Supplemental Information

Derivation of nullclines

Numerical results in Figure 3 A match very well the analytically calculated curves, which we derive here
in more detail. First we calculate the weight- and then the activity-nullcline. Finally we determine the
fixed points of the system by the intersection of the nullclines.

Weight dynamics

First we are taking Equation 3 and expand it by the sum over all neurons and the excitatory connectivity
kernel (3 N+ Z Z ) at both sides to get the differential equation for the mean field:
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The fact that inhibition reaches further than excitation allows separation of the network in two (or more)
independent ones (memory and control; see main text). Within such a (sub)network the activities of the
neurons can be assumed to be equal to the average activity. Thus, F; = F*:

it = p(FF+r7 (FT = F) (wh)?).

Similarly, we assume that all weights within a (sub)network do not differ much from the average value.

Thus, (wt)? ~ (w+)2 and the differential equation turns into

it = (FF+s~" (FT = F) (a*)?). (A1)
The fixed point (w+ = 0) of this mean field differential equation yields the weight-nullcline:
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Activity dynamics

Equation 1 expanded by the sum of neurons (% Ziv) yields:
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As above we assume that the activities within a (sub)network (memory/control) are equal to the average
activity. Thus, the differential equation turns into

i=—— + R (N Fot — Ny Fo~ + w! FI). (A3)
T

Where we are using N and Ny as average connectivity values, because in our experiments only parts
of the complete network are activated (for example one or two sub-populations of nine neurons). As a
consequence, effective connectivity is not homogeneous and neurons at the borders of the active popula-
tions have fewer active neurons they connect to. Thus, connection numbers N\; and Ny are smaller for
border- as compared to core-neurons. Therefore, we need to consider the average number of connections
for our calculations as indicated by the small bars (N and Ny, ).

Setting Equation A3 equals zero yields the following dependency between weight and activity:
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Fixed Points and Bifurcation

The saddle node bifurcation (Figure 3) for the synaptic weights given different input frequencies F7! is
obtained by calculating the intersection between the weight- and activity-nullcline (ol = w}) which
provides the fixed points of the system. For this, equation A2 is transposed to F":

Fi~<§i\/TnFT>. (A5)

Additionally, @ can be expressed as a function of F:

uze—;log(a;F). (A6)

Both equations have to be inserted in Equation A4 and transposed to a function w(F!). For the resulting
equation exists no closed-form, thus, for Figure 3 A we solved it numerically.




Bifurcation and consolidation under different conditions

In the following we will show that the bifurcation and consolidation phenomena (Figure 1 B,C) are
guaranteed under different conditions, such as a different synaptic plasticity rule, random topology, and
parameter changes.

LTP and LTD

In the main text, we analysed the system for a synaptic plasticity rule consisting of a correlation-term
modelling long-term potentiation (LTP). Thereby, we ignored the mechanism of long-term depression
(LTD). However, as expected from the analytical calculations, an additional LTD-term does not impair
the learning and consolidation dynamics (compare Figure S1 A,B with main text Figure 1 B,C). Here, for
the synaptic plasticity part we used the BCM-rule [1] which is a mixture of LTP and LTD: wjg””lm =
F, F;-(F; — ©). We set the parameter O, differentiating LTP from LTD, to 10 Hz [2,3]. As the LTP-term
in this rule is about Fj-times faster than in the main text, we adapted the time scale ppcops and the time
scale ratio kpoy by the maximum F/™** = o« (upem = p/o and kpom = k/a). All other parameters
and inputs are chosen as for Figure 1 B,C in the main text. However, the network dynamics with the
BCM-rule are qualitatively the same as with LTP only.
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Figure S 1 The dynamic of LTD does not impair the formation of (A) short-term and (B) long-term storage which is
consolidated by brief and global stimuli. Here, we used the BCM-rule [1] as combination of LTP and LTD.



