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1 Preliminaries

We use the following symbols:

N population size
n number of strategies in the game
aij payoff of strategy i player when facing a strategy j player
β selection intensity
∆π(k) payoff difference between mutant and wild types when there are k mutants
g(x) imitation function, where x = β∆π(k)
φij fixation probability of a single mutant of type j taking over a wild population of type i

In well-mixed populations, every individual plays equally likely with all the other players in the popu-
lations. In 2 × 2 games with payoff matrix (aij)2×2, the payoffs for strategy 1 and 2 are thus given by
π1(k) = (a11(k− 1) + a12(N − k))/(N − 1) and π2(k) = (a21k+ a22(N − k− 1))/(N − 1), where k is the
number of strategy 1 individuals. The payoff difference ∆π(k) = π1(k)− π2(k) is given by

a11 − a12 − a21 + a22
N − 1︸ ︷︷ ︸
u12

k +
−a11 +Na12 − a22N + a22

N − 1︸ ︷︷ ︸
v12

(1)

Note that the fixation probability φij depends only on g(β∆π). In turn, ∆π depends on uij and vij .
Moreover, since uji = uij and vji = −Nuij − vij , Gij = φij − φji only depends on uij , vij and β, and
can be written as a function Gij(β, uij , vij).

For convenience, when dealing with games of two strategies, we drop the indexes in uij , vij , Gij . In
addition, the indexes are treated modulo the number of strategies n if we are considering more than two
strategies.

2 Embedded Markov chain approximation for weak mutation

Under sufficiently weak mutation a mutant fixates or goes extinct before a new mutant arises [1,2]. This
means that the population spends most of the time in monomorphic states where all the individuals are of
the same strategy. The dynamics in this case is approximated by the transition probabilities φij between
homogeneous states i and j. Thus, the dynamics is fully approximated by an embedded Markov chain
with transition matrix M , given by



All 1 All 2 . . . All n

All 1 1− µ
n

∑
j 6=1 φ1j

µ
nφ12 . . . µ

nφ1n

All 2 µ
nφ21 1− µ

n

∑
j 6=2 φ2j . . . µ

nφ2n

...
...

...
...

...

All n µ
nφn1

µ
nφn2 . . . 1− µ

n

∑
j 6=n φnj

, (2)

where All i denotes the state consisting of only strategy i individuals, and φij is the fixation probability
of a single mutant of type j in a population of N − 1 i individuals. Note that we will always follow the
common assumption of uniform mutation kernels [3].

To compute the fixation probabilities φij we use a generalized pairwise comparison rule. Each indi-
vidual interacts with the rest of the population equally likely and obtains a payoff. Then one individual is
selected randomly to imitate another randomly chosen individual’s strategy with a probability g(β∆π),
where ∆π is the payoff difference between its opponent and the focal individual.



3

Let k denote the number of the mutants in the population. The transition probabilities to go from
state k to k ± 1, T±k are given by

T+
k =

N − k
N

k

N
g(+β∆π(k)),

T−k =
N − k
N

k

N
g(−β∆π(k)), (3)

while the probability to stay in state k is 1− T+
k − T

−
k . The fixation probability is given by

φij =
1

1 +
∑N−1
m=1

∏m
k=1

T−k
T+
k

, (4)

where i and j refer to the wild and mutant types [4–6].
Note that the fixation probabilities in M depend on the intensity of selection β. We compute the

stationary distribution of M , given by the left eigenvector of M to the unit eigenvalue. This stationary
distribution is also a function of selection intensity, a vector with n elements where each element is the
long-term abundance of the corresponding strategy. We are interested in how the ranking of strategies
according to abundance changes with increasing selection intensity.

3 Discussion of the ranking invariance property for two-strategy
multiplayer games

For 2 × 2 games, it has been shown that the ranking of strategies is invariant with increasing selection
intensity [7]. This is valid for any pairwise comparison rule. No technical constraints in the imitation
function g(x) are required, thus the result is robust if the payoffs are given by two-strategy two-player
games.

Let strategy 1 and 2 be the mutant and wild type respectively. For rare mutations, the transition
matrix M in Eq. (2) is (

1− µ
2φ12

µ
2φ12

µ
2φ21 1− µ

2φ21

)
, (5)

and the stationary distribution is ( φ21

φ12+φ21
, φ12

φ12+φ21
) [2, 8]. The ratio between the abundance of strategy

1 and 2 is φ21/φ12. Following [8–10] we have

φ21
φ12

=

N−1∏
k=1

T+
k

T−k

=

N−1∏
k=1

g(+β∆π(k))

g(−β∆π(k))

= exp


N−1∑
k=1

ln (g(+β∆π(k)))− ln (g(−β∆π(k)))︸ ︷︷ ︸
D1

 , (6)

where, in the last step, we have used
∏

expx = exp
∑
x. By Eq. (6), for D1 > 0, strategy 1 is more

abundant while strategy 2 is more abundant for D1 < 0. For D1 = 0, the two strategies are equally
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abundant. Thus the invariance of ranking with increasing selection intensity is equivalent to the invariance
of sign for D1 for all β > 0. For D1, we have the following properties: (i) For the Fermi imitation function,

g(x) = 1/(1 + exp(−x)), D1 = β
∑N−1
k=1 ∆π(k), this leads to the invariance of signs for all the β > 0

for any two-strategy games. Thus for any two-strategy game, the ranking invariance property holds
for the Fermi process; (ii) D1 is invariant by rearranging the index k, thus the ranking is invariant by
rearranging k such that the rearranged ∆π(k) is monotonic; (iii) For weak selection, D1 is approximated

by β(2g′(0)/g(0))
∑N−1
k=1 ∆π(k). Since g′(0)/g(0) > 0 for all imitation functions, the sign of D1 is solely

determined by the sum of the payoff differences. This illustrates that under weak selection, for any given
two-strategy game, the ranking is the same for any imitation process.

