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LMNs and Boolean Networks

Boolean networks were introduced by S. Kauffman more than 40 years ago as models of gene regulation [1,
2]. Since then, they have been extensively used as simple models for the dynamics of complex networks.
A Boolean network is typically formulated as a directed graph with N nodes in a set N = {1, 2, . . . , N},
whose state of the n-th node is characterized by a (deterministic) binary variable xn(t) taking 0-1 values.
The status of each node is influenced by an input function bn(xxx), which is a Boolean function over a
subset of the binary state variables x1, x2, . . . , xN . Given a fixed time step ∆t, the state of the Boolean
network at time (m+1)∆t is determined by synchronously updating the states of all nodes in the network
at time m∆t using the deterministic rule

xn((m+ 1)∆t) = bn(xxx(m∆t)), for every n ∈ N , (S1)

or more general probabilistic updating rules [3, 4].
The vast majority of complex networks of interest do not update their states in a synchronous manner.

As a consequence, Boolean networks tend to oversimplify the dynamics of many real networks. To address
this problem, a number of investigators have focused their effort on an asynchronous stochastic updating
scheme that leads to stochastic asynchronous Boolean networks [5–7]. According to this scheme, the
state of a Boolean network at time (m+ 1)∆t is determined by randomly selecting a node in the network
(usually uniformly among all nodes), by updating the state of this node using the associated Boolean
function, and by leaving the states of the remaining nodes unchanged. In this case,

xn((m+ 1)∆t) =

{
bn∗(xxx(m∆t)), for n = n∗

xn(m∆t), for n 6= n∗,
(S2)

where n∗ is the node selected to be updated at time (m+ 1)∆t.
Although the previous modification results in a model than may be more realistic than the classical

Boolean model, it does not take into consideration major features of real complex networks. In particular,
the model does not account for the facts that state updating can occur at any time t (not necessarily
at discrete times m∆t) and that the time of next updating as well as the node to be updated can be
influenced by the current state of the network. To address these issues, a number of models have been
proposed in the literature [8–14]. It turns out that the LMN model discussed in this paper effectively
addresses these problems and provides a natural alternative to the stochastic Boolean network models
studied in the literature; see [14]. As a matter of fact, if the network is at state xxx(t) at time t, then
the time t+ τ∗ at which the state of the network will be next updated can be determined by drawing a
sample τ∗ from the exponential distribution

et(τ) =
{∑
n∈N

αn(xxx(t))
}

exp
{
− τ

∑
n∈N

αn(xxx(t))
}
, τ > 0, (S3)

where
αn(xxx) = (1− xn)

[
`+n + fn(rn(xxx))

]
+ xn

[
`−n + gn(rn(xxx))

]
. (S4)
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Moreover, the node to be updated can be specified by drawing a sample n∗ from the probability distri-
bution

ut(n) =
αn(xxx(t))∑

n′∈N αn′(xxx(t))
, n ∈ N . (S5)

In this case [compare with Eq. (S2)]

xn(t+ τ∗) =

{
1− xn∗(t), for n = n∗

xn(t), for n 6= n∗.
(S6)

This implies that the LMN model is a continuous-time Boolean network model with state-dependent
asynchronous node updating and Boolean functions bn(xxx) = 1− xn assigned at each node n ∈ N .

Markovianity of the Fractional Activity Process

Because the activity process {XXX(t), t ≥ 0} is a Markov process, only a single transition from XXX(t) to
XXX(t) + eeen∗ or XXX(t) − eeen∗ , for some n∗ ∈ N , can occur within the infinitesimally small time interval
[t, t+ dt), where eeen∗ is the n∗-th column of the N ×N identity matrix. Since

Yk(t) :=
1

Nk

∑
n∈Nk

Xn(t), for every k ∈ K, (S7)

where K = {1, 2, . . . ,K}, with K being the number of homogeneous sub-populations Nk, and Nk = |Nk|
(i.e., the cardinality ofNk), this also means that the fractional activity process {YYY (t), t ≥ 0} can transition
only once within [t, t+ dt) from YYY (t) to YYY (t) + ẽeek or YYY (t)− ẽeek. Here, ẽeek is the k-th column of the K ×K
identity matrix multiplied by N−1

k and k ∈ K is such that n∗ ∈ Nk. As a matter of fact, the transition
probabilities are given by

Pr
[
YYY (t)→ YYY (t) + ẽeek within [t, t+ dt) |XXX(t) = xxx

]
=
∑
n∈Nk

p+
n (xxx)dt

=
∑
n∈Nk

(1− xn)
[
`+n + fn(rn(xxx))

]
dt

=
∑
n∈Nk

(1− xn)
[
λ+
k + φk(ρk(yyy))

]
dt

=
(
Nk −

∑
n∈Nk

xn

)[
λ+
k + φk(ρk(yyy))

]
dt

= Nk(1− yk)
[
λ+
k + φk(ρk(yyy))

]
dt, (S8)

where p+
n (xxx) is the propensity function of activation of the n-th node of the LMN (see Methods in Main

Text) and the k-th element yk of yyy is given by N−1
k

∑
n∈Nk

xn. Moreover, φk and λ+
k are such that, for

every k ∈ K, fn = φk and `+n = λ+
k , for all n ∈ Nk, and we have ignored terms that go to zero faster

than dt. Finally, we have used the assumption that there exists a function ρk such that rn(xxx) = ρk(yyy),
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for every n ∈ Nk. Likewise, we have that

Pr
[
YYY (t)→ YYY (t)− ẽeek within [t, t+ dt) |XXX(t) = xxx

]
=
∑
n∈Nk

p−n (xxx)dt

=
∑
n∈Nk

xn
[
`−n + gn(rn(xxx))

]
dt

=
∑
n∈Nk

xn
[
λ−k + γk(ρk(yyy))

]
dt

= Nkyk
[
λ−k + γk(ρk(yyy))

]
dt, (S9)

where p−n (xxx) is the propensity function of inactivation of the n-th node of the LMN (see Methods in Main
Text), whereas γk and λ−k are such that, for every k ∈ K, gn = γk and `−n = λ−k , for all n ∈ Nk.

The previous discussion shows that the fractional activity process {YYY (t), t ≥ 0} is Markovian with
propensity functions given by

π+
k (yyy) = Nk(1− yk)

[
λ+
k + φk(ρk(yyy))

]
(S10)

π−k (yyy) = Nkyk
[
λ−k + γk(ρk(yyy))

]
. (S11)

As a consequence, the probability distribution P (yyy; t) satisfies the following master equation:

∂P (yyy; t)

∂t
=
∑
k∈K

{
π+
k (yyy − ẽeek)P (yyy − ẽeek; t) + π−k (yyy + ẽeek)P (yyy + ẽeek; t)−

[
π+
k (yyy) + π−k (yyy)

]
P (yyy; t)

}
. (S12)

Finally, it is important to note that, when the net input to a node n in the LMN is given by rn(xxx) =
hn + aaaTnxxx, we can find a function ρk such that rn(xxx) = ρk(yyy), for every n ∈ Nk. Indeed, if hn = ηk, for
every n ∈ Nk, and ann′ = wkk′/Nk′ , for every n ∈ Nk, n′ ∈ Nk′ , then, for every n ∈ Nk, we have that

rn(xxx) = hn +
∑
n′∈N

ann′xn′

= hn +
∑
k′∈K

∑
n′∈Nk′

ann′xn′

= ηk +
∑
k′∈K

∑
n′∈Nk′

wkk′

Nk′
xn′

= ηk +
∑
k′∈K

wkk′
1

Nk′

∑
n′∈Nk′

xn′

= ηk +
∑
k′∈K

wkk′yk′ , (S13)

which shows that ρk(yyy) = ηk +
∑

k′∈K wkk′yk′ .

Linear Noise Approximation

By following [15] (see also [16]), we define the shift operators Σ−k and Σ+
k as

Σ−k ϕ(y1, . . . , yk−1, yk, yk+1, . . . , yK) := ϕ(y1, . . . , yk−1, yk −N−1
k , yk+1, . . . , yK) (S14)

Σ+
k ϕ(y1, . . . , yk−1, yk, yk+1, . . . , yK) := ϕ(y1, . . . , yk−1, yk +N−1

k , yk+1, . . . , yK), (S15)
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for k ∈ K and any function ϕ(yyy). By using a Taylor series expansion, we have that

Σ−k ϕ(yyy) = ϕ(yyy)−N−1
k

∂ϕ(yyy)

∂yk
+
N−2

k

2

∂2ϕ(yyy)

∂y2
k

−
N−3

k

3!

∂3ϕ(yyy)

∂y3
k

+ · · · (S16)

Σ+
k ϕ(yyy) = ϕ(yyy) +N−1

k

∂ϕ(yyy)

∂yk
+
N−2

k

2

∂2ϕ(yyy)

∂y2
k

+
N−3

k

3!