Random Topology

The analytical results suggest that only the average number of excitatory and inhibitory connections per
unit influence learning and consolidation. Thus, the detailed topology does not influence the dynamics.
To show this we used a circuit with randomly seated units on a finite 2-d plane with periodic boundary
conditions. Each unit ¢ connects with a certain probability dependent on the distance d; ; to unit j. We
used a smaller excitatory probability kernel than the inhibitory kernel:

dij >
2 Oexc/inh

with oe¢ze = 0.115 and o0y, = 0.2. The parameters are chosen in a way that the average number of
connections is comparable to the grid model (N;M-d =8, Nyg = 24): Nt =8.2+0.3 and N~ = 24.3+0.5
(over 1000 initialisations). Figure S2 A shows, for instance, the topology of one unit (green) to other units
(blue: inhibitory connections; red: excitatory connections). A random set of nine neighbouring neurons
was externally stimulated (yellow). All parameters and inputs are the same as for Figure 1 B,C. The
resulting dynamics of these random networks are qualitatively the same as for the grid network (compare

Figure S2 B,C with main text Figure 1 B,C).
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Figure S 2 A random topology (one example unit is shown in A) does not influence the learning and consolidation dynamics
(B and C).



Different Parameters

As shown in the main text (Figure 4) a change of parameters does not induce significant differences in the
bifurcation diagram. In Figure S3 we show that this also holds true for the dynamics of the circuit. Here,
for instance, we changed the desired target value F7. However, the resulting dynamics are qualitatively
the same (compare to Figure 1 B,C in main text).
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Figure S 3 The usage of different parameters does not impair the dynamics. FT = 0.1, all other parameters and inputs
as for Figure 1 B,C.



Passive Weight Decay

Without consolidation all weights will decay (Figure 3 D). This curve of the decay times can be analytically
calculated by considering the mean field equation of the weight dynamics (Eq. A1):

it =p (FF+ s (FT - F) (a)").

During the decay phase the average activity I is low, thus, we can assume that the synaptic plasticity
part is equal to zero and the mean field equation reduces to

wt =B (FT - F) (0%)?.

K

This differential equation can be solved by separation of variables with initial time point tg = 0 and
weight @t (tg) = wy . Thus, the dynamic of the mean weight is

1
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As we want to assess the decay times of the weights we transpose this equation to get time ¢:
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Now, we insert as 'target’ weight w™ () (which has to be reached after time t) the weight value of the
controls. Simulations show (Figure 1) that the maximal control weight wj;” is approximately at 0.13,
which we, thus, use as target here. Then the time 7', which weights need to decay from given initial

(learnt) weight w{ to the control weight wjtrl, is:

= (o) (L (- FT)). (A7)
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As can be seen from the bifurcation diagram (Figure 3 A) each synaptic weight value in the STS-
regime can be reached by learning. Thus, each initial weight wo+ has to be considered here and, therefore,
the system has a broad distribution (from seconds to days) of decay times or rather lifetimes of memories
(Figure 3 D). This distribution will broaden to infinitely long lifetimes as soon as consolidation signals
are given.



Consolidation
Consolidation with different parameters

Figure S4 shows that different durations of consolidation stimuli have little effect on the resulting synaptic
weight changes.
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Figure S 4 Longer durations of the consolidation signal above 10 min have all similar effects on the synaptic weight change.

The impact of too late consolidation after learning and previous consolidation

In Figure 5 we show that a consolidation stimuli given too late induce a negative weight change. This is in-
dependent of the fact whether the weights had previously been increased by learning or by a consolidation
stimulus (Figure S5).
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Figure S 5 A too late given consolidation stimulus (arrow) induces weight shrinkage (middle) independent of prior recovery
(bottom).