In contrast, for games with more than two players, the abundance ranking may change as illustrated
in the main text for a three player game. In addition to the Fermi function, we discuss the imitation
function given by g(x) = (1 + erf(x))/2, where erf(x) = (2/

√
π)
∫ x
0

exp(−t2)dt is the error function.
In this case, we find that the ranking can change with the selection intensity. It turns out that the
criterion to determine the ranking differs between weak and strong selection for this imitation function.
For strong selection, expanding g(1/t) around t = 0+ leads to the approximation of g(x) for x→ +∞, i.e.
g(x) ≈ 1− (2/

√
π)x exp(−x2). Similarly, we have g(x) ≈ −(2/

√
π)x exp(−x2) for x→ −∞. Thus under

strong selection, or sufficiently large |x|, ln(g(x))−ln(g(−x)) = ln(g(x)/g(−x)) ≈ sgn(x) ln(
√
π
2

exp(x2)
|x| −1).

Considering that exp(x2)
|x| → +∞ as |x| → +∞, ln(g(x)) − ln(g(−x)) ≈ sgn(x)

(
x2 − ln(|x|) + ln(

√
π
2 )
)

as x → +∞. Since the leading term is sgn(x)x2, for strong selection, the sign of D1 is determined by∑N−1
k=1 sgn(∆π(k))(∆π(k))2. For weak selection, however, the sign of D1 is determined by

∑N−1
k=1 ∆π(k)

as aforementioned. In fact, the multiplayer game is constructed such that the sign differs between∑N−1
k=1 ∆π(k) and

∑N−1
k=1 sgn(∆π(k))(∆π(k))2.

This example shows that for multiplayer games the ranking invariance property does not always hold
as it does for pairwise games. Furthermore, D1 is invariant by rearranging the index k in Eq. (6) such
that the rearranged ∆π(k) is monotonic as in 2× 2 games, hence even monotonicity in payoff differences
is not sufficient to ensure the invariance of rank for any pairwise comparison rules. This implies that the
invariance of rank is not robust for two-strategy multiplayer games.

4 Proof of Theorem 1

Theorem 1 Consider any imitation process with a strictly increasing, twice differentiable imitation func-
tion g(x). For a sufficiently large population size N and any selection intensity β∗(0 < β∗ < ∞), there
exists a 3× 3 payoff matrix (aij)3×3 with the following two properties:

1. The stationary distribution is uniform for β = 0 (as always) and for β →∞.

2. At β∗, two strategies change their ranking.

Theorem 1 implies that the rank can still change for moderate selection intensity, even when weak and
strong selection limits lead to the same rank. Based on the first three lemmas that follow, we construct
a 3× 3 payoff matrix that satisfies the two conditions in Theorem 1.

4.1 Construction of the 3× 3 matrix

The intuition to establish these lemmas is as follows: We need to find a 3 × 3 matrix (or nine payoff
entries) to satisfy the constraints in Theorem 1. Lemma 3 formally establishes that only six parameters
ui,i+1, vi,i+1, i = 1, 2, 3 are necessary for pairwise comparison processes. To further reduce the number
of parameters, Lemma 1 is introduced. Therein, it establishes a mapping between ui,i+1 and vi,i+1, i.e.,
vi,i+1 = v(ui,i+1), i = 1, 2, 3. In addition, Lemma 2 is introduced to clarify the domain where v(u) is
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defined. As a consequence, only three parameters ui,i+1, i = 1, 2, 3 are required. This is smaller than the
dimension of a 3 × 3 matrix. It suggests that the matrices satisfying the constraints in Theorem 1 are
located on a subspace with the dimension lower than that of a 3× 3 matrix.

Lemma 2 assumes that the imitation function is twice continuously differentiable and population size
large. Consequently, Theorem 1 requires the same assumptions to use the inverse function theorem. Yet
the example shown in Figure. 1 suggests that assumption of large population size is not necessary.

Lemma 1 For every imitation process with strictly increasing continuously differentiable imitation func-
tion g(x) with limβ→−∞ g(x) = 0 and limβ→+∞ g(x) = 1, β∗ > 0, population size N and −1 < c∗ < 1,
there is a δ > 0 and a continuously differentiable function v = v(u) defined in (−δ, δ) such that
G(β∗, u, v(u)) = c∗. Furthermore, if 0 < c∗ < 1, then v(0) > 0. (The proof is given in Section 5.1.)

Lemma 2 For any imitation process with strictly increasing second order continuously differentiable
imitation function g(x) and any β > 0, if v0 > 0, then for large population size N , there is a δ >
0 such that H(u, v) = ( ∂

∂βG,G)T is invertible in a vicinity of (0, v0) with radius δ, B((0, v0), δ) =

{(u, v)|
√
u2 + (v − v0)2 < δ}. (The proof is given in Section 5.2).

Lemma 3 If there are 3 strategies in the population, for every ui,i+1, vi,i+1, i = 1, 2, 3, and population
size N , there is an affine space of dimension 3, such that every element in such a space corresponds to a
payoff matrix (aij)3×3. (The proof can be found in Section 5.3).

Steps to establish the matrix:

1. For the given β∗ > 0, g(x) and N , we arbitrarily choose 0 < c∗ < 1. By Lemma 1, there is a δ1 > 0
and an implicit function v(u) defined in u ∈ (−δ1, δ1) such that G(β∗, u, v(u)) = c∗. Since c∗ > 0,
again by Lemma 1, we have v(0) > 0. Considering that v(u) is continuous at u = 0, there exists a
δ2 > 0, such that v(u) > 0 for all u ∈ (−δ2, δ2).

