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Supporting information

1 Strain energy formalism

1.1 Isotropic strain energy

The model that we used, as most continuous mechanics methods, is based on the minimization of strain

energy. In the case of St. Venant-Kirchoff description for the isotropic material [1], this energy takes the

form

Wiso =

∫
Ω

wisodΩ =

∫
Ω

(
λ

2
(trE)2 + µtrE2)dΩ, (1)

where Ω is the material domain, E is a Green-Lagrange strain tensor and Lame parameters λ and µ

are related to Young’s modulus Y and Poisson’s ratio ν. In three dimensions the relation between those

material parameters becomes [1]

λ =
Y ν

(1 + ν)(1− 2ν)
, µ =

Y

2(1 + ν)
. (2)

In case of plane stress condition these equations take form [1]

λ =
Y ν

1− ν2
, µ =

Y

2(1 + ν)
. (3)

The Green-Lagrange strain tensor can be expressed in terms of Cauchy-Green deformation tensor C and

identity tensor I as

E =
1

2
(C − I). (4)

The Cauchy-Green deformation tensor is a function of deformation gradient tensor F

C = FTF. (5)

The deformation gradient tensor F is the gradient of the deformation function Φ

F = ∇Φ (6)
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If we describe a motion of the particle as

x = Φ(X, t), (7)

where x is a position vector of particle in current configuration and X its position in undeformed (material)

coordinates.

The strain energy density is usually expressed in terms of invariants of the strain tensor I1 = trE and

I2 = trE2

wiso =
λ

2
I2
1 + µI2, (8)

or equivalently by Cauchy-Green tensor invariants I ′1 = trC and I ′2 = trC2

I1 =
1

2
I ′1 −

1

2
trI, (9)

I2 =
1

4
I ′2 −

1

2
I ′1 +

1

4
trI. (10)

1.2 Anisotropic strain energy

Strain energy density for the isotropic material can be decomposed as:

wiso = wx + wy + wz

=
λ

2
(eT1 Ee1)trE + µ(eT1 E

2e1)

+
λ

2
(eT2 Ee2)trE + µ(eT2 E

2e2)

+
λ

2
(eT3 Ee3)trE + µ(eT3 E

2e3),

(11)

where the ei, for i = 1...3 are versors of Cartesian coordinate system and three terms present the equal

parts corresponding to each of the x, y and z directions. Analogically the energy wa corresponding with

arbitrary direction represented by the vector ~a we expressed as

wa =
λ

2
(~aTE~a)trE + µ(~aTE2~a). (12)
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Now if we consider a transversely isotropic material, which has different mechanical properties in a single

direction we can define

∆λ = λL − λT (13)

and

∆µ = µL − µT , (14)

where λL, µL are Longitudinal Lame constants in a given direction ~a and λT , µT are Transverse Lame

constants in a plane transverse to ~a. These can be related to the longitudinal YL and transverse YT Young

modulus by the use of Equation 2 or 3 and considering the same Poisson’s ratio for different directions

(Equation 4 in the main text shows this for plane stress).

With these definitions we introduced the term which has to be added to isotropic strain energy to account

for anisotropic material having different mechanical properties in the given direction ~a as

∆waniso =
∆λ

2
I1I4 + ∆µI5, (15)

where I1 = trE was introduced before and I4 = ~aTE~a and I5 = ~aTE2~a are invariants of the strain tensor

constructed with vector ~a. Similar to the other invariants, I4 and I5 can also be expressed in terms of

analogical invariants of Cauchy deformation tensor C, I ′4 = ~aTC~a and I ′5 = ~aTC2~a

I4 =
1

2
~aT (C − I)~a =

1

2
I ′4 −

1

2
, (16)

I5 =
1

4
~aT (C2 − 2C + I)~a =

1

4
I ′5 −

1

2
I ′4 +

1

2
, (17)

2 Details of Triangular Biquadratic Springs implementation

2.1 Strain energy formalism in TRBS

All of the invariants necessary for evaluating the isotropic and anisotropic energy densities can be ex-

pressed in terms of deformation gradient tensor F. In the case of triangular elements, it is convenient to

derive F in terms of position of the nodes in resting and deformed states of the element. The i’th shape
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vector Di corresponding with the node Pi in the resting shape (Figure 1B in the main text) is:

Di =
1

AP
(Pj − Pk)⊥ ; εijk = 1, (18)

where AP is the resting area of the element, εijk is the permutation symbol and X⊥ is orthogonal to the

vector X. In this case the expression for F becomes [2]

F = Qi ⊗Di, (19)

where Qi is the position vector of i’th node in the deformed shape.