∂3ϕ(yyy)

∂y3
k

+ · · · (S17)

In this case, we can write the master equation (S12) as

∂P (yyy; t)

∂t
=
∑
k∈K

{(
Σ−k − 1

)
π+
k (yyy)P (yyy; t) +

(
Σ+

k − 1
)
π−k (yyy)P (yyy; t)

}
=
∑
k∈K

{(
−N−1

k

∂

∂yk
+
N−2

k

2

∂2

∂y2
k

−
N−3

k

3!

∂3

∂y3
k

+ · · ·
)
× π+

k (yyy)P (yyy; t)

+
(
N−1

k

∂

∂yk
+
N−2

k

2

∂2

∂y2
k

+
N−3

k

3!

∂3

∂y3
k

+ · · ·
)
× π−k (yyy)P (yyy; t)

}
. (S18)

If we now define the drift and diffusion functions by

Ak(yyy) :=
π+
k (yyy)− π−k (yyy)

Nk
(S19)

Dk(yyy) :=
π+
k (yyy) + π−k (yyy)

Nk
, (S20)

respectively, then

∂P (yyy; t)

∂t
=−

∑
k∈K

{∂[Ak(yyy)P (yyy; t)]

∂yk
−
N−1

k

2

∂2[Dk(yyy)P (yyy; t)]

∂y2
k

+
N−2

k

3!

∂3[Ak(yyy)P (yyy; t)]

∂y3
k

+ · · ·
}
. (S21)

This equation, together with the ansatz

Yk(t) = µk(t) +
1√
Nk

Wk(t), t > 0, k ∈ K, (S22)

yields

∂P (yyy; t)

∂t
=−

∑
k∈K

{
N

1/2
k

∂[Ak(yyy)P (yyy; t)]

∂wk
− 1

2

∂2[Dk(yyy)P (yyy; t)]

∂w2
k

+
N
−1/2
k

3!

∂3[Ak(yyy)P (yyy; t)]

∂w3
k

+ · · ·
}
. (S23)

In Eq. (S22), µµµ(t) solves the macroscopic differential equations:

dµk(t)

dt
= [1− µk(t)]

[
λ+
k + φk(ρk(µµµ(t)))

]
− µk(t)

[
λ−k + γk(ρk(µµµ(t)))

]
, t > 0, k ∈ K, (S24)

initialized by µµµ(0) = 0, whereas, for each t, Wk(t), k ∈ K, are zero-mean correlated Gaussian random
variables. We can now use a Taylor expansion of the drift and diffusion functions to obtain:

Ak(yyy) = Ak

(
µ1 +

1√
N1

w1, . . . , µK +
1√
NK

wK

)
= Ak(µµµ) +

∑
k′∈K

N
−1/2
k′ wk′Akk′(µµµ) +

∑
k′∈K

∑
k′′∈K

N
−1/2
k′ N

−1/2
k′′ wk′wk′′Akk′k′′(µµµ) + · · · , (S25)
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for k ∈ K, where Akk′(yyy) := ∂Ak(yyy)/∂yk′ and Akk′k′′(yyy) := ∂2Ak(yyy)/∂yk′∂yk′′ , and likewise for the
diffusion functions. In this case, Eq. (S23) becomes

∂P (yyy; t)

∂t
= −

∑
k∈K

N
1/2
k

∂[Ak(µµµ)P (yyy; t)]

∂wk
−
∑
k∈K

N
1/2
k

∑
k′∈K

N
−1/2
k′

∂[wk′Akk′(µµµ)P (yyy; t)]

∂wk

+
1

2

∑
k∈K

∂2[Dk(µµµ)P (yyy; t)]

∂w2
k

+O(N
−1/2
k ). (S26)

We can now replace the probability distribution P (yyy; t) of the fractional activity process with the prob-
ability distribution P ′(www; t) of the noise process, in which case we obtain

∂P ′(www; t)

∂t
=
∑
k∈K

N
1/2
k

[
dµk(t)

dt
−Ak(µµµ(t))

]
∂P ′(www; t)

∂wk

−
∑
k∈K

N
1/2
k

∑
k′∈K

N
−1/2
k′ Akk′(µµµ(t))

∂[wk′P
′(www; t)]

∂wk

+
1

2

∑
k∈K

Dk(µµµ(t))
∂2P ′(www; t)

∂w2
k

+O(N
−1/2
k ), (S27)

by virtue of the fact that

∂P (yyy; t)

∂t
=
∂P ′(www; t)

∂t
+
∑
k∈K

dwk(t)

dt

∂P ′(www; t)

∂wk

=
∂P ′(www; t)

∂t
−
∑
k∈K

N
1/2
k

dµk(t)

dt

∂P ′(www; t)

∂wk
, (S28)

where the second equality is a consequence of the fact that dYk(t)/dt = 0 (except at time points on a set

of measure zero at which the derivative is infinite). This implies that dwk(t)/dt = −N1/2
k dµk(t)/dt, by

virtue of Eq. (S22).
Note now that µµµ(t) satisfies the macroscopic equations dµk(t)/dt = Ak(µµµ(t)). As a consequence, and

by virtue of Eq. (S27), the noise probability distribution P ′(www; t) is approximately governed by the linear
Fokker-Planck equation

∂P ′(www; t)

∂t
= −

∑
k∈K

∑
k′∈K

√
ζk
ζk′

Akk′(µµµ(t))
∂[wk′P

′(www; t)]

∂wk
+

1

2

∑
k∈K

Dk(µµµ(t))
∂2P ′(www; t)

∂w2
k

, (S29)

where ζk = Nk/N and we ignore the terms of O(N
−1/2
k ). Note that this equation does not depend

on N , since we have used the relation Nk/Nk′ = ζk/ζk′ , which is true at any point en route to the
thermodynamic limit. The solution to this equation is a multivariate Gaussian density with zero mean
and correlation matrix R(t) with elements rkk′(t) = E[Wk(t)Wk′(t)] that satisfy the following system of
Lyapunov equations:

drkk′(t)

dt
= Dk(µµµ(t))∆(k − k′) +

∑
k′′∈K

√
ζk
ζk′′

Akk′′(µµµ(t)) rk′′k′(t) +
∑
k′′∈K

√
ζk′

ζk′′
Ak′k′′(µµµ(t)) rkk′′(t), (S30)

for t > 0 and k, k′ ∈ K, initialized with rkk′(0) = 0, for every k, k′ ∈ K, where ∆ is the Kronecker delta
function.
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We note here that there are two approximation steps involved with the LNA method. The first

step is the ansatz given by Eq. (S22), whereas the second step is ignoring all terms of O(N
−1/2
k ) in

Eq. (S27). Theoretically speaking, justification of the second step is simple – we can take N to be large
so that 1/

√
Nk is small enough that any term in the expansion multiplied by 1/

√
Nk is negligible. This

requirement however is not useful in practice, since we cannot determine the appropriate value of N that
satisfies the required condition. On the other hand, assuming that N is large enough for the previous
approximation to be valid, Eq. (S22) can be justified only for monostable systems [15].

Leakiness and Irreducibility

In the theory of Markov processes, the state yyy is said to be accessible from another state yyy′ if there is a
non-zero probability to transition (possibly through intermediate states) from yyy′ to yyy. We denote this by
yyy′ → yyy. The states yyy and yyy′ are said to be communicating whenever yyy → yyy′ and yyy′ → yyy. In this case, we
write yyy � yyy′. If all states yyy ∈ Y are communicating, then there is a non-zero probability to transition
from any state to any other state, and the Markov process is said to be irreducible. An irreducible Markov
process has a unique, strictly positive, and asymptotically stable stationary probability distribution that
is independent of the initial condition.

It is often difficult to prove that a Markov processes is irreducible. The following results allow us to
determine when the fractional activity process YYY (t) in a LMN is irreducible. It turns out that leakiness
is intimately related to irreducibility.

Proposition 1. If λ+
k > 0, for every k ∈ K, then 0→ yyy′ → 1 for all yyy′ ∈ Y, where 0 is the state of zero

fractional inactivity and 1 is the state of maximum fractional activity.

Proof. For every yyy ∈ Y such that yk ≤ 1 − 1/Nk, for some k ∈ K, we have π+
k (yyy) = Nk(1 − yk)[λ+

k +
φk(ρk(yyy))] ≥ λ+

k + φk(ρk(yyy)) > 0, where the second inequality is due to the fact that λ+
k > 0 and

φk(ρk(yyy)) ≥ 0. Therefore, yyy → yyy + ẽeek, where ẽeek is the k-th column of the K × K identity matrix
multiplied by N−1

k . Thus, for any state yyy ∈ Y such that yyy + ẽeek ∈ Y, we have that yyy → yyy + ẽeek. Let
yyy′ = (n1/N1, n2/N2, . . . , nK/NK)T , for some n1, n2, . . . , nK . A non-zero probability path from 0 to yyy′ is
then given by the following sequence: n1 transitions taking yyy → yyy+ ẽee1, followed by n2 transitions taking
yyy → yyy+ ẽee2, . . ., followed by nK transitions taking yyy → yyy+ ẽeeK . Likewise, a non-zero probability path from
yyy′ to 1 is given by the following sequence: N1 − n1 transitions taking yyy → yyy + ẽee1, followed by N2 − n2

transitions taking yyy → yyy+ẽee2, . . ., followed by NK−nK transitions taking yyy → yyy+ẽeeK . Hence, 0→ yyy′ → 1,
for all yyy′ ∈ Y.