2. By Lemma 2, there is a δ3 such that H(u, v) is locally invertible in the vicinity of (0, v(0)) with
radius δ3. We denote δ = min{δ1, δ2, δ3} and randomly take ui,i+1 ∈ (0, δ), i = 1, 2, 3, such that
0 < u1,2 < u2,3 < u3,1 < δ.

3. Based on ui,i+1, vi,i+1, i = 1, 2, 3, (six numbers in total), by Lemma 3, there exists an affine space,
such that every element in such a space corresponds to a 3× 3 matrix (aij).

Remark For the established game matrix, ui,i+1 and vi,i+1 (i = 1, 2, 3) are all positive. In fact, the
second step explicitly illustrates that ui,i+1 > 0 for i = 1, 2, 3. In addition, considering that v(0) > 0,
by the continuity of v(u) in the interval (0, δ), where ui,i+1 lie, vi,i+1 = v(ui,i+1) > 0. In addition,
G(β∗, ui,i+1, vi,i+1) = c∗ for i = 1, 2, 3.

Section 4.2 proves that any 3×3 game that follows the recipe above fulfills the conditions in Theorem
1. An example using the Fermi function is shown in Figure. 1.

4.2 Proof that the established matrix satisfies the constraints

In order to prove that the matrix established in Section 4.1 fulfills the conditions listed in Theorem 1, we
list three more lemmas. They are sufficient conditions under which the constraints in the Theorem are
fulfilled: Lemma 4 and Lemma 6 illustrate conditions under which the ranking is uniform and the ranking
changes respectively, reflecting the two main constraints in Theorem 1. While Lemma 5 is a sufficient
condition under which the uniform distribution is the stationary distribution for strong selection limit.
Then we prove that the constructed matrix satisfies the conditions in these lemmas, which completes the
proof.
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Figure 1. We use a Fermi process with imitation function g(x) = 1/ (1 + exp(−x)). Let N = 30,
c∗ = 0.1, β∗ = 0.1 and ui,i+1 = i/(2N), where i = 1, 2, 3. Using the procedure above we find a game
such that the uniform distribution is the stationary distribution for β = 0 and β →∞, and two of the
three strategies exchange the rank at β∗ = 0.1 as Theorem 1 states. Furthermore, we observe that (i)
every two strategies exchange their rank at the β∗ = 0.1; (ii) the most abundant strategy becomes the
least abundant when the selection intensity exceeds this critical value β∗. (iii) β∗ = 0.1 is the unique
positive selection intensity at which all three strategies are equal in abundance.
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Lemma 4 For n = 3 and β∗ > 0, the uniform distribution is the stationary distribution of the transition
matrix M at β∗ if and only if G1,2 = G2,3 = G3,1 at β∗. (For a proof, see Section 5.4.)

This lemma demonstrates that the uniform distribution is the stationary distribution if and only if the
relative transition rates between every two strategies are identical.

Lemma 5 For a 2 × 2 payoff matrix (aij) and any imitation process with strictly increasing function
g(x) with limx→−∞ g(x) = 0 and limx→+∞ g(x) = 1, if u12 > 0 and v12 > 0, then limβ→+∞ φ12 = 1 and
limβ→+∞ φ21 = 0. (For a proof, see Section 5.5.)

This lemma shows that for cyclic dominance of strategies, i.e., Rock-paper-scissors games, the stationary
distribution converges to the uniform distribution in the strong selection limit.

Lemma 6 For n = 3, assume that imitation function g(x) is strictly increasing and continuously dif-

ferentiable, if i) there exists a strategy i ∈ {1, 2, 3} such that
(
∂
∂βGi,i+1 − ∂

∂βGi+1,i+2

)∣∣∣
β∗
6= 0; ii) the

uniform distribution is the stationary distribution at β∗ > 0, then there are two strategies out of the three
that exchange their ranking at β∗. (For a proof, see Section 5.6.)

This lemma shows that if the uniform distribution is the stationary distribution at a certain selection
intensity, a ranking change occurs, provided the increase rates of the relative transition probabilities at
the selection intensity differ from each other.

We prove that the matrix established in Section 4.1 fulfills the conditions listed in Theorem 1.

Proof First, when the selection intensity is zero, φi,i+1 = φi+1,i = 1/N , or Gi,i+1 = φi,i+1 − φi+1,i = 0
for i =, 1, 2, 3. By Lemma 4 the uniform distribution is the stationary distribution at β = 0.

Next we prove that for the matrix (aij), the uniform distribution is the stationary distribution when
β → ∞. By the Remark in Section 4.1, ui,i+1 and vi,i+1, (i = 1, 2, 3) are all positive. Thus, by Lemma
5, φi,i+1 → 1 and φi+1,i → 0 as β →∞. This yields that Gi,i+1 = φi,i+1−φi+1,i = 1 for i = 1, 2, 3 as the
selection intensity approaches +∞. By Lemma 4, the uniform distribution is the stationary distribution
when β →∞.

Finally, we prove that there are two strategies such that their rank alters at β∗. By the Remark in Sec-
tion 4.1, G(β∗, ui,i+1, vi,i+1) = c∗ for i = 1, 2, 3, there exists strategy k∗ such that ∂

∂βG(β∗, uk∗,k∗+1, vk∗,k∗+1) 6=
∂
∂βG(β∗, uk∗+1,k∗+2, vk∗+1,k∗+2). (Otherwise, there is l∗ such that ∂

∂βG(β∗, uk,k+1, vk,k+1) = l∗ for

k = 1, 2, 3. Remembering H = ( ∂
∂βG,G)T , we have H(ui,i+1, vi,i+1) = (c∗, l∗) at β∗, for i = 1, 2, 3.