Using these expressions, the Cauchy-Green deformation tensor becomes

C = (Di ⊗Dj)(Qi ·Qj). (20)

In the above equations and through out the text the repeated indices are summed over from 1 to 3, unless

stated otherwise (we assume Einsteins summing convention).

These invariants can be calculated in terms of the angles αi of resting shape, edges li, Li of resting and

deformed shapes and areas AP , AQ of resting and deformed shapes of triangular elements and the strain

energy becomes [2]

wiso =
ki
4

(∆2li)
2 + Σi6=j

ck
2

∆2li∆
2lj , (21)

where ∆2li = l2i − L2
i is the square elongation of the i’th edge and ki and ck are tensile and angular

elasticities of TRBS given by:

ki =
2(λ+ 2µ)cot2αi + 2µ

16AP
=
Y (2cot2αi + 1− ν)

16(1− ν2)AP
, (22)

and

ck =
24(λ+ 2µ)cotαicotαj − 2µ

16AP
=
Y (2cotαicotαj − 1 + ν)

16(1− ν2)AP
. (23)

By taking derivative of w respect to Qi we can derive an expression for force fi applied on the node i:

fi = −AP
(
∂wiso
∂Qi

)T
= Σj 6=ikk∆2lk(Qj −Qi) + Σj 6=i(cj∆

2li + ci∆
2lj)(Qj −Qi). (24)
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This expression provides the force on each node entirely in terms of node positions of the triangular

elements in resting and deformed configurations.

2.2 Anisotropic TRBS implementation

In TRBS framework, Cauchy-Green deformation tensor invariants can be expressed in terms of position

vectors Qi and shape vectors Di

I ′1 = trC = (Qi ·Qj)(Di ·Dj), (25)

I ′2 = trC2 = (Qm ·Qn)(Qr ·Qs)(Dn ·Dr)(Dm ·Ds), (26)

I ′4 = ~aTC~a = (Qm ·Qn)(~a ·Dm)(~a ·Dn), (27)

I ′5 = ~aTC2~a = (Qm ·Qn)(Qr ·Qs)(Dn ·Dr)(~a ·Dm)(~a ·Ds), (28)

where we continue using Einsteins summing convention.

The anisotropic correction term for the TRBS force on i’th node ∆fi can be derived from our definition

of ∆waniso (Equation 15) as

∆fi = −AP
∂∆waniso
∂Qi

= −AP
[

∆λ

2

(
I4
∂I1
∂Qi

+ I1
∂I4
∂Qi

)
+ ∆µ

∂I5
∂Qi

]
. (29)

2.3 Strain and Stress in TRBS

The strain is a local measure of deformation. There exist different strain measures comparing the changes

of relative material point positions between undeformed and deformed (current) configurations. We use

two strain measures: Green-Lagrange strain E (Equation 4), which operates on undeformed (material)

coordinates and Euler-Almansi strain e relating quantities in deformed (current) coordinates and is defined

by:

e =
1

2
(I − FT−1F−1) =

1

2
(I − b−1), (30)

where we introduced b = FFT as left CauchyGreen deformation tensor. The strain tensors are energy

conjugates of appropriate stress measures. The second Piola-Kirchhoff stress tensor S is an energy
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conjugate of Green-Lagrange strain E.

S =
∂W

∂E
(31)

The Cauchy stress tensor σ is the energy conjugate of the Euler-Almansi strain e. The Cauchy stress

tensor is related to second Piola-Kirchhoff stress by

σ =
1

det(F )
FSFT . (32)

In case of St. Venant-Kirchhoff material (1) these become:

S = λ(trE)I + 2µE (33)

and

σ =
AP
AQ

[FFT (λtrE) + 2µF
1

2
(C − I)FT ]

=
AP
AQ

[
(λtrE − µ)b+ µb2

]
,

(34)

where we used the fact that for TRBS det(F ) =
AQ

AP
. Analogically the correction energy term from

material anisotropy will give rise to stress correction terms

∆S =
∂∆W

∂E
,

∆σ =
1

det(F )
F∆SFT .

(35)

Direct calculation from anisotropic energy (15) gives

∆S =
∆λ

2
(I4

∂I1
∂E

+ I1
∂I4
∂E

) + ∆µ
∂I5
∂E

=
∆λ

2
((aTEa)I + (trE)(a⊗ a)) + ∆µ(E(a⊗ a) + (a⊗ a)E).