Corollary 1. If λ+
k > 0, for every k ∈ K, and 1→ 0, then YYY (t) is irreducible.

Proof. From Proposition 1, and for any yyy′, yyy′′ ∈ Y, we have that yyy′ → 1 and 0→ yyy′′. Since, 1→ 0, this
implies yyy′ → 1→ 0→ yyy′′ and thus YYY (t) is irreducible.

Proposition 2. If λ−k > 0, for every k ∈ K, then 1→ yyy′ → 0 for all yyy′ ∈ Y.

Proof. For every yyy ∈ Y such that yk ≥ 1/Nk, for some k ∈ K, we have π−k (yyy) = Nkyk[λ−k + γk(ρk(yyy))] ≥
λ−k + γk(ρk(yyy)) > 0, where the second inequality is due to the fact that λ−k > 0 and γk(ρk(yyy)) ≥ 0.
Therefore, yyy → yyy − ẽeek. Thus, for any state yyy ∈ Y such that yyy − ẽeek ∈ Y, we have that yyy → yyy − ẽeek.
Let yyy′ = (n1/N1, n2/N2, . . . , nK/NK)T , for some n1, n2, . . . , nK . A non-zero probability path from 1 to
yyy′ is then given by the following sequence: N1 − n1 transitions taking yyy → yyy − ẽee1, followed by N2 − n2

transitions taking yyy → yyy − ẽee2, . . ., followed by NK − nK transitions taking yyy → yyy − ẽeeK . On the other
hand, a non-zero probability path from yyy′ to 0 is given by the following sequence: n1 transitions taking
yyy → yyy−ẽee1, followed by n2 transitions taking yyy → yyy−ẽee2, . . ., followed by nK transitions taking yyy → yyy−ẽeeK .
Hence, 1→ yyy′ → 0, for all yyy′ ∈ Y.
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Corollary 2. If λ−k > 0, for every k ∈ K, and 0→ 1, then YYY (t) is irreducible.

Proof. From Proposition 2, and for any yyy′, yyy′′ ∈ Y, we have that yyy′ → 0 and 1→ yyy′′. Since, 0→ 1, this
implies yyy′ → 0→ 1→ yyy′′ and thus YYY (t) is irreducible.

By combining the previous results, we obtain the following theorem:

Theorem 1. If λ−k , λ
+
k > 0, for every k ∈ K, then YYY (t) is irreducible.

Note that physical systems satisfy a condition referred to as microscopic reversibility. This means
that any physically possible transition from one state to another is also possible in the reverse direction.
According to Theorem 1, taking λ−k , λ

+
k > 0, for every k ∈ K, results in an irreducible LMN model that

ensures microscopic reversibility since, in this case, transitions from one state to another are also possible
in the reverse direction. Therefore, we can make a LMN that violates microscopic reversibility satisfy
this condition by setting the leak parameters to positive (and, if necessary, minuscule) values.

Thermodynamic Stability, Robustness, and Critical Behavior

We now employ a parameter Ω = N/N0, where N is the net number of nodes in the network and N0 is a
normalizing constant. If N0 � 1, we may approximately assume that Ω is continuous-valued. We use Ω
to quantify the size of the network.

The probability distribution of the fractional activity process is given by the Boltzmann-Gibbs distri-
bution

PΩ(yyy; t) =
1

ZΩ(t)
e−ΩVΩ(yyy;t), (S31)

where

VΩ(yyy; t) := − 1

Ω
ln

PΩ(yyy; t)

PΩ(yyy∗Ω(t); t)
(S32)

is the potential energy function with yyy∗Ω(t) being a state in Y at which PΩ(yyy; t) attains its (global)
maximum at time t, and

ZΩ(t) :=
∑
yyy∈Y

e−ΩVΩ(yyy;t) (S33)

is the partition function. Based on this formula, we can define a number of quantities that can be used
to characterize the behavior of a LMN (and, as a matter of fact, of any Markovian network [17]), when
nodes are removed from the network. We adopt these quantities from classical thermodynamics where
they are used to describe the behavior of a physical system as its volume contracts or expands [18–21].
In particular, we can define the internal energy, entropy, and Helmholtz free energy, and subsequently
introduce the concepts of internal potential energy, free potential energy, internal pressure, pressure, and
bulk modulus. In the following, we denote by A the stationary limit of a time-varying parameter A(t);
i.e., A = limt→∞A(t).

The internal energy at time t is defined by

UΩ(t) := ΩEt[UΩ(YYY )], for t ≥ 0, (S34)

where

UΩ(yyy) := − 1

Ω
lnPΩ(yyy) (S35)

is the energy of state yyy ∈ Y and Et[·] denotes expectation with respect to the probability distribution
PΩ(yyy; t). On the other hand, the Helmholtz free energy FΩ(t) at time t is defined by

FΩ(t) := UΩ(t)− SΩ(t), (S36)
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where SΩ(t) is the entropy at time t, given by

SΩ(t) := −Et[lnPΩ(YYY ; t)]. (S37)

In thermodynamic terms, the Helmholtz free energy measures the energy available in the LMN to do
work when the number of nodes is kept fixed. Note that UΩ(t) ≥ 0 and 0 ≤ SΩ(t) ≤ ln |Y|, for every Ω
and t ≥ 0, where |Y| is the cardinality of the state-space Y. It also turns out that FΩ(t) ≥ 0 and
dFΩ(t)/dt ≤ 0, for every Ω and t ≥ 0, with equality only at steady-state [17,22,23].

From Eqs. (S32), (S34) & (S35), we can show that

UΩ(t) = VΩ(t) + ΩUΩ(yyy∗Ω), (S38)

where
VΩ(t) := ΩEt[VΩ(YYY )], for t ≥ 0, (S39)

is the internal potential energy of the LMN. Moreover,

FΩ(t) := AΩ(t) + ΩUΩ(yyy∗Ω), (S40)

by virtue of Eqs. (S36) & (S38), where

AΩ(t) := VΩ(t)− SΩ(t). (S41)

Note that AΩ(t) is the portion of the Helmholtz free energy due to the internal potential energy of the
LMN. For this reason, we refer to AΩ(t) as the free potential energy. In thermodynamic terms, the free
potential energy measures the portion of the energy, not accounted for by the energy of the most likely
state, available in the LMN to do work when the number of nodes is kept fixed.

The quantities

P0
Ω(t) :=

∂VΩ(t)

∂Ω
(S42)

PΩ(t) := −∂AΩ(t)

∂Ω
(S43)

BΩ(t) := −Ω
∂PΩ(t)

∂Ω
(S44)

define the internal pressure, pressure, and bulk modulus of the LMN, respectively. The internal pressure
quantifies the rate of change in internal potential energy with respect to a change in the number of nodes,
whereas the pressure quantifies the rate of change in free potential energy. Moreover, the bulk modulus
measures the network’s resistance to changing pressure. Note that PΩ(t) = QΩ(t)− P0

Ω(t), where

QΩ(t) :=
∂SΩ(t)

∂Ω
(S45)

is the rate of entropy change with respect to a change in the number of nodes. Moreover, a network with
near zero bulk modulus experiences negligible changes in pressure under changes in the number of nodes.
The inverse bulk modulus is known as compressibility.

In the following, we focus our interest on the stationary behavior of a LMN. Due to the irreducibil-
ity properties of LMNs, all stationary thermodynamic quantities are unique and characteristic to the
particular network under consideration. From Eqs. (S32) & (S39), note that

VΩ = E[− lnPΩ(YYY )]− [− lnPΩ(yyy∗N)]

= E[IΩ(YYY )]− IΩ(yyy∗Ω) ≥ 0, (S46)
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where E[·] denotes expectation with respect to the stationary probability distribution PΩ(yyy) and

IΩ(yyy) := − lnPΩ(yyy) = ΩUΩ(yyy). (S47)

The function IΩ(yyy) quantifies the amount of information associated with the occurrence of state yyy at
steady-state, known as the self-information of state yyy. Therefore, and from an information-theoretic
perspective, the internal potential energy measures how far the self-information of the most likely state
at steady-state is from the expected self-information of all network states (which is the entropy). Note
that zero internal potential energy implies zero self-information for the most likely state. In this case,
the network will be at the most likely state with probability one. As a consequence, we may consider
the internal potential energy as a thermodynamic measure of the “stability” of a particular ground state
of the stationary potential energy landscape VΩ(yyy) with smaller values indicating increasing stability of
that state.