The consolidation cycle

Directly after local learning stimulation (green learning pulses in Figure 1 B, C), LTS- as well as STS-
synapses begin to loose strength because only weak background activation is now present until a con-
solidation signal is delivered (yellow pulses in Figure 1 B, C). The corresponding activity-nullcline for
low background activations is plotted in gray in Figure S6 (control). Both types of synapses (STS and
LTS) drop from their initially obtained fixed points (Figure 3 B, C) to this nullcline (*-markers in Fig-
ure S6) and from thereon weights will start to relax back with approximatively yw?F to the crossing
with the blue weight-nullcline (fixed point in gray). If time passes without consolidation activation, then,
all weights will indeed drop back to the (gray) fixed point nearby zero. Presentation of a strong enough
consolidation stimulus changes the picture in a way that the activity-nullcline is shifted from the gray
to the yellow one. Therefore, STS- as well as LTS-assemblies will jump up to the yellow nullcline (the
activity changes much faster than weights) and follow it upwards with uF? (to the new [yellow] fixed
point) as long as the stimulus last. Weight decay and recovery (after consolidation stimulus) cyclicly
repeat, but one can see that STS-synapses loose more than they gain after every cycle (Awgrs < 0),
whereas the LTS-synapses always recover to almost the same value (Awgrg = 0). This is due to the fact
that the recovery depends quadratically on the activity (LTP-term) and LTS-assemblies are clearly more
active than STS-assemblies (compare Frrg to Fsrs).
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Figure S 6 Schematic of the effect of a consolidation cycle depending on the initial weight values. Blue: weight-nullcline;
Gray: activity-nullcline when there is only background input; Yellow: activity-nullcline for the consolidation stimulus.
s«-markers show weight value of STS- and LTS-synapses before consolidation. LTS-synapses recover by consolidation while
STS-synapses decay. For more details see supplemental text.



Memory destabilization

Destabilization by recall depends on the activity-dependence of synaptic plasticity and
scaling

As mentioned in the main text, the destabilizing phenomenon of a memory recall depends on the imbalance
of neuronal activities. For instance, in Figure 2 one neuron in the striped area is externally stimulated
and the other not. This (and the neighbor activation) induces two significantly different activities A for
the stimulated neuron (yellow in Figure 2 C) and a for the non-stimulated (red; A > a). This imbalance
results in a small synaptic plasticity term which depends on the correlation (multiplication) of both
activities (see below and Eq. 3). Furthermore, the synaptic scaling term for the weakly active neuron
is small (incoming synapse), too. However, as A is very large, the synaptic scaling term of the strongly
active neuron is significantly larger than the synaptic plasticity term.
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Therefore, we can assume that the weight change is dominated by the negative drive of scaling whereby
the synapse shrinks. As this can happen at different positions in the memory-related cell assembly, the
memory can be destabilized. Different input intensities yield lower activations and, thus, change the rate
of decay but not the effect itself.

Detailed parameter analysis of memory destabilization by partial activation

The recall of a memory item changes the stability of the related cell assembly. Figure S7 provides a details
parameter analysis to explain the fact of unbalanced weight transgressions from LTS to STS-domains and
vice versa as shown in the main text (Figure 7). We are analyzing the impact of different recall parameters
such as stimuli duration and number of reactivated neurons dependent on the initial weight-strength of
the cell assembly. Input-target synapses have first been stimulated to grow, reaching different initial
values in control-, STS-, and LTS-regime. As the stimulated subset of neurons was chosen randomly, all
experiments have been repeated ten times and averaged results have been calculated. In Figure S7 A
and C 10% of the neurons have been stimulated. This mimics a recall as well as the activation of another
overlapping cell assembly. For panels B and D 30% of the neurons have been stimulated, in panel E 60%,
and in panel F 80%. In panels A and B numerical weight changes are shown as a function of the initial
weight, when applying differently long recalls. Weight growth/shrinkage dominates for small/big weights
which may let a synapse change from STS- to LTS-domain or vice versa. Insets show individual curves
for 120 sec. recall. Panels C and D show the fractional weight changes which gives the relative number of
synapses traveling from the LTS-regime to the STS-regime (blue) and vice versa (red). We remark that
even in cases with no synaptic transitions the synaptic weights are decreased (panels A and B) which
drives them closer to the bifurcation threshold. Recall with 10% overlap leads dominantly to synapses
leaving the LTS-domain. For 30% overlap, leaving and entering the LTS-domain is more balanced. If
the overlap is larger (60% in panel E and 80% in panel F), recall acts like a learning signal and synapses
dominantly move from the STS- to the LTS-domain.
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Figure S 7 The effect of partial reactivation of memory-related neurons induces a change of memory stability. The intensity
of the recall is 180 Hz. For more details see attended text.