Taking into account that (ui,i+1, vi,i+1) are chosen in the domain where H(u, v) is invertible at β∗ (Step
2 in the procedure to establish the matrix), we have u1,2 = u2,3 = u3,1. This contradicts to the fact
that u1,2 < u2,3 < u3,1 (Step 2 in the above payoff establishment procedure). In addition, by the first
procedure of the construction, we obtain that Gi,i+1|β∗ = G(β∗, ui,i+1, v(ui,i+1)) = c∗ for i = 1, 2, 3. By
Lemma 4, the uniform distribution is the stationary distribution of β = β∗. Therefore by Lemma 6, there
are two strategies out of three whose rank exchanges at β∗.

This completes the proof.

Remark For the established matrix, the uniform distribution is also the stationary distribution when
β = β∗. This is why Figure. 1 shows that all the three lines are intersecting at the given selection intensity
β∗.

5 Proofs of Lemmas

5.1 Lemma 1

Proof The outline of the proofs are in the following: Given the imitation function g(x), selection intensity
β∗ > 0, population size N and −1 < c∗ < 1, for u = 0, there exits a unique v, denoted as v0, such that



8

G(β∗, 0, v0) = c∗. Then, based on implicit function theory, we prove the existence of the implicit function
v(u) defined in a vicinity of u = 0 such that G(β∗, u, v(u)) = c∗. For c∗ ≥ 0, we need to prove that (i)
G(β∗, u, v) is continuously differentiable as a function of u and v; (ii) ∂G

∂v is not zero at point (0, v0). For
c∗ < 0, we convert it into a case with c∗ > 0.

First we prove that given the imitation function g(x), selection intensity β∗ > 0, population size N
and −1 < c∗ < 1, for u = 0, there exits a unique v0 such that G(β∗, 0, v0) = c∗.

The fixation probability of a single mutant of strategy j taking over the wild population of strategy
i is given by [6]

φij =
1

1 +
∑N−1
i=1

∏i
k=1

g(−β∗(uk+v))
g(+β∗(uk+v))

. (7)

Considering that φji = φij
∏N−1
k=1

g(−β∗(uk+v))
g(+β∗(uk+v)) , G(β∗, u, v) = φij − φji can be rewritten as

G(β∗, u, v) =
1−ΠN−1

k=1
g(−β∗(uk+v))
g(+β∗(uk+v))

1 +
∑N−1
i=1 Πi

k=1
g(−β∗(uk+v))
g(+β∗(uk+v))

. (8)

For u = 0, we have

G(β∗, 0, v) =
1−ΠN−1

k=1
g(−β∗v)
g(+β∗v)

1 +
∑N−1
i=1 Πi

k=1
g(−β∗v)
g(+β∗v)

. (9)

Let x = g(−β∗v)
g(+β∗v) , which is always positive. We rewrite G(β∗, 0, v) = c∗ by f(x) = 0, where

f(x) = (c∗ + 1)xN−1 +

N−2∑
i=1

c∗xi + (c∗ − 1). (10)

Taking into account that −1 ≤ c∗ ≤ 1, there is exactly once of the change of the signs between two
consecutive coefficients of the polynomial f(x). By the Descartes’ Rule of Signs, there is exactly one
positive root of Eq. (10), x∗. Besides, since g(x) is strictly increasing and nonnegative, g(−x)/g(x)
is a strictly decreasing function. In addition, since g(x) → 1 and g(−x) → 0 as x → ∞, we have
g(−x)/g(x) → 0, as x → +∞ while g(−x)/g(x) → +∞, as x → −∞. Therefore g(−x)/g(x) is a
bijection from (−∞,+∞) to (0,+∞). In particular, for x∗ > 0, there exists a unique v0 such that
g(−β∗v0)/g(β∗v0) = x∗. In other words G(β∗, 0, v0) = c∗.

Second, we prove the existence of the implicit function. Denote F (u, v) = G(β∗, u, v) − c∗. Since
g(x) is continuously differentiable by assumption, F (u, v) is continuously differentiable in the whole u−v
plane for any −1 < c∗ < 1. we only need to show that ∂F

∂v |(0,v0) = ∂G
∂v |(0,v0) 6= 0.

Let ai(u, v) =
∑i
k=1 ln( g(−β

∗(uk+v))
g(+β∗(uk+v)) ). Then ∂F

∂v is given by

− exp(aN−1)∂aN−1

∂v

(
1 +

∑N−1
i=1 exp(ai)

)
− (1− exp(aN−1))

(∑N−1
i=1

∂ai
∂v exp(ai)

)
(

1 +
∑N−1
i=1 exp (ai)

)2 . (11)

The sign of ∂F
∂v |(0,v0) is determined by the numerator of Eq. (11).

Classifying c∗ by its signs, we will prove the existence of the implicit function v = v(u).
For c∗ = 0, then G(β∗, 0, 0) = 0, thus v = 0 is a solution of G(β∗, 0, v) = 0. Considering that

the uniqueness of the solution which has been proved above, we have v0 = 0. In this case, we have
1− exp(aN−1) = 0. By Eq. (11), the sign of the numerator of Eq. (11) is determined by −∂aN−1

∂v |(0,0) =
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2β∗(N − 1)g′(0)/g(0), which is not zero. By the implicit function theorem, there exists a function v(u)
defined in a vicinity of u = 0, such that G(β∗, u, v(u)) = c∗.

For c∗ ∈ (0, 1), G(β∗, 0, v0) = c∗ can be rewritten as 1 +
∑N−1
i=1 exp(ai)

∣∣∣
(0,v0)

= (1− exp(aN−1))|(0,v0) /c
∗.