From Eqs. (S31), (S37), (S39), (S41) & (S47), we also have that

AΩ =
∑
yyy∈Y

ΩVΩ(yyy)PΩ(yyy) +
∑
yyy∈Y

[
lnPΩ(yyy)

]
PΩ(yyy)

=
∑
yyy∈Y

ΩVΩ(yyy)PΩ(yyy)−
∑
yyy∈Y

ΩVΩ(yyy)PΩ(yyy)− lnZΩ

= − lnZΩ

= lnPΩ(yyy∗Ω)

= −IΩ(yyy∗Ω) ≤ 0. (S48)

Therefore, the negative of the free potential energy is the self-information of the most likely state at
steady-state. Note that the internal potential energy of a LMN with equally probable states at steady-
state is zero, whereas its free potential energy equals − ln |Y|. On the other hand, the internal potential
energy of a LMN with “crystalized” behavior around a unique ground state is also zero, and the same is
true for the free potential energy. Moreover,

PΩ =
∂IΩ(yyy∗Ω)

∂Ω
, (S49)

by virtue of Eqs. (S43) & (S48), whereas

BΩ = −Ω
∂2IΩ(yyy∗Ω)

∂Ω2
, (S50)

by virtue of Eqs. (S44) & (S49). Therefore, the pressure gives the slope of the support curve

σ∗(Ω) := IΩ(yyy∗Ω), Ω > 0, (S51)

of the self-information of the most likely state at steady-state, whereas the bulk modulus is proportional
to the “curvature” of this curve.

In general,
lim

Ω→∞
VΩ = v∞ , (S52)

where v∞ is a constant, given by

v∞ = − lim
Ω→∞

E

[
ln
PΩ(YYY )

PΩ(yyy∗Ω)

]
, (S53)
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whereas
lim

Ω→∞
P0

Ω = lim
Ω→∞

PΩ = lim
Ω→∞

BΩ = 0 . (S54)

Indeed, Eqs. (S52) & (S53) are a direct consequence of Eqs. (S32) & (S39). On the other hand, Eq. (S52)

implies that limΩ→∞ P
0

Ω = 0 by virtue of Eq. (S42). Note also that

PΩ =
∂ lnZΩ

∂Ω
=

∂

∂Ω
ln
[∑
yyy∈Y

exp{−ΩVΩ(yyy)}
]
, (S55)

by virtue of Eqs. (S33), (S48) & (S49). This implies

lim
Ω→∞

PΩ =
∂ ln(1)

∂Ω
= 0, (S56)

where we have used the fact that

lim
Ω→∞

exp{−ΩVΩ(yyy)} =

{
1, if yyy = yyy∗Ω

0, otherwise .
(S57)

Clearly, the fact that limΩ→∞ PΩ = 0 implies that limΩ→∞ BΩ = 0, by virtue of Eq. (S50).
The function

V∞(yyy; t) := lim
Ω→∞

VΩ(yyy; t) (S58)

is known as large deviation rate function [24]. This function characterizes the decay rate of the prob-
ability distribution away from the ground states as Ω → ∞. Moreover, its steady-state value V∞(yyy) =
limt→∞ V∞(yyy; t) acts as a Lyapunov function for the macroscopic equations (S24) [17,25]. This means that
the solution µµµ(t) of the macroscopic equations produces a downhill motion in the value of the potential
energy landscape V∞(yyy) until it asymptotically reaches a stable stationary state.

Analytical derivation of V∞(yyy; t) is not possible in general. However, when the macroscopic equations
are monostable, the system size expansion of van Kampen implies that

V∞(yyy; t) = lim
Ω→∞

1

2Ω

(
yyy −µµµ(t)

)TC−1(t)
(
yyy −µµµ(t)

)
= lim

Ω→∞

1

2Ω

(
yyy −µµµ(t)

)T
[NR(t)N]−1

(
yyy −µµµ(t)

)
= lim

N→∞

N0

2

(
yyy −µµµ(t)

)TZR−1(t)Z
(
yyy −µµµ(t)

)
=
N0

2
(yyy −µµµ(t))TZR−1(t)Z(yyy −µµµ(t)). (S59)

In these equations, µµµ(t) solves the macroscopic equations (S24), the covariance matrix C(t) equals NR(t)N,
where N is a diagonal matrix with elements 1/

√
N1, 1/

√
N2, . . . , 1/

√
NK and R(t) is the correlation matrix

of the random vector WWW (t) whose elements solve the Lyapunov equations (S30), whereas Z is a diagonal
matrix with elements ζ1, ζ2, . . . , ζK , where ζk = Nk/N . Clearly, V∞(yyy; t) is hyper-quadratic in this case
around the macroscopic solution µµµ(t), which is now the unique ground state. Moreover, the shapes of
the equipotential surfaces centered at µµµ(t) are ellipsoidal, determined by R−1(t) and, therefore, by the
Lyapunov equations (S30).

If the stationary solution of the master equation can be well-approximated by the LNA method, then

VΩ '
K

2
, (S60)
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for those values of Ω at which this is true, where K is the dimension of the state-space Y. Indeed, from
Eqs. (S39) & (S59), we have that

VΩ '
1

2
E
[
(YYY −µµµ)TC−1

(YYY −µµµ)
]

=
1

2
tr
[
E
[
(YYY −µµµ)TC−1

(YYY −µµµ)
]]

= −1

2
E
[
tr
[
(YYY −µµµ)TC−1

(YYY −µµµ)
]]

=
1

2
E
[
tr
[
C−1

(YYY −µµµ)(YYY −µµµ)T
]]

=
1

2
tr
[
C−1

E
[
(YYY −µµµ)(YYY −µµµ)T

]]
' 1

2
tr
[
C−1C

]
=
K

2
, (S61)

where tr[A] denotes the trace of a matrix A. To obtain the previous result, we used three well-known
properties of the trace: the trace of a scalar is itself, the trace is a linear operator (and therefore it
commutes with expectation), and the trace is invariant under cyclic permutations. Moreover, we used
the fact that E

[
(YYY −µµµ)(YYY −µµµ)T

]
' C when the LNA method provides a sufficiently accurate solution to

the master equation at steady-state.
We can use the pressure as a measure of (thermodynamic) robustness of the LMN with respect to

the network size Ω. We say that the LMN is robust against variations in network size if there is no
appreciable change in pressure when adding or removing nodes. Therefore, the LMN is robust if the
derivative ∂PΩ/∂Ω of the pressure is small. As a consequence of Eq. (S50), the LMN is robust if the bulk
modulus is small (especially at small network sizes). This implies that a robust LMN must significantly
resist changes in pressure. On the other hand, Eqs. (S50) & (S51) reveal that the LMN is robust if the
network is characterized by a “blunt” self-information curve σ∗(Ω) with small curvature. Note that, if Ω
is sufficiently large, then Eq. (S54) implies that the pressure and bulk modulus will approximately be zero
and the network will be robust to changes in size. This also implies that the slope of the self-information
support curve σ∗(Ω) will approximately be zero and the same will be true for its curvature.

It is important to emphasize here that we can use the bulk modulus BΩ to detect network sizes at which
the LMN exhibits critical behavior. As a matter of fact, it is well-known that an intensive thermody-
namic quantity, such as the pressure, may experience a sharp discontinuity when another thermodynamic
variable, such as the network size, varies past a critical value. If the pressure PΩ of the LMN experiences
such a discontinuity as the network size Ω varies past a critical value Ωc, then BΩ will effectively capture
this discontinuity by a delta function located at Ωc, thus indicating that the network experiences phase
transition at Ωc.

As a consequence of the previous discussion, if the LNA method is valid for large values of Ω, then
BΩ ' 0 at these network sizes. Moreover, if the thermodynamic behavior of the LMN changes abruptly
when Ω is decreased past a critical value Ωc, then BΩ will produce a sharp spike at this value. A critical
network size can demarcate a discontinuous transition of potential wells associated with the ground states.
This is a direct consequence of the fact that spike-like behavior in the bulk modulus indicates an abrupt
change in the slope of the self-information support curve σ∗(Ω) of the most likely state at steady-state,
as predicted by Eq. (S50).

