: while There exists a node pair k and l such that dist(k, l) ≤ h do
16: Merge k, l into new node m.
17: Compute distance dist(m,n) for all nodes other than k and l and insert pair

into min heap.
18: end while
19: end while
20: Mfinal = Mcurr

1

Parameter estimation in MERLIN

To compute the score S(Xi,Ri) for each gene, Xi and its regulators Ri, we assume that Xi and Ri are dis-
tributed according to a |Ri|+ 1-dimensional multi-variate Gaussian, with mean mi, a |Ri|+ 1-dimensional
mean vector, and a |Ri| + 1 × |Ri| + 1-dimensional co-variance matrix Σi. To estimate the conditional
probability distributions of a gene’s expression level given its regulators’ expression level in sample d we
estimate a conditional mean µi|Ri

and conditional variance Σi|Ri
as follows:

µi|Ri
= µi + Σi(i,−i)inv(Σi(−i,−i))(xd

Ri
−m−i)T.

σi|Ri
= σii −Σi(i,−i)inv(Σi(−i,−i))ΣT

i (i,−i).

Here µi is the mean expression level of gene i, σii is the variance of Xi. m−i is the mean of all elements in
Ri, and xd

Ri
is the assignment to all elements of Ri in the dth sample. Σi(−i,−i) is the original Σi after

dropping the row and column corresponding to Xi. Σi(i,−i) is the row in Σi(−i,−i) corresponding to Xi.

2

