Pseudo code and additional details of the MERLIN algorithm

As described in the text the MERLIN algorithm is an iterative algorithm that infers module-constrained
per-gene regulatory networks. Here we describe the pseudo code for the MERLIN algorithm. There are
two phases in the network inference: learning the regulators per gene (Steps 7-13) given the current module
membership, and updating the module membership given the current regulator network (Steps 15-18). The
algorithm starts with an empty regulator set R; for each gene X;. During the regulator identification steps
(Step 6-11), it updates the R; by identifying the next best regulator that improves the score of a gene Xj;.
It repeats this procedure for each target gene either until there is no more score improvement for X; or
a fixed number of steps have been executed. While it is adding regulators to a gene, it also updates the
regulator-module relationship, which influences which regulators get selected for subsequent genes.

Once the regulator sets of all variables have been examined, we update the module memberships (Steps
13-16). This is done efficiently by making use of a min-heap data structure. We also do not merge any
nodes that have a greater than the specified threshold of clustering. When we merge two nodes, k and [in
the hierarchy we use average linkage to define the distance of the new node, m from all other nodes, n (Step
15-16). This step defines our modules. Next using these modules we update the regulators associated with
each gene to see if adding more regulators helps improve the score associated with a gene.

Algorithm 1 Learning in MERLIN
1: Input:
Initial module assignment for each gene, M;,,;;
Dataset D
Candidate regulators R
Sparsity: p, Module prior: r, Minimum similarity between two modules: h
2: Output:
Inferred module for each gene, M £,
Regulatory network, specifying the set of regulators, R) per gene as well as
their parameters, 6;
Meurr = Minit
R; = (), Vi /*Initialize regulators for each gene*/
while not converged do
/*Update regulators R; VX; given My */
for X; € X do
repeat
Xj = argmaxy er\R, S(Xi; Ri U X;) — S(X; Ry)
10: R; :RiU{Xk}.
11: Add X}, to X;’s module, M;.
12: until A fixed number of iterations or until adding regulators does not improve
X;’s score
13: end for
14: /*Hierarchically cluster genes using co-expression and co-regulator for pairs
of genes to obtain new M urr*/.
15: while There exists a node pair &k and [such that dist(k,l) < h do
16: Merge k, [into new node m.
17: Compute distance dist(m,n) for all nodes other than k and [and insert pair
into min heap.
18: end while
19: end while
20: Mfinal = Meyrr

N T AN A

Parameter estimation in MERLIN

To compute the score S(X;, R;) for each gene, X; and its regulators R,;, we assume that X; and R; are dis-
tributed according to a |R;| 4+ 1-dimensional multi-variate Gaussian, with mean m;, a |R;| 4+ 1-dimensional
mean vector, and a |R;| + 1 x |R;| + 1-dimensional co-variance matrix 3;. To estimate the conditional
probability distributions of a gene’s expression level given its regulators’ expression level in sample d we
estimate a conditional mean /i; g, and conditional variance ;g as follows:

iR, = i + Si(i, —i)ino(Z;(—i, =) (xg, —m_;)".

OiR; = Oii — 34, —1)inv((—i, —1))] (4,).

Here p; is the mean expression level of gene ¢, g; is the variance of X;. m_; is the mean of all elements in
R,;, and dei is the assignment to all elements of R; in the dth sample. X;(—i, —1) is the original 3; after
dropping the row and column corresponding to X;. 3;(i, —i) is the row in 3;(—i, —i) corresponding to X;.