Equilibrium and Non-equilibrium LMNs

We now discuss nuanced technical issues which arise when one is interested in determining the equilibrium
status of a LMN.
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It can be shown (e.g., see [17,26]) that the entropy of a LMN satisfies the balance equation

dSΩ(t)

dt
= sΩ(t)− hΩ(t), t > 0, (S62)

where sΩ(t) is the entropy production rate of the network, defined by

sΩ(t) :=
1

2

∑
k∈K

∑
yyy∈Y

[
ϕ+
k (yyy; t)A+

k (yyy; t) + ϕ−k (yyy; t)A−k (yyy; t)
]
, (S63)

whereas hΩ(t) is the heat dissipation rate, defined by

hΩ(t) :=
1

2

∑
k∈K

∑
yyy∈Y

{
ϕ+
k (yyy; t) ln

[
π+
k (yyy − ẽeek)

π−k (yyy)

]
+ ϕ−k (yyy; t) ln

[
π−k (yyy + ẽeek)

π+
k (yyy)

]}
, (S64)

with ẽeek being the k-th column of the K ×K identity matrix multiplied by N−1
k . In these equations,

ϕ+
k (yyy; t) := π+

k (yyy − ẽeek)PΩ(yyy − ẽeek; t)− π−k (yyy)PΩ(yyy; t) (S65)

ϕ−k (yyy; t) := π−k (yyy + ẽeek)PΩ(yyy + ẽeek; t)− π+
k (yyy)PΩ(yyy; t) (S66)

are the forward and reverse probability fluxes associated with the k-th node of the network, whereas

A+
k (yyy; t) := ln

[
π+
k (yyy − ẽeek)PΩ(yyy − ẽeek; t)

π−k (yyy)PΩ(yyy; t)

]
(S67)

A−k (yyy; t) := ln

[
π−k (yyy + ẽeek)PΩ(yyy + ẽeek; t)

π+
k (yyy)PΩ(yyy; t)

]
(S68)

are the affinities of the k-th node. The affinities can be viewed as thermodynamic forces that drive the
corresponding probability fluxes [17]. The flux ϕ+

k (yyy; t) quantifies the flow of probability from state yyy−ẽeek
to state yyy, whereas the flux ϕ−k (yyy; t) quantifies the flow of probability from yyy+ ẽeek to yyy. Note that we can
write the master equation (S12) as

∂PΩ(yyy; t)

∂t
=
∑
k∈K

{
ϕ+
k (yyy; t) + ϕ−k (yyy; t)

}
. (S69)

We now consider two notions of equilibrium: dynamic and thermodynamic equilibrium. A LMN
is said to reach dynamic equilibrium if the joint probability distribution PΩ(yyy; t) tends to a stationary
distribution PΩ(yyy) as t→∞. An irreducible LMN approaches dynamic equilibrium with unique stationary
distribution that is strictly positive, asymptotically stable and independent of the initial condition. On
the other hand, a LMN is said to reach thermodynamic equilibrium if the affinities A+

k (yyy; t) and A−k (yyy; t)
tend to zero as t→∞, for every k ∈ K and yyy ∈ Y. It is clear from Eqs. (S65)–(S68) and Eq. (S69) that
thermodynamic equilibrium implies dynamic equilibrium. However, dynamic equilibrium can be reached
without the network being in thermodynamic equilibrium. As a matter of fact, a LMN that is in dynamic
equilibrium is also in thermodynamic equilibrium only when the following detailed balance conditions are
satisfied

π+
k (yyy − ẽeek)PΩ(yyy − ẽeek) = π−k (yyy)PΩ(yyy) (S70)

π−k (yyy + ẽeek)PΩ(yyy + ẽeek) = π+
k (yyy)PΩ(yyy), (S71)
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for every k ∈ K, yyy ∈ Y. One can ensure that a LMN reaches thermodynamic equilibrium by constrain-
ing the propensities of a LMN to satisfy a set of well-defined constraints, known as the Kolmogorov-
Wegscheider conditions; see [17] for details.

It turns out that 0 ≤ sΩ = hΩ, where sΩ := limt→∞ sΩ(t) and similarly for hΩ, with equality only when
the network is in thermodynamic equilibrium [17, 26]. As a consequence, the rate of entropy production
in a LMN at dynamic equilibrium must be equal to the rate of heat dissipation. Moreover, the network
is in thermodynamic equilibrium if and only if these rates are zero (i.e., if and only if the network does
not produce entropy or dissipates heat).

Living biological systems produce entropy and dissipate heat. As a consequence, these systems must
operate away from thermodynamic equilibrium. To check whether this is true for a given LMN model,
we can use the maximum absolute affinity at steady-state, given by

Āmax := max
k∈K,yyy∈Y

{
|Ā+

k (yyy)|, |Ā−k (yyy)|
}
. (S72)

Then, a LMN model is at thermodynamic equilibrium if and only if Āmax = 0.

Noise-induced Modes, Stochastic Transitions and Bursting

To explain why a noise-induced mode may appear at the origin of the state-space Y at low population
sizes, let Te(yyy) be the mean escape time from a state yyy ∈ Y, defined as the average time required for the
LMN to move from state yyy to any other state in Y. Since the fractional activity process is Markovian,
governed by the master equation (S12), the time it spends at state yyy is an exponential random variable
with rate parameter

∑
k∈K[π+

k (yyy) + π−k (yyy)], which implies that

Te(yyy) =
1∑

k∈K
[
π+
k (yyy) + π−k (yyy)

] . (S73)

Clearly, if Te(yyy) =∞, then the state yyy is absorbing. This means that, once the network reaches yyy, it can
never leave that state. As a consequence, we can use Te(yyy

∗) to assess the “stability” of a ground state yyy∗

of the potential energy landscape of the LMN, with higher values of Te(yyy
∗) indicating that the state yyy∗

is more stable. From Eqs. (S10), (S11) & (S73), we have that

[Te(yyy)]−1 =
∑
k∈K

[
Nk(1− yk)λ+

k +Nk(1− yk)φk(ρk(yyy)) +Nkykλ
−
k +Nkykγk(ρk(yyy))

]
= N

∑
k∈K

[
ζk(1− yk)λ+

k + ζk(1− yk)φk(ρk(yyy)) + ζkykλ
−
k + ζkykγk(ρk(yyy))

]
= N

∑
k∈K

ζk(1− yk)λ+
k + ζkykλ

−
k ≥ 0. (S74)

As a consequence, when λ+
k = 0 and λ−k > 0, for every k ∈ K,1 then Te(yyy) = ∞ only when yyy = 0. If

Te(0) =∞, then the master equation (S12) will have a trivial solution PΩ(yyy; t) = ∆(yyy), since the network
is initialized at 0 and it will never move to another state. In this case, the resulting potential energy
landscape VΩ(yyy; t) will have a unique global minimum at 0 [as a matter of fact, VΩ(0; t) = 0, whereas
VΩ(yyy; t) =∞, for every yyy 6= 0].

Since real-world networks must be characterized by non-trivial dynamics, we must have Te(0) <
∞. The fact that, when Te(0) = ∞, the probability distribution PΩ(yyy; t) is concentrated at the origin
suggests that a very large but finite Te(0) may be indicative of a probability distribution that assigns

1This means that a node is leak-free when moving from the inactive to the active state but leaky when moving from the
active to the inactive state.
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high probability to the zero state, creating a noise-induced mode at the origin of Y. As a matter of
fact, we expect that the stationary probability distribution PΩ(yyy) to have a peak around yyy = 0 whenever
the mean escape time of the fractional activity dynamics from the zero state is sufficiently large and the
average time it takes for these dynamics to return to the zero state is small (see pages 100 & 101 in [27]).

In general, Eq. (S74) implies that

[Te(0)]−1 = N
∑
k∈K

ζk
[
λ+
k + φk(ρk(0))

]
, (S75)

where ζk = Nk/N . Clearly, reducing the net population size N increases Te(0). It moreover decreases
the size of the state-space Y, in which case, there will be fewer states for the network to visit, improving
the likelihood of visiting the zero state and thus reducing the average return time to that state. The
confluence of these two effects may contribute to the creation of a noise-induced mode at the state of
zero fractional activity.

Eq. (S75) shows that, in addition to the net population size N , other system-specific parameters may
also influence the mean escape time from the origin. For example, reducing the value of λ+

k +φk(ρk(0)), for
every k ∈ K, will increase the mean time spent at the origin when the LMN reaches complete inactivity.

We should note here that similar arguments can be made to show that, under appropriate conditions,
reducing the net population size and tuning system-specific parameters can result in a noise-induced
mode at the state 1 of maximum fractional activity. Indeed, from Eq. (S74), we have

[Te(1)]−1 = N
∑
k∈K

ζk
[
λ−k + γk(ρk(1))

]
. (S76)

This implies that, by reducing N and λ−k + γk(ρk(1)), for every k ∈ K, we can increase the mean time
spent at 1 while improving the likelihood of visiting 1 and thus reducing the average return time to
this state. As a consequence, the confluence of these two effects may contribute to the creation of a
noise-induced mode at the state of maximum fractional activity.

Let us now define a parameter

b :=
∑
k∈K

ζk[λ+
k + φk(ρk(0))] ≥ 0 (S77)

and assume that the macroscopic equations (S24) have only one stable fixed point µµµ∗. Note that, when
b = 0, the macroscopic equations (S24) imply that the origin of the state-space Y is also a fixed point
(albeit an unstable one) for the macroscopic equations. Thus b is a bifurcation parameter, since the
macroscopic equations predict that bifurcation takes place at b = 0. Regardless how close the LMN is at
the bifurcation point, the macroscopic equations predict that there will be no stable fixed point at the
origin, with the dynamics moving away from 0 and towards the stable fixed-point µµµ∗.

On the other hand, our previous discussion implies that, at sufficiently small population sizes, the
LMN may behave as if there is a stable fixed point at the origin, in the sense that the network will
be operating close to 0 with non-negligible probability. This is also true for small nonzero values of
the bifurcation parameter b, since Eq. (S75) implies that the mean escape time from the origin is given
by Te(0) = (Nb)−1. This clearly demonstrates that, intrinsic noise present in the network at small
population sizes is capable of blurring the bifurcation point from being a single point at b = 0 to a small
nonnegative neighborhood of 0 while “stabilizing” the unstable fixed point of the macroscopic equations
located at the origin of the state-space Y.