We take these into the numerator of Eq. (11), then the numerator becomes

1− exp(aN−1)

−c∗

(
(1 + c∗) exp(aN−1)

∂aN−1
∂v

+ c∗
N−2∑
i=1

exp(ai)
∂ai
∂v

)∣∣∣∣∣
(0,v0)

. (12)

Since 1−exp(aN−1)
−c∗ = −(1 +

∑N−1
i=1 exp(ai)) is always negative, the sign of the numerator is opposite to

that of the term in the bracket of Eq. (12). Remembering ai(u, v) =
∑i
k=1 ln( g(−β

∗(uk+v))
g(+β∗(uk+v)) ), we have

∂ai
∂v |(0,v0) = −β∗i

[
g′(−β∗v0)
g(−β∗v0) + g′(β∗v0)

g(β∗v0)

]
. Let y = g(−β∗v0)/g(β∗v0), the term in the bracket of Eq. (12)

is

−β∗
[
g′(−β∗v0)

g(−β∗v0)
+
g′(β∗v0)

g(β∗v0)

]
︸ ︷︷ ︸

D1

(
(1 + c∗)(N − 1)yN−1 +

N−2∑
k=1

c∗kyk

)
︸ ︷︷ ︸

D2

. (13)

Considering that the imitation function g(x) is always increasing and positive, D1 is positive. Since c∗ > 0
and y > 0 due to the fact that y = g(−β∗v0)/g(β∗v0), D2 is always positive. Therefore for c∗ ∈ (0, 1),
we have that F (0, v0) = 0 and ∂F

∂v |(0,v0) 6= 0. By employing the implicit function theorem, there exists
δ > 0 and a function v(u) defined in (−δ, δ), such that G(β∗, u, v(u)) = c∗.

For c∗ ∈ (−1, 0), instead of considering G(β∗, u, v) = φij − φji = c∗, we alter the name of strategy
i and j, then we have that G(β∗, ũ, ṽ) = φji − φij , where ũ = u and v + ṽ = −Nu. For −c∗ > 0, and
β∗ > 0, by the above proof, there exists a function ṽ = ṽ(ũ) defined in a vicinity of ũ = 0 such that
G(β∗, ũ, ṽ(ũ)) = −c∗. Taking into account that ũ = u and v+ ṽ = −Nu, let v(u) = −Nu− ṽ(u), we have
that the function v(u) defined in the vicinity of u = 0 fulfills G(β∗, u, v(u)) = c∗.

In summary, we have proved that for arbitrary c∗ ∈ (−1, 1) and β∗ > 0, there exists a function
defined in a vicinity of u = 0 such that G(β∗, u, v(u)) = c∗. Also by the implicit function theorem, v(u) is
continuous. Furthermore, since g(x) is continuously differentiable, ∂F

∂u is continuous in the whole plane.
This leads to that v(u) is also differentiable. In fact, since g(x) is differentiable, v′(u) is continuous.

Finally we prove that if 0 < c∗ < 1, v(0) > 0.
In fact, by Eq. (10), we have f(0) = c∗ − 1 < 0 and f(1) = Nc∗ > 0. Since f(x) is continuous in

[0, 1], there is a x̃ ∈ (0, 1) such that f(x̃) = 0. As we have proved that there is only one positive root for
f(x) = 0, x∗ = x̃. Since x∗ = g(−βv0)/g(+βv0) and 0 < x∗ < 1, we have v(0) = v0 > 0.

This completes the proof.

5.2 Lemma 2

Proof To prove the existence of the inverse function of H(u, v) around (0, v0), where v0 > 0, we are em-
ploying the inverse function theorem. What we need to prove is: (i) H(u, v) is continuously differentiable
at (0, v0); (ii) if v0 > 0, the Jacobian matrix of H(u, v) at (0, v0) is non-degenerate.

First, since g(x) is second order continuously differentiable, H(u, v) is continuously differentiable at
(0, v0).

Second, we show that if v0 > 0, the Jacobian matrix of H(u, v) at (0, v0) is non-degenerate. We
rewrite the function G(β, u, v) as G̃(βu, βv), i.e.,

G̃(x, y) =
F1(x, y)

F2(x, y)
, (14)
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where

F1(x, y) = 1− exp

[
N−1∑
k=1

ln

(
g(−xk − y)

g(xk + y)

)]
,

F2(x, y) = 1 +

N−1∑
i=1

exp

[
i∑

k=1

ln

(
g(−xk − y)

g(xk + y)

)]
. (15)

The Jacobian matrix of H(u, v) at (0, v0) is equivalent to that of G̃(x, y) at (0, βv0), and it is given by(
G̃(1,0) (0, βv0) + βv0G̃

(1,1) (0, βv0) G̃(0,1) (0, βv0) + βv0G̃
(0,2) (0, βv0)

βG̃(1,0) (0, βv0) βG̃(0,1) (0, βv0)

)
, (16)

where G̃(i,j) = ∂i+jG̃
∂xi∂yj .

In order to prove that Eq. (16) is non-degenerate, we perform elementary transformations, which do
not change the rank of matrix.