Source Code

In the following we will show the basic source code (Matlab) for Figure 1 B,C:

N=100; % Number of neurons
shift =10"6; % Relaxation Time
TimeSteps=0.7x10"6+shift ; % Total Duration of Simulation
dt=0.5; % Step Size

alpha=100; % Unit Parameters
beta=0.05;

epsilon=130;

R=0.012;

tau=1;

mu=1/30000; % Plasticity Parameters
gma=mu/60;

FT=0;
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inh=sqrt ((muxalpha)/gma)*0.3; %

o
w_Input=sqrt ((muxalpha)/gma); (;Z

%
InpFrequ=130; %
NoiseFactor=0.1; %
Input=zeros (N, SaveTime ); %

W=(ones (N,N)—0)=*10;
U=rand (N,1)%10" —5;
F=U;

counter=0;

9%%% Grid Connectivity — Written for N=100
%% Excitatory

C=zeros (N,N);
for i=1:100
if mod(i,10)7 =1
C(i,i—-1)=1;
end

if mod(i,10)"=0
C(i,i+1)=1;

end
if i>10
C(i,i—-10)=1;
if mod(i,10) =1
C(i,i—-11)=1;
end
if mod(i,10)"=0
C(i,i-9)=1;
end
end
if 1<91
C(i,i+10)=1;
if mod(i,10)"=0
C(i,i+11)=1;
end
if mod(i,10) =1
C(i,i+9)=1;
end
end
end

%% Inhibitory
Cl=zeros (N,N);
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for i=1:100
if mod(i,10) =1
CI(i,i—-1)=-1;
end
if mod(i,10)"=0
CI(i,i+1)=-1;
end

if mod(i,10) =2 && mod(i,10) =1
CI(i,i—-2)=—1;
if i>10
CI(i,i—-12)=-1;
end
if i<91
CI(i,i+8)=—1;
end
end

if mod(i,10) =9 && mod(i,10) =0
CI(i,i4+2)=-1;
if i>10
CI(i,i—8)=-1;
end
if i<91
CI(i,i+12)=-1;
end
end

if i>10
CI(i,i—10)=-1;
if mod(i,10) =1
CI(i,i—-11)=-1;
end
if mod(i,10)=0
CI(i,i—-9)=-1;
end
end
if 1<91
CI(i,i+10)=-1;
if mod(i,10)=0
CI(i,i+11)=-1;
end
if mod(i,10) =1
CI(i,i4+9)=-1;
end
end
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if 1>20
CI(i,i—-20)=-1;
if mod(i,10) =1
CI(i,i-21)=—1;
end
if mod(i,10) =1 && mod(i,10) =2
CI(i,i-22)=-1;
end
if mod(i,10)"=0
CI(i,i—19)=-1;
end
if mod(i,10)"=9 && mod(i,10)" =0
CI(i,i—-18)=-1;
end
end
if 1<81
CI(i,i4+20)=-1;
if mod(i,10)”=0
CI(i,i+21)=-1;
end
if mod(i,10) =9 && mod(i,10) =0
CI(i,i+22)=-1;
end
if mod(i,10) =1
CI(i,i+19)=-1;
end
if mod(i,10) =1 && mod(i,10) =2
CI(i,i+18)=-1;
end
end
end

%% Boundary Conditions — Written for N=100
%% Excitatory
C(1,[100,91,92])=1;
C(10,[99,100,91])=1;
for 1i=2:9
C(i,[90—1+41,904+1,90+1+1])=1;
end

C(91,[10,1,2])=1;

C(100,[9,10,1])=1;

for 1i=2:9
C(i490,[—1+4+1i,i,1+i])=1;

end

C(1,[10,20,100])=1;
C(91,[90,100,10])=1;

13



for 1i=1:8
C(10%x141,[10%i,10%(i+1),10%(i+2)])=1;
end

C(10,[1,11,91])=1;

C(100,[81,91,1])=1;

for 1i=2:9
C(10x%i,[10*(i—2)+1,10*%(i—1)+1,10%1i+1])=1;

end

% Inhibitory

if DNInh==1
strength=—1;
CI(1,[10,20,91,92,100])=strength;

CI1(10,[1,11,99,100,91])=strength;
CI(91,[100,90,1,2,10])=strength;