Another way to see how intrinsic noise contributes to the creation and stability of a noise-induced mode
is by means of the LNA method. For sufficiently large network sizes Ω, the LNA method predicts that
the stationary probability distribution PΩ(yyy) can be sufficiently characterized by a multivariate Gaussian
distribution tightly centered around µµµ∗ with most probability mass being assigned over the state-space Y
which, for all practical purposes, can be thought of as being continuous.2 As a consequence, the net

2Recall that Y = Y1 × Y2 × · · · × YK , where Yk := {0, 1/Nk, . . . , 1}.
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probability mass assigned by this distribution over the state-space Y will approximately equal to 1, as
expected. However, as the network size Ω decreases, the Gaussian distribution becomes wider around µµµ∗

and may appreciably extend beyond the state-space Y, which will be discrete for small enough Ω. In this
case, the net probability mass assigned at values outside the state-space Y will not be negligible, and
the net probability mass assigned over Y will be smaller than one. As we explained above, and under
appropriate conditions, the Gaussian approximation will begin to break down by placing significant
probability mass outside of Y. This may force the stationary distribution PΩ(yyy) to undergo a qualitative
change where the lost probability mass may be thought of as being absorbed at the origin, creating a
mode in PΩ(yyy) at 0.

From a potential energy landscape perspective, the width of the potential well associated with the
peak of the stationary probability distribution at µµµ∗ will increase as Ω decreases, whereas its depth will
decrease. This behavior is also influenced by other system-specific parameters that control the steady-
state solution C of the Lyapunov equations (S30). On the other hand, the width and depth of the
potential well associated with the peak of the stationary probability distribution at 0 will both increase
as Ω decreases. If the network parameters are such that the potential well at µµµ∗ is sufficiently wide and
shallow, then a state within this potential well will eventually move towards the potential well at 0 with
high probability and stay there for an appreciable amount of time before exiting.

The previous discussion provides a clear explanation of the fact that intrinsic noise is an important
factor for bursting. In addition to Ω (or N) and C, this behavior also depends on how far µµµ∗ is from
the origin 0, since bursting is clearly better pronounced when µµµ∗ is further away from the origin. In
general however this requires a wider potential well at µµµ∗. Hence, the network size Ω and any other
system-specific parameter that affects the steady-state solution µµµ∗ of the macroscopic equations (S24)
and the steady-state solution C of the Lyapunov equations (S30) will also affect bursting. This allows
the LMN to control bursting by employing alternative strategies.

Defining Avalanches

A common way to define avalanches has originated from work on neural networks, since the emergence
of avalanches is a fundamental property of such networks [28,29]. This definition is based on partitioning
time into bins Ti = [i∆t, (i+ 1)∆t), i = 0, 1, . . ., of equal duration ∆t > 0 and associating to each bin Ti
a frame Fi, defined as the portion {XXX(t), t ∈ Ti} of the activity process during Ti. The frame Fi is said
to be blank if the activity process XXX(t) is zero within Ti; otherwise, the frame Fi is said to be active.
Then, an avalanche is defined to be a sequence of consecutively active frames that is preceded and ended
by a blank frame [28]. Note that, if

H(t) :=
1

N

∑
n∈N

Xn(t) =
∑
k∈K

ζkYk(t), (S78)

where ζk = Nk/N , then Fi is blank if maxt∈Ti{H(t)} ≤ ε, whereas Fi is active if maxt∈Ti{H(t)} > ε.
Note that H(t) is the net fractional activity of the activity process XXX(t) at time t. As a consequence,
ε ≥ 0 is a small threshold that dictates the minimum percentage of nodes that can be active in the
network in order for the network to be deemed active.

It is common to characterize an avalanche by two parameters: its duration and size. The duration D
of an avalanche is defined to be the number of consecutively active frames multiplied by ∆t. On the other
hand, its size Σ is simply the number of times within the duration D that an element of the activity
process XXX(t) becomes active (switches from 0 to 1).

Unfortunately, the previous definitions depend on the choice of ∆t. Moreover, the definitions are
sensitive to arbitrary shifts of the time axis. For this reason, we provide here an alternative definition
for an avalanche that is not influenced by the previous factors. In particular, we say that an avalanche
occurs within a time window [t, t+ τ), whenever the following three conditions are satisfied:
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(i) There exist some small dt > 0 such that H(t′) ≤ ε, for all t′ ∈ [t− dt, t); i.e., the network is inactive
immediately before time t.

(ii) H(t′) > ε, for all t′ ∈ [t, t+ τ); i.e., the network is active during the time interval [t, t+ τ).

(iii) H(t+ τ) ≤ ε; i.e., the network becomes inactive at time t+ τ .

Using the previous definition, it is not difficult to see that the duration D is now given by τ , whereas
the size is defined as before by replacing D by τ . Note that a given element of the activity process may
transition from 0 to 1 multiple times throughout the duration. As a consequence, the size of an avalanche
is not limited by N . To account for the effect of population size, it is common to consider the fractional
avalanche size Σ/N [29].

Epidemiological Example

In epidemiology, a common model of disease spreading is the SIS model [30]. According to this model,
the n-th individual in a directed weighted network G of N interacting individuals is assumed to be in one
of two states with respect to a disease at time t: susceptible (S) and infected (I). In this case, the state of
the epidemiological system at time t is characterized by a random vector XXX(t) whose n-th element Xn(t)
takes value 1, if the n-th individual is infected, and 0, if she is susceptible. It is assumed that recovery
from infection does not confer resistance to the disease with infected individuals becoming susceptible
after recovery. For example, bacterial infection is modeled well by the SIS model, since an individual who
recovers (e.g., through the use of antibiotics) is susceptible to re-infection.

In the classical SIS model, infection can only be transmitted from an infected to a susceptible indi-
vidual. Note however that some infections can be acquired from other sources, such as the environment,
animals, terror attacks, or self-infection. For example, individuals may be colonized by bacteria and be
healthy for long periods of time until the bacteria suddenly seize the opportunity to pathogenically infect
the individual. As a consequence, we choose here to discuss a slightly more general version of the SIS
model known as the SISa model [31,32].

Although the SISa model is general enough to describe a variety of infections (e.g., due to illnesses,
computer viruses, or social contagions), we focused on a matter of pressing concern to public health:
infections due to methicillin resistant staphylococcus aureus (MRSA). We use the SISa model as a simple
model of MRSA outbreaks in which bacterial infections, due to self-infection, are possible and the number
of individuals spreading MRSA infection can be small, in which case stochastic modeling is necessary [33].
MRSA has been studied in confined swine populations, where more invasive and comprehensive data
collection is feasible [34].

We assume that the propensity by which the n-th individual transitions from the susceptible to the
infected state depends on a net input rn(xxx) = hn +aaaTnxxx, where hn ≥ 0 is the propensity of the individual
to become infected regardless of her social contacts and aaaTn is the n-th row of the adjacency matrix A of
the underlying network of infectious social contacts. The element ann′ of the adjacency matrix provides
the rate at which the n-th susceptible individual will be infected by the n′-th infected individual and, as
such, it is assumed to be nonnegative; i.e., ann′ ≥ 0, for every n, n′ ∈ N , with ann = 0, for every n ∈ N .
Clearly, rn(xxx) represents the total infectious influence to the n-th individual. As a consequence, we set
p+
n (xxx) = (1−xn)rn(xxx). On the other hand, we assume that the propensity of the n-th infected individual

to recover is constant, given by `−n , which implies that p−n (xxx) = `−n xn.
To simplify the previous model, we assume one homogeneous population of individuals and study the

fraction Y (t) of the population that is infected at time t, given by

Y (t) =
1

N

∑
n∈N

Xn(t). (S79)
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In this case, one finds that Nann′ = w > 0, for every n, n′ ∈ N such that n 6= n′, whereas hn = η > 0,
`+n = 0, and `−n = λ > 0, for every n ∈ N . This implies an all-to-all connectivity, which can be justified
by considering the fact that, in small populations, it is always possible for any two individuals to come
in contact with each other. We take w > 0, because sick individuals can only spread infection, whereas
we take η > 0, because infections may be acquired independently of the network state.