Since β is positive, we multiply the second row of Eq. (16) with factor −1/β, and add it to the first
row. This leads to (

βv0G̃
(1,1) (0, βv0) βv0G̃

(0,2) (0, βv0)

βG̃(1,0) (0, βv0) βG̃(0,1) (0, βv0)

)
. (17)

For Eq. (17), since v0 > 0 by assumption, we multiply 1/(βv0) to the first row then 1/β to the second
row. This yields (

G̃(1,1) (0, βv0) G̃(0,2) (0, βv0)

G̃(1,0) (0, βv0) G̃(0,1) (0, βv0)

)
. (18)

Taking into account Eqs. (14) and (15), Eq. (18) is(
S11

F 3
2

S12

F 3
2

S21

F 2
2

S22

F 2
2

)
, (19)

where

S11 = F1
(1,1)(0, βv0)F2(0, βv0)2 − F2

(0,1)(0, βv0)F1
(1,0)(0, βv0)F2(0, βv0)

− F1
(0,1)(0, βv0)F2

(1,0)(0, βv0)F2(0, βv0)− F1(0, βv0)F2
(1,1)(0, βv0)F2(0, βv0)

+ 2F1(0, βv0)F2
(0,1)(0, βv0)F2

(1,0)(0, βv0)

S12 = F1
(0,2)(0, βv0)F2(0, βv0)2 − 2F1

(0,1)(0, βv0)F2
(0,1)(0, βv0)F2(0, βv0)

− F1(0, βv0)F2
(0,2)(0, βv0)F2(0, βv0) + 2F1(0, βv0)F2

(0,1)(0, βv0)2

S21 = F2(0, βv0)F1
(1,0)(0, βv0)− F1(0, βv0)F2

(1,0)(0, βv0)

S22 = F2(0, βv0)F1
(0,1)(0, βv0)− F1(0, βv0)F2

(0,1)(0, βv0). (20)

By Eq. (15), F2 is always positive thus non-zero. Multiplying F 3
2 to the first row of Eq. (19) then F 2

2

to the second row of Eq. (19) do not alter the rank of Eq. (19), and it leads to

J =

(
S11 S12

S21 S22

)
. (21)
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Taking Eqs. (15) into consideration leads to

F1(0, βv0) =1− hN−1

F1
(1,0)(0, βv0) =

(
hN−1 − 1

)
a

N−1∑
i=1

i

F1
(0,1)(0, βv0) =a(N − 1)

(
hN−1 − 1

)
F1

(1,1)(0, βv0) =(hN−1 − 1)a2(N − 1)

N−1∑
i=1

i+ (hN−1 − 1)b

N−1∑
i=1

i

F1
(0,2)(0, βv0) =(hN−1 − 1)

(
a

N−1∑
i=1

i

)2

+ (hN−1 − 1)b(N − 1)

F2(0, βv0) =1 +

N−1∑
i=1

hi

F2
(1,0)(0, βv0) =a

N−1∑
k=1

hk

(
k∑
i=1

i

)

F2
(0,1)(0, βv0) =a

N−1∑
k=1

khk

F2
(1,1)(0, βv0) =

N−1∑
k=1

(
a2hkk

k∑
i=1

i+ bhk
k∑
i=1

i

)

F2
(0,2)(0, βv0) =

N−1∑
k=1

(
a2k2hk + bkhk

)
, (22)

where

h =
g(−βv0)

g(βv0)

a =− g′(−βv0)

g(−βv0)
− g′(βv0)

g(βv0)

b =
g′′(−βv0)g(−βv0)− (g′(−βv0))2

(g(−βv0))2
− g′′(βv0)g(βv0)− (g′(βv0))2

(g(βv0))2
. (23)
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Considering the following identities [11]

k∑
i=1

i =
k(k + 1)

2

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

k∑
i=1

hi =
h− hk+1

1− h
= fk(h)

k∑
i=1

ihi = hf ′k(h)

=
((h− 1)N − 1)hN+1 + h

(h− 1)2

k∑
i=1

i2hi = h
d

dh
(hf ′k(h))

=
h
((
−2N2 − 2N + 1

)
hN+1 +N2hN+2 + (N + 1)2hN − h− 1

)
(h− 1)3

k∑
i=1

i3hi = h
d

dh

[
h
d

dh
(hf ′k(h))

]
= (h− 1)−4h(N3hN+3 + (3N3 + 6N2 − 4)hN+1

− (3N3 + 3N2 − 3N + 1)hN+2 − (N + 1)3hN + h2 + 4h+ 1), (24)
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and taking them into Eqs. (22) lead to

F1(0, βv0) =1− hN−1

F1
(1,0)(0, βv0) =

1

2
a(N − 1)N

(
hN−1 − 1

)
F1

(0,1)(0, βv0) =a(N − 1)
(
hN−1 − 1

)
F1

(1,1)(0, βv0) =
1

2
a2N(N − 1)2

(
hN−1 − 1

)
+

1

2
bN(N − 1)

(
hN−1 − 1

)
F1

(0,2)(0, βv0) =
1

4
a2(N − 1)2N2

(
hN−1 − 1

)
+ b(N − 1)

(
hN−1 − 1

)
F2(0, βv0) =

hN − h
h− 1

+ 1

F2
(1,0)(0, βv0) =

a
(
−2N2hN+1 +N2hN+2 + 2hN+1 −NhN+2 +N2hN +NhN − 2h

)
2(h− 1)3

F2
(0,1)(0, βv0) =

a
(
NhN+1 − hN+1 −NhN + h

)
(h− 1)2

F2
(1,1)(0, βv0) =(−2a2hN+1 − 4a2hN+2 + 4a2h2 + 2a2h− 2bhN+1 + 2bhN+2 − 2bh2 + 2bh

+N
(
−5a2hN+1 + 4a2hN+2 + a2hN+3 + bhN+1 + bhN+2 − bhN+3 − bhN

)
+N2

(
3a2hN+2 − 2a2hN+3 − a2hN + 3bhN+1 − 3bhN+2 + bhN+3 − bhN

)
+N3

(
3a2hN+1 − 3a2hN+2 + a2hN+3 − a2hN

)
)[(2−1(h− 1)−4)]