(36)

Finally the expression for the Cauchy’s stress including effects of anisotropy becomes

σ =
AP
AQ

F [S + ∆S]FT . (37)
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The total force ~f total on the i’th node of each element can be calculated using the total second Piola-

Kirchhoff stress S + ∆S, deformation gradient tensor F and the corresponding shape vector Di.

f totali = −APF (S + ∆S)Di. (38)

3 Nonlinear Finite Element Method

The Finite Element Method (FEM) is well established procedure for solution of differential equations on

complicated domains. In this paper we used a nonlinear formulation of shell FEM to check the effect

of some simplistic assumptions of the TRBS on the behavior of our model. The detailed description of

the nonlinear FEM used in this paper can be found in textbooks [3]. The derivation of the mechanical

equilibrium in FEM is based on the weak formulation of elasticity equations - the principle of virtual

work. The variation of the work δW due to the virtual rate of deformation tensor, δd, and velocities, δv,

can be written in spatial or Eulerian form as

δW =

∫
ω

σ : δd dv −
∫
ω

f · δv dv −
∫
∂ω

t · δv da = 0, (39)

where σ is Cauchy’s stress tensor, f and t are body forces and tractions respectively, ω and ∂ω denote

the domain of interest and its boundary respectively and dv, da corresponding infinitesimal elements.

The standard procedure of solving this problem is linearization and iterative steps with respect to trial

deformation solution φk eg. by use of the Newton-Raphson method. The equilibrium equations linearized

in the direction of increment u in φk can be written as:

DδW (φk, δv)[u] = DδWint(φk, δv)[u]−DδWext(φk, δv)[u], (40)

where

δWint(φk, δv)[u] =

∫
ω

σ : δd dv (41)

δWext(φk, δv)[u] =

∫
ω

f · δv dv +

∫
∂ω

t · δv da, (42)
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are describing internal and external work components. A careful derivation shows that linearization of

the internal work can be expressed as:

DδWint(φk, δv)[u] =

∫
ω

δd : c : ε dv +

∫
ω

σ : [(∇u)T∇δv] dv. (43)

Here δd is a virtual rate of deformation tensor, c is a fourth order spatial elasticity tensor, and ε is a

small deformation strain tensor. The above equation constitutes a more general form of Equation 1, as

here no specific assumptions about the material properties have been introduced. In our model we used

the anisotropic material defined by strain energy density (Equations 8 and 15)

w = wiso + ∆waniso. (44)

The Cauchy stress

σ =
1

det(F )
F :

∂w

∂E
: FT (45)

and elasticity tensor

c =
1

det(F )
F ⊗ F :

∂2w

∂E2
: FT ⊗ FT (46)

calculated for this strain energy density were used in solution of Equation 43.

Discretization of this equation will yield a stiffness matrix, which because of apparent symmetry of above

equation in u and δv will be symmetric too. The discretization of u and δv is performed with respect to

shape vectors, which provide a local support basis for the problem and which specific form depends on

the choice of the finite element discretization.

3.0.1 Shell kinematics

We have used quadrilateral shell elements, which give a good description of thin curved surfaces and

provide an alternative to TRBS. The shell description is essentially three-dimensional elasticity with

specific kinematic and mechanical assumptions built in into the theory. Here we will in short present

extensible director formulation of shell element kinematics which has been used for quadrilateral shells

in the simulations. For details of shell kinematics see [4] and for specifics of extensible director approach

see [5]. The undeformed geometry of shell is described in local shell coordinates ξi with respect to its
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reference surface X̄ with the following relations:

X(ξi) = X̄(ξα) + G(ξi) (47)

X̄(ξα) =

n∑
a=1

Na(ξα)X̄a (48)

G(ξi) =

n∑
a=1

Na(ξα)za(ξ3)Ḡa (49)

za(ξ3) = N+(ξ3)z+
a +N−(ξ3)z−a (50)

N+(ξ3) =
1

2
(1 + ξ3), N−(ξ3) =

1

2
(1− ξ3), (51)

where Latin and Greek indices are assumed to span from 1 to 3 and from 1 to 2 respectively. The unit

vector Ḡ is called the director and it describes position of the body particle with respect to the point on the

reference surface X̄. This point in turn is described by the two dimensional shape functions Na and nodal

points of the element X̄a. The function za describes the thickness of the element in terms of the distance

from the reference surface to the bottom, z−a , and top, z+
a , surfaces. The similar interpolation is used

to describe the current configuration of the shell element and in consequence the displacement vectors.

The director vector in deformed configuration is no longer required to be of unit length which takes into

account thickness changes. The definitions of the shape functions (and their respective derivatives) allow

to parametrize the deformations and deformation gradient tensors with nodal positions of elements in

current and unreformed configurations. These quantities together with the definitions of appropriate

material provide the way to calculate the strain, stress and elasticity tensors.
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