The fractional activity process {Y (t), t ≥ 0} is Markovian, governed by the following master equation:

∂P (y; t)

∂t
= π+(y − 1/N)P (y − 1/N ; t) + π−(y + 1/N)P (y + 1/N ; t)−

[
π+(y) + π−(y)

]
P (y; t), (S80)

initialized with P (y; 0) = ∆(y), where P (y; t) := Pr[Y (t) = y | Y (0) = 0] and

π+(y) = N(1− y)(η + wy) (S81)

π−(y) = Nλy. (S82)

Moreover, the macroscopic equation (S24) is given by

dµ(t)

dt
=
[
1− µ(t)

][
η + wµ(t)

]
− λµ(t), (S83)

with initial condition µ(0) = 0, whereas the Lyapunov equation (S30) for the noise variance in the LNA
method is given by

dr(t)

dt
=
[
1− µ(t)

][
η + wµ(t)

]
+ λµ(t) + 2

{
w
[
1− µ(t)

]
−
[
η + wµ(t)

]
− λ
}
r(t), (S84)

initialized by r(0) = 0. This equation is driven by µ(t) that solves Eq. (S83). Note that Eq. (S83) has a
unique fixed point µ∗, such that 0 < µ∗ < 1, given by (recall that w, η > 0)

µ∗ = [(w − λ− η) +
√

(w − λ− η)2 + 4wη)]/2w,

which can be shown to be stable.
Using data from a Danish swine herd, the parameters w and λ have been estimated to take values

w = 0.108 days−1 and λ = 0.0571 days−1 [34]. However, the parameter η could not be reliably estimated
from these data. To illustrate the case when infections are rarely contracted (i.e., the case when the
environment is relatively clean but not completely free of MRSA), we set η = 10−4 days−1. From
Eq. (S81), note that π+(y) > 0, when η > 0, y < 1. Therefore, 0 → 1 and Proposition 2 implies that
Y (t) is irreducible.

Because the system is one-dimensional, its state space is reasonably sized. It was therefore possible to
numerically solve the master equation (S80) for PΩ(y; t) using the Krylov subspace approximation (KSA)
method implemented by the Expokit software package [35]. To do so, we used a tight tolerance parameter
of 10−6 and a value K0 = 30 for the dimension of the Krylov subspace. We then employed Eq. (S32)
to evaluate the potential energy landscape VΩ(y; t) and used the solution to the master equation after
30 years as an approximation to the stationary probability distribution PΩ(y). From this distribution,
we numerically evaluated the internal potential energy VΩ and entropy SΩ at steady-state. We then
calculated the stationary free potential energy according toAΩ = VΩ−SΩ. We setN0 = 200, in which case,
Ω = N/200. By evaluating AΩ for Ω = 0.005, 0.01, . . . , 1, we computed the stationary pressure PΩ using
Eq. (S43) and subsequently the bulk modulus BΩ using Eq. (S44). We approximated all derivatives with
respect to Ω using backward differences with ∆Ω = 0.005. When required, we drew sample trajectories
from the master equation using the exact Gillespie algorithm [36,37]. Finally, we numerically solved the
macroscopic equation (S83) and the Lyapunov equation (S84) using the stiff ‘ode23s’ solver in MATLABr

with the default parameters. This resulted in a unique and stable macroscopic stationary state µ∗ =
0.4719.
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One may be curious about the rather long time scales involved in Fig. 4 of the Main Text. The
infection dynamics occur on the order of months (e.g., an infected individual requires an average time of
1/λ = 17.5 days to recover). However, the long-term infection trends (i.e., outbreaks of infections that
eventually die out, only for another outbreak to occur) take place on the time span of multiple years.
Recall that the system is initialized with all individuals susceptible and none infected, and therefore
nothing happens in the model until an infection is acquired from the environment. This process is
captured by the parameter η which is very small, indicating that we are modeling a system where the
environment (e.g., the pig pen) is kept relatively clean. Quantitatively, one sees from Eq. (S81) that
π+(0) = Nη, and thus the start of a new outbreak is a rare-event for small N and η. Therefore, over a
time frame of many years, one may observe multiple outbreaks of MRSA infections.

Neural Network Example

A model that fits well within our framework has been put forth in the literature to explain biological
neural networks [16]. This model is based on an interconnected directed weighted network G of N neurons
in a set N = {1, 2, . . . , N} that can exist in one of two distinct states: an active state, during which a
neuron fires an action potential,3 and a quiescent state, during which a neuron is at rest. In this case,
the state of the neural system at time t is characterized by a random vector XXX(t) whose n-th element
Xn(t) takes value 1, if the n-th neuron is active at time t, and 0 otherwise.

Here, we study the stochastic behavior of a group of interacting neurons embedded within a larger
neural network [38]. We assume that, when the n-the neuron is inactive, it is driven to become active
by a net input rn(xxx) = hn + aaaTnxxx, where hn > 0 is the external input to the neuron that quantifies
the influence of surrounding neurons and external environmental factors, and aaaTn is the n-th row of the
adjacency matrix A of the network. If no external input is present, hn may be chosen to account for the
(small) rate at which a neuron might fire independently of the incoming synaptic input. The element ann′

of the adjacency matrix A provides the synaptic weight from the n′-th to the n-th neuron. If ann′ > 0,
then the n′-th neuron excites the n-th neuron making it more likely to spike, whereas, if ann′ < 0, then
the n′-th neuron inhibits the n-th neuron making it less likely to spike. Finally, ann′ = 0 indicates that
the n-th neuron has no synaptic input from the n′-th neuron. It is assumed that a neuron does not
regulate itself, in which case ann = 0, for n ∈ N .

The propensity by which the n-th neuron transitions from the quiescent to the active state is assumed
to monotonically depend on the total synaptic input rn(xxx) to the neuron by means of a function fn(r) =
〈r > 0〉 tanh(r), where 〈r > 0〉 is the Iverson bracket, taking value 1, if r > 0, and 0 otherwise. In this
case, p+

n (xxx) = (1−xn)〈rn(xxx) > 0〉 tanh(rn(xxx)), where we take `+n = 0. On the other hand, the propensity
of the n-th neuron to transition from the active to the quiescent state is assumed to be a constant `−n ,
regardless of the system state, which implies that p−n (xxx) = `−n xn.

We simplify the previous model by assuming that the neural network under consideration consists
of two homogeneous populations N1 and N2 of excitatory and inhibitory neurons, respectively. The
fractional activity process YYY (t) is now two-dimensional, with elements Y1(t) and Y2(t) given by

Y1(t) =
1

N1

∑
n∈N1

Xn(t), Y2(t) =
1

N2

∑
n∈N2

Xn(t). (S85)

Due to homogeneity, we find that N1ann′ = w11 > 0, for every n, n′ ∈ N1 such that n 6= n′, N2ann′ =
w22 < 0, for every n, n′ ∈ N2 such that n 6= n′, N1ann′ = w21 > 0, for every n ∈ N2, n′ ∈ N1, and
N2ann′ = w12 < 0, for every n ∈ N1, n′ ∈ N2. Moreover, hn = η1 > 0, for every n ∈ N1, hn = η2 > 0, for
every n ∈ N2, `+n = 0, `−n = λ1 > 0, for every n ∈ N1, and `+n = 0, `−n = λ2 > 0, for every n ∈ N2. Note
that the implied all-to-all connectivity is a common assumption in the neuroscience literature [16, 39].

3The active state includes the accompanying refractory period wherein the neuron is hyperpolarized.
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It is usually justified by noting that some regions of the brain are comprised of neurons that are highly
interconnected among themselves.

To simplify matters further, we set N1 = N2 = N/2, w11 = w21 = we > 0, w12 = w22 = wi < 0,
λ1 = λ2 = λ > 0, η1 = η2 = η > 0, and φ1(ρ) = φ2(ρ) = φ(ρ) = 〈ρ > 0〉 tanh(ρ). This implies that
ρ1(yyy) = ρ2(yyy) = ρ(yyy) = wey1 + wiy2 + η. In this case, the fractional activity process {YYY (t), t ≥ 0} is
Markovian, governed by the master equation (S12) with propensity functions

π+
1 (y1, y2) =

N

2
(1− y1)〈η + wey1 + wiy2 > 0〉 tanh(η + wey1 + wiy2) (S86)

π+
2 (y1, y2) =

N

2
(1− y2)〈η + wey1 + wiy2 > 0〉 tanh(η + wey1 + wiy2) (S87)

π−1 (y1, y2) =
N

2
λy1 (S88)

π−2 (y1, y2) =
N

2
λy2. (S89)

Moreover, the macroscopic equations (S24) are found to be

dµ1(t)

dt
=
[
1− µ1(t)

]
〈weµ1(t) + wiµ2(t) + η > 0〉 tanh(weµ1(t) + wiµ2(t) + η)− λµ1(t) (S90)

dµ2(t)

dt
=
[
1− µ2(t)

]
〈weµ1(t) + wiµ2(t) + η > 0〉 tanh(weµ1(t) + wiµ2(t) + η)− λµ2(t), (S91)

initialized by µ1(0) = µ2(0) = 0. Finally, the Lyapunov equations (S30) for the noise correlations in the
LNA method can be determined by specifying the diffusion terms as

D1(µ1, µ2) = (1− µ1)〈weµ1 + wiµ2 + η > 0〉 tanh(weµ1 + wiµ2 + η) + λµ1 (S92)

D2(µ1, µ2) = (1− µ2)〈weµ1 + wiµ2 + η > 0〉 tanh(weµ1 + wiµ2 + η) + λµ2, (S93)

and the derivatives of the drift terms as

A11(µ1, µ2) = −λ+ 〈weµ1 + wiµ2 + η > 0〉
×
{
we(1− µ1)