F2
(0,2)(0, βv0) =(a2hN+1 + a2hN+2 − a2h2 − a2h+ bhN+1 − bhN+2 + bh2 − bh

+N
(
2a2hN+1 − 2a2hN+2 − 2bhN+1 + bhN+2 + bhN

)
+N2

(
−2a2hN+1 + a2hN+2 + a2hN

)
)(h− 1)−3. (25)

On one hand, g(x) is increasing and positive, v0 > 0 thus 0 < h < 1, where h = g(−v0β)/g(−v0β)
in Eq. (23). On the other hand, a, b and h in Eq. (23) are not dependent on population size N , they
are viewed as order 1. Therefore, for any i > 0, N ihN → 0 as the large population size N is sufficiently
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large. Since the population size N is large by assumption, Eqs. (25) can be approximated by

F1(0, βv0) ≈1

F1
(1,0)(0, βv0) ≈− 1

2
a(N − 1)N

F1
(0,1)(0, βv0) ≈− a(N − 1)

F1
(1,1)(0, βv0) ≈− 1

2
a2N(N − 1)2 − 1

2
bN(N − 1)

F1
(0,2)(0, βv0) ≈− 1

4
a2(N − 1)2N2 − b(N − 1)

F2(0, βv0) ≈ −1

h− 1

F2
(1,0)(0, βv0) ≈ −ah

(h− 1)3

F2
(0,1)(0, βv0) ≈ ah

(h− 1)2

F2
(1,1)(0, βv0) ≈h

2(2a2 − b) + h(a2 + b)

(h− 1)4

F2
(0,2)(0, βv0) ≈b(h− 1)h− a2h(h+ 1)

(h− 1)3
. (26)

Taking these approximations into Eq. (20), we find that the determinant of Eq. (21) is of order N6 for
large population size, i.e.,

|J | ∼ a3

8(1− h)3
N6. (27)

For large population size the sign of the determinant of J is determined by a3/(8(1− h)3). Since v0 > 0
by assumption, by Eq. (23) we have that 0 < h < 1 and a < 0. Thus a3/(8(1 − h)3) is negative and
non-zero, which leads to the non-zero determinant of J . Regarding J is derived by a series of elementary
transformations of the Jacobian matrix of H(u, v) at (0, v0), the Jacobian matrix of H(u, v) at (0, v0) is
also non-degenerate. By the inverse function theorem, there is a δ > 0 such that H(u, v) is invertible in
the vicinity of (0, v0), B((0, v0)), where B((0, v), δ) = {(u, v)|

√
u2 + (v − v0)2 < δ}.

This completes the proof.

5.3 Lemma 3

Proof By the definition of ui,i+1 and vi,i+1 in Section 1, we have

ui,i+1 =
1

N − 1
aii −

1

N − 1
ai,i+1 −

1

N − 1
ai+1,i +

1

N − 1
ai+1,i+1,

vi,i+1 = − 1

N − 1
aii +

N

N − 1
ai,i+1 − ai+1,i+1, (28)

where i = 1, 2, 3.
Eq. (28) can be rewritten as

Pl = q, (29)
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where

P =
1

N − 1


1 −1 0 −1 1 0 0 0 0
−1 N 0 0 −N + 1 0 0 0 0
0 0 0 0 1 −1 0 −1 1
0 0 0 0 −1 N 0 0 −N + 1
1 0 −1 0 0 0 −1 0 1

−N + 1 0 0 0 0 0 N 0 −1


︸ ︷︷ ︸

Q

, (30)

l = (a11, a12, a13, a21, a22, a23, a31, a32, a33)T , (31)

and

q = (u12, v12, u23, v23, u31, v31)T . (32)

By assumption N > 1, thus r(P ) = r(Q), i.e., the rank of P is the same as that of Q. On the one
hand, Q ∈ R6×9, the rank of Q is no more than 6, i.e., r(Q) ≤ 6. On the other hand, we eliminate the
first, the fifth and the ninth columns of Q, and arrive at a sub matrix of Q, i.e. a 6× 6 matrix,

Q1 =


−1 0 −1 0 0 0
N 0 0 0 0 0
0 0 0 −1 0 −1
0 0 0 N 0 0
0 −1 0 0 −1 0
0 0 0 0 N 0

 . (33)

Note the determinant of Q1 is −N3 which is nonzero, the rank of Q1 is six, i.e., r(Q1) = 6. Considering
that Q1 is obtained via eliminating the columns of Q, r(Q1) ≤ r(Q). In summary, 6 = r(Q1) ≤ r(Q) ≤ 6.
This leads to r(Q) = r(P ) = 6. By elementary linear algebra, we have that all the solutions of Pl = 0
forms a linear space, i.e., KerP , of dimension Dim(l)− r(P ) = 3, where Dim(l) is the dimension of vector
l and r(P ) is the rank of matrix P . Furthermore, by assumption ui,i+1 and vi,i+1 are not all zero, q in
Eq. (32) as a vector is non-zero, all the solutions of Pl = q are presented as

{l∗ + sol|sol ∈ KerP}, (34)

where l∗ is a special solution of Pl = q.
In other words, for a given N > 1, not-all-zero ui,i+1 and vi,i+1, all the solutions of Pl = q forms an

affine space of dimension 3. Regarding that l = (a11, a12, a13, a21, a22, a23, a31, a32, a33)T , it corresponds
to a 3× 3 matrix.

This completes the proof.

