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Local Linearisation

If the deterministic part of the dynamics evolve according to a linear differential equation

ẋ = Ax + Bu (1)

then a discrete time update is given by

x(t) = exp(At)x(0) +

∫ t

0

exp(A(t− τ))Bu(τ)dτ (2)

For time step n, if we assume that u(t) = 0 except at t = t(n) then we have

xn = exp(Adt)xn−1 + Bun (3)

where dt is the time step. If un is not changing quickly we have un = un−1. For nonlinear dynamics

ẋ = f(x,u) (4)

then we can write
xn = F nxn−1 + Hnun−1 (5)

where the flow matrices are given by

F n = exp (J(f ,x)dt) (6)

Hn = J(f ,v)dt

and J(f ,x) is the Jacobian matrix of the function f with respect to x (matrix of first derivatives). In
forward inference, these are evaluated at x = mn−1 and u = un−1 (for known causes) or u = rn−1 (for
estimated causes).

However, our evaluations of the above approximations for F n and Hn showed considerable inaccu-
racies for a range of angles, φ. We therefore adopted the following ‘local regression’ approach which is
similar to that proposed by Schaal [28]. This used multiple, typically 10, expansion points sampled from
the previous posterior (mn−1, P n−1). For each, we evaluated the gradient f(x,u) and estimated the
next state based on a first order Euler method. We then regressed the next states onto previous states
and computed F n and Hn using least squares regression.