[
1− tanh2(weµ1 + wiµ2 + η)

]
− tanh(weµ1 + wiµ2 + η)

}
(S94)

A12(µ1, µ2) = 〈weµ1 + wiµ2 + η > 0〉 wi(1− µ1)
[
1− tanh2(weµ1 + wiµ2 + η)

]
(S95)

A21(µ1, µ2) = 〈weµ1 + wiµ2 + η > 0〉 we(1− µ2)
[
1− tanh2(weµ1 + wiµ2 + η)

]
(S96)

A22(µ1, µ2) = −λ+ 〈weµ1 + wiµ2 + η > 0〉
×
{
wi(1− µ2)

[
1− tanh2(weµ1 + wiµ2 + η)

]
− tanh(weµ1 + wiµ2 + η)

}
. (S97)

By considering the fact that η > 0 and ws + η > 0, and by employing the change of variables:(
µ′1
µ′2

)
=

(
1/2 1/2
1/2 −1/2

)(
µ1

µ2

)
⇔

(
µ1

µ2

)
=

(
1 1
1 −1

)(
µ′1
µ′2

)
,

we can show that Eqs. (S90) & (S91) have a unique fixed point (µ∗1, µ
∗
2) = (µ∗, µ∗), where µ∗ is the unique

solution of the nonlinear equation

〈wsµ+ η > 0〉 tanh(wsµ+ η) =
λµ

1− µ
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that satisfies 0 < µ∗ < 1. It turns out that the resulting fixed point is stable [16].
When η + we + wi > 0, we have that 0 → 1 by following a sequence of state transitions whereby all

excitatory neurons become active one-by-one and all inhibitory neurons become active one-by-one. As a
consequence, YYY (t) will be irreducible in this case according to Proposition 2.

By following [16], we set λ = 0.1ms−1 and η = 0.001. We also defined two new parameters ws and wd,
given by

ws := we + wi and wd := we − wi. (S98)

Note that ws < wd, since wi < 0. Moreover, YYY (t) is irreducible for ws + η > 0. It turns out that the
steady-state solution of the macroscopic equations (S90) & (S91) depends only on ws, whereas bursting
is controlled by the value of wd. By following [16], we set ws = 0.2 and study the behavior of the neural
network for various values of wd. We start with wd = 0.3, in which case the network is not balanced (i.e.,
ws 6� wd), and proceed to examine the effect of wd.

To do so, we numerically solved the corresponding master equation for the joint probability distribu-
tion PΩ(y1, y2; t) using the KSA method with tolerance parameter of 10−30 and a value K0 = 50 for the
dimension of the Krylov subspace. We took the value of the tolerance parameter to be appreciably smaller
than in the case of the SISa model in order to effectively deal with the increased dimensionality of the
state-space Y. Moreover, we took the value of K0 to be larger than the one used in the case of the SISa
model in order to effectively deal with the increased cardinality of Y. Similarly to the case of the SISa
model, we employed Eq. (S32) to evaluate the stationary potential energy landscape VΩ(y1, y2). We set
N0 = 200, in which case, Ω = N/200, and used the solution to the master equation at 2,000 ms as an ap-
proximation to the stationary probability distribution PΩ(y1, y2), since we noticed that the neural network
is approximately at steady-state after that time. By using this distribution, we numerically evaluated
the internal potential energy VΩ and entropy SΩ at steady-state. We then calculated the stationary free
potential energy according to AΩ = VΩ − SΩ. By evaluating AΩ for Ω = 0.01, 0.02, . . . , 1, we computed
the stationary pressure PΩ using Eq. (S43) and subsequently the bulk modulus BΩ using Eqs. (S44).
We approximated all derivatives with respect of Ω using backward differences with ∆Ω = 0.01.4 When
required, we drew sample trajectories from the master equation using the exact Gillespie algorithm. Fi-
nally, we numerically solved the macroscopic equations (S90) & (S91) and the corresponding Lyapunov
equations using the stiff ‘ode23s’ solver in MATLABr with the default parameters, which resulted in a
unique and stable macroscopic stationary state µµµ∗ = (µ∗1, µ

∗
2)T = (0.5032, 0.5032)T .
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[9] Abou-Jaoudé W, Ouattara DA, Kaufman M (2009) From structure to dynamics: Frequency tuning
in the p53-Mdm2 network. I. Logical approach. Journal of Theoretical Biology 258(4): 561–577.

[10] Vahedi G, Faryabi B, Chamberland J, Datta A, Dougherty ER (2009) Sampling rate-dependent
probabilistic Boolean networks. Journal of Theoretical Biology 261(4): 540–547.

[11] Bauer AL, Jackson TL, Jiang Y, Rohlf T (2010) Receptor cross-talk in angiogenesis: Mapping
environmental cues to cell phenotype using a stochastic, Boolean signaling network model. Journal
of Theoretical Biology 264(3): 838–846.

[12] Sevim V, Gong X, Socolar JES (2010) Reliability of transcriptional cycles and the yeast cell-cycle
oscillator. PLoS Computational Biology 6(7): e1000842.

[13] Teraguchi S, Kumagai Y, Vandenbon A, Akira S, Standley DM (2011) Stochastic binary modeling
of cells in continuous time as an alternative to biochemical reaction equations. Physical Review E
84: 062903.

[14] Stoll G, Viara E, Barillot E, Calzone L (2012) Continuous time Boolean modeling for biological
signaling: application of Gillespie algorithm. BMC Systems Biology 6: 116.

[15] van Kampen NG (2007) Stochastic processes in physics and chemistry. Amsterdam: Elsevier, 3rd
edition.

[16] Benayoun M, Cowan JD, van Drongelen W, Wallace E (2010) Avalanches in a stochastic model of
spiking neurons. PLoS Computational Biology 6(7):e1000846.

[17] Goutsias J, Jenkinson G (2013) Markovian dynamics on complex reaction networks. Physics Reports
529(2): 199–264.

[18] Alberty RA (2003) Thermodynamics of biochemical reactions. Hoboken, NJ: Wiley-Interscience.

[19] Dill KA, Bromberg S (2011) Molecular driving forces: Statistical thermodynamics in biology, chem-
istry, physics, and nanoscience. New York, NY: Galand Science, 2nd edition.

[20] Haddad WM, Chellaboina V, Nersesov SG (2005) Thermodynamics: A dynamical systems approach.
Princeton, NJ: Princeton University Press.

[21] Ross J (2008) Thermodynamics and fluctuations far from equilibrium. Berlin: Springer-Verlag.

[22] Cover TM, Thomas JA (1991) Elements of information theory. New York, NY: John Wiley & Sons.

[23] Qian H (2009) Entropy demystified: The “thermo”-dynamics of stochastically fluctuating systems.
In: Michael LJ, Brand L, editors, Methods in Enzymology, San Diego, CA: Elsevier, volume 467.
pp. 111–134.

[24] Touchette H (2009) The large deviation approach to statistical mechanics. Physics Reports 478(1-3):
1–69.

21



[25] Zhou D, Qian H (2011) Fixation, transient landscape, and diffusion dilemma in stochastic evolution-
ary game dynamics. Physical Review E 84: 031907.

[26] Ge H, Qian H (2010) Physical origins of entropy production, free energy dissipation, and their
mathematical representations. Physical Review E 81: 051133.

[27] Stroock DW (2005) An introduction to Markov processes. Berlin: Springer.

[28] Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. Journal of Neuroscience 23:
11167–11177.

[29] Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law distributions found in neuronal
avalanches. PLoS One 6: e19779.

[30] Newman MEJ (2010) Networks: An introduction. New York, NY: Oxford University Press.

[31] Hill AL, Rand DG, Nowak MA, Christakis NA (2010) Emotions as infectious diseases in a large
social network: the SISa model. Proceedings of the Royal Society B 277: 3827–3835.

[32] Hill AL, Rand DG, Nowak MA, Christakis NA (2010) Infectious disease modeling of social contagion
in networks. PLoS Computational Biology 6(11): e1000968.

[33] Austin DJ, Anderson RM (1999) Studies of antibiotic resistance within the patient, hospitals and
the community using simple mathematical models. Philosophical Transactions of the Royal Society
of London B 354: 721–738.

[34] Broens EM, Espinosa-Gongora C, Graat EAM, Vendrig N, Van Der Wolf PJ, et al. (2012) Lon-
gitudinal study on transmission of MRSA CC398 within pig herds. BMC Veterinary Research 8:
58.

[35] Sidje RB (1998) EXPOKIT: A software package for computing matrix exponentials. ACM Transac-
tions on Mathematical Software 24(1): 130–156.

[36] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry 81(25): 2340–2361.

[37] Gillespie DT (1992) A rigorous derivation of the chemical master equation. Physica A 188: 404–425.

[38] Koch C, Segev I (1998) Methods in neural modeling: From ions to networks. Cambridge, MA: MIT
Press, 2nd edition.

[39] Bressloff PC (2010) Metastable states and quasicycles in a stochastic Wilson-Cowan model of neural
population dynamics. Physical Review E 82: 051903.

22


