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Update Step Derivation

To derive the update step of the estimator, we make a Gaussian approximation to the posterior density
at each time step. As explained in the main text, given this Gaussian approximation the prediction
density at a given time step will also be approximately Gaussian. Using these Gaussian approximations
and taking the logarithm of (8) in the main text we get

log(p(zt|N1:t)) = R+ Nt log(pt(zt)) + (N − Nt) log(1− pt(zt)) + log(p(zt|N1:t−1)) (S.1)
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where R and C are constants (i.e., not a function of zt). Differentiating the above expression with respect
to zt we get
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Evaluating at zt|t−1 we get the update step

zt|t = zt|t−1 + Wt|t
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where [·]zt|t−1
indicates the evaluation of the inside expression at zt|t−1 and

∂pt
∂ze(t)

=
∂pt
∂xe(t)

∂xe(t)

∂ze(t)
(S.7)
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= ct. (S.9)
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Note that we have used the identity ze(t) = log xe(t). Now differentiating again we get the posterior
covariance
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where

∂2pt
∂z2e (t)

= ct [1 + xe(t)− (1− pt)xe(t) exp(xe(t))] (S.13)

Optimal Feedback-Controller Derivation

The controller’s goal is to derive the state close to a non-zero target concentration value. Namely, in the
control of burst suppression the goal is to achieve a desired non-zero target BSP level, p∗, or equivalently
a non-zero effect-site concentration x∗ = log ((1 + p∗)/(1− p∗)). To find the solution, we thus shift the
origin of the state-space to x∗ [14] . This way, the control goal is equivalent to deriving the shifted state
variable close to zero, as in the classical LQR formulation.

To shift the origin, if we find a valid solution for u∗ for which

x∗ = Ax∗ + Bu∗, x∗ =

[
g(x∗)
x∗

]
(S.14)

where g is a function to be solved for, then making a change of variables, x̃t = xt − x∗ and ũt = ut − u∗
we can write using (2) in the main text

x̃t+1 + x∗ = A(x̃t + x∗) + B(ũt + u∗), (S.15)

which using (S.14) is simplified to

x̃t+1 = Ax̃t + Bũt. (S.16)

Hence the shifted variables satisfy the state model in (2) in the main text. Note that u∗ is the constant
control input that will keep the system in (2) in the main text at the effect-site concentration value x∗.
Since we have one degree of freedom u∗ and need to set one variable xe = x∗, there exists a solution to
(S.14) given by

g(x∗) =
kec
kce

x∗, u∗ =
kc0kec
kce

x∗ (S.17)

Now in terms of the shifted variables we are back to the classical LQR form since we can write the
controller cost in our problem in terms of the shifted state variables as

J =

T−1∑
t=1

(
x̃′tQx̃t + wrũ

2
t

)
+ x̃′TQT x̃T , (S.18)
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with Q and wr selected appropriately for a desired controlled response (as will be discussed in the Results
section). We can now solve for the optimal ũt using (22) in the main text, and the optimal infusion rate
at each time is then given by ũt + u∗. Using the steady-state LQR solution this optimal drug infusion
rate is given by

ut = −L(xt − x∗) + u∗ (S.19)

Hence (23) in the main text, (S.17), and (S.19) provide the controller’s drug infusion rate at time t given
the current state xt, which is provided by the estimator.