5.4 Lemma 4

Proof For n = 3, the uniform distribution is the stationary distribution of M at β∗, if and only if

1

3

 1
1
1

T

(M − I3)

∣∣∣∣∣∣∣
β∗

= 0. (35)
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Considering that

(M − I3)|β∗ =
µ

3

 −φ12 − φ13 φ12 φ13
φ21 −φ21 − φ23 φ23
φ31 φ32 −φ31 − φ32

∣∣∣∣∣∣
β∗

, (36)

with non-vanishing mutation rate µ, Eq. (35) is equivalent to 1
1
1

T  −φ12 − φ13 φ12 φ13
φ21 −φ21 − φ23 φ23
φ31 φ32 −φ31 − φ32


∣∣∣∣∣∣∣
β∗

= 0, (37)

or  (φ31 − φ13)− (φ12 − φ21)
(φ12 − φ21)− (φ23 − φ32)
(φ23 − φ32)− (φ31 − φ13)

∣∣∣∣∣∣
β∗

= 0. (38)

Eq. (38) is equivalent to

φ12 − φ21 = φ23 − φ32 = φ31 − φ13, (39)

i.e., at β∗

G12 = G23 = G31. (40)

Notice that every step of the above proof is either “if and only if” or “be equivalent with”, Eq. (40) is
the necessary and sufficient condition of that the stationary distribution of M is uniform at β∗.

This completes the proof.

5.5 Lemma 5

Proof Making use of x = exp(ln(x)) as well as Π exp(x) = exp(
∑
x), for 2 × 2 games, we rewrite the

fixation probability φ12 in Eq. (4) as

φ12 =
1

1 +
∑N−1
i=1 exp

[∑i
k=1 ln(g(−β(u12k + v12)))− g(+β(u12k + v12)))

] . (41)

Since u12 > 0 and v12 > 0 by assumption, u12k + v12 > 0 for 1 ≤ k ≤ N − 1. Taking into account
that g(x) → 1 and g(−x) → 0 as x → +∞, we have that for 1 ≤ k ≤ N − 1, ln(g(−β(u12k + v12))) −
g(+β(u12k + v12)))→ −∞ as β → +∞. Taking this into Eq. (41) leads to that φ12 → 1 as β → +∞.

By the same argument, we have
∑N−1
k=1 ln(g(−β(u12k+v12)))−g(+β(u12k+v12)))→ −∞ as β → +∞.

By Eq. (6), we have φ21/φ12 → 0 as β → +∞. Therefore φ21 = (φ21/φ12)φ12 → 0 as β → +∞.
This completes the proof.

5.6 Lemma 6

Proof By assumption (i), there is an i ∈ {1, 2, 3} such that
(
∂
∂βGi,i+1 − ∂

∂βGi+1,i+2

)∣∣∣
β∗
6= 0, the vector

h is non-zero, where

h =


∂
∂βG1,2 − ∂

∂βG2,3
∂
∂βG2,3 − ∂

∂βG3,1
∂
∂βG3,1 − ∂

∂βG1,2


T
∣∣∣∣∣∣∣∣
β∗

. (42)
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Considering that Gij = φij − φji, the vector h can be rewritten as 1
1
1

T

∂

∂β

 −φ12 − φ13 φ12 φ13
φ21 −φ21 − φ23 φ23
φ31 φ32 −φ31 − φ32


∣∣∣∣∣∣∣
β∗

(43)

or

h =
3

µ

 1
1
1

T (
∂

∂β
(M − I3)

)∣∣∣∣
β∗
, (44)

where M is the transition matrix, i.e., Eq. (2) for n = 3, µ is the non-vanishing mutation rate and I3 is
the identity matrix of order 3.

By assumption ii), z = (z1, z2, z3) ∈ R1×3 is the stationary distribution of M , z is a function of β and
z(M − I3) = 0 for all β > 0. Since g(x) is differentiable by assumption, we take the derivative of the
function z(M − I3) at β∗. This leads to((

∂

∂β
z

)
(M − I3) + z

(
∂

∂β
(M − I3)

))∣∣∣∣
β∗

= 0. (45)

Regarding M bears the uniform distribution as the stationary distribution at β∗ by assumption, i.e.,
z = 1/3(1, 1, 1) at β∗, Eq. (45) can be rewritten as(

∂

∂β
z

)
(M − I3)

∣∣∣∣
β∗

= −µ
9
h. (46)

Since h is non-zero at β∗, ∂
∂β z is nonzero at β∗.

Furthermore, we prove that there exists j∗ such that ∂
∂β zj∗ 6=

∂
∂β zj∗+1 at β∗. Otherwise ∂

∂β zk =
∂
∂β zk+1 at β∗ for k = 1, 2, 3. Considering that

∑3
k=1 zk = 1 for all β,

∑3
k=1

∂
∂β zk = 0 at β∗. This leads

to ∂
∂β zk = 0 for k = 1, 2, 3 at β∗, i.e., ∂

∂β z is a zero vector at β∗. This is a contradiction.

For this j∗, we have ∂
∂β (zj∗ − zj∗+1) 6= 0 at β∗, without loss of generality, we assume ∂

∂β (zj∗ − zj∗+1) >

0 at β∗. Since the imitation function is continuously differentiable, ∂
∂β (zj∗ − zj∗+1) is continuous at β∗.

This implies that there exists δ > 0 such that ∂
∂β (zj∗ − zj∗+1) > 0 for all β ∈ (β∗ − δ, β∗ + δ). Thus

zj∗ − zj∗+1 is increasing within the interval (β∗− δ, β∗+ δ). Considering that the uniform distribution is
the stationary distribution at β = β∗, zj∗ − zj∗+1 = 0 at β∗ by assumption, we have zj∗ − zj∗+1 < 0 for
β ∈ (β∗ − δ, β) and zj∗ − zj∗+1 > 0 for β ∈ (β, β∗ + δ). In other words, the ranking of strategy j∗ and
j∗ + 1 changes at β∗.

This completes the proof.
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