CI1(100,[81,91,9,10,1])=strength;

for 1=2:9
CI(i,[90—1+41,90+i,90+1+1i])=strength;
end

for i=2:9
CI(i+90,[—1+41i,i,1+1i])=strength;
end

for i=1:8
CI(10%i+4+1,[10%i,10%(1+1),10%(i+2)])=strength;
end

for i=2:9
CI(10%i,[10%(i—2)+41,10%(i—1)+1,10%i41])=strength;
end
end

if FNInh==

CI(1,[89,90,81,82,83,93,99,9,19,29,30])=strength

CI(2,[90,81,82,83,84,94,100,10,20,30])=strength

for i=3:8 %3—8 and 13-18
CI(i,80+1—2:80+1+2)=strength;
CI(i,[90+i—-2,90+i+2])=strength
CI(i+410,90+i—2:90+i42)=strength;

end

CI(9,[87,88,89,90,81,97,91,1,11,21])=strength ;

CI(10,[88,89,90,81,82,98,92,2,12,22,21])=strength ;
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CI(11,[99,100,91,92,93,9,19,29,39,40])=strength
CI(20,[98,99,100,91,92,2,12,22,32,31])=strength ;
for i=2:7 %21-71 and 22-72
CI(10%i41,[10%(i—2),10%(i—1),10%1,10%(i+1),10%(i+2)]+9)=strength;
CI(10%i+1,[10%(i—1),10%(i+3)])=strength;
(10%1+2,[10%(i—1),10%1,10%(i+1),10%(i+2),10%x(i+3)])=strength;
end
CI(81,[70,69,79,89,99,9,10,1,2,3])=strength;
CI(91,[80,79,89,99,9,19,20,11,12,13,3])=strength ;
CI(92,[80,90,100,10,20,11,12,13,14,4])=strength
for i=3:8  %93-98 and 83—88
CL(90+1,104i —2:10+1+2)=strength ;
CI(90+1i,[i—2,i+2])=strength;
CI(80+1i,i—2:i4+2)=strength;
end
CI(99,[7,17,18,19,20,11,1,91,81,71])=strength
CI(100,[8,18,19,20,11,12,2,92,82,72,71])=strength ;
CI(90,[61,62,72,82,92,92,1,2,10,8,9])=strength ;
for i=2:7 %30—80 and 29-79
CI(IO*(' 1),[10%(i—2),10%(i —1),10%i ,10%(i+1),10%(i42)]+2)=strength ;
CI(10%(i+1),[10%(i—2)+1,10%(i+2)+1])=strength;
CI(10%i49,[10%(i—2),10%(i—1),10%1,10%(i+1),10%(i+2)]+1)=strength;
end

CI(

12,{100,91,92,93,94,10,20,30,40])=strength;
CI(1
CI(8
CI(8

[
,[97,98,99,100,91,1,11,21,31])=strength;
,[70780,90,100,10,1 ,2,3,4]):Strength;
[

2
9
2
9,[61,71,81,91,1,7,8,9,10])=strength

WAW. «C;
WECIxinh ;

while t =TimeSteps % Time—loop

t=t+1;

%% Learning Signal to Nine Neurons

if t>136000+172800+shift && t< 1360004172800+ shift +12000; % 2 Hours
Input ([44 45 46 54 55 56 64 65 66],t)=omnes (9,1)*
InpFrequtrandn(9,1)« NoiseFactor«InpFrequ;

end

9% Global, Consolidation Stimulus

if t==136000+187200+shift +172800 || t==136000+187200+shift +2x172800
Input (:,t)=ones(N,1)x120;
counter=1800; % Global Stimulus for 15 Minutes

end

if counter =0
Input (:,t)=ones (N,1)*120;

15



counter=counter —1;
end

dU=(-U/tau+R* (WxF+w_Input*Input (: ,t)))*dt; % Membrane Potential
dUI=R* (WI«F) % dt ;
U=U+dU+dUT;

F=alpha./(1+exp(betax(epsilon—U))); % Non—linecar Output Function

dW=gmax (vI*ones (N,1)—O)xones (1,N); % Synaptic Scaling
VWEW + (dW.xW." 2)x dt ;

WEWAH (musxF«F )+ dt ; % Synaptic Plasticity
WAW. xC;

end
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