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Supplemental Information

Model analysis

Starting with non-negative initial 
onditions the stru
ture of the model gives non-negative solutions.

The model disease free state (DFE), E0 is given by

E0 = (M̂φ, Îm, B̂, T̂h0
, T̂h1

, T̂h2
) = (

σm

µm

, 0, 0,
σ0

µ0

, 0, 0).

The model disease equilibrium state (DEE), E1 (we 
ould not express the DEE in a 
losed form) is

given by

E1 = (M̄φ, Īm, B̄, T̄h0
, T̄h1

, T̄h2
).

Computation of the basi
 model disease reprodu
tion number (R0)

The basi
 model disease reprodu
tion number was obtained using the next generation method by

Castillo-Chavez et al [1℄. The basi
 model 
an be written in the form:

dX

dt
= f(X,Y,Z),

dY

dt
= g(X,Y,Z),

dZ

dt
= h(X,Y,Z),

where X = (Mφ,Th0
, Th1

, Th2
) ∈ ℜ4

, Y = Im ∈ ℜ and Z = B ∈ ℜ and h(X, 0, 0) = 0. X denote

uninfe
ted ma
rophages and T 
ell sub-types, Y denotes infe
ted ma
rophages and Z denotes free
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ba
teria (the pathogen 
ausing infe
tion), therefore E0 = (X∗, 0, 0). Assuming that g̃(X∗, Y, Z) = 0
impli
itly determines a fun
tion Y = g̃(X∗, Y ). Let A = DZh(X

∗, g̃(X∗, 0), 0) and further assume

that A 
an be written in the form A = M − D, with M ≥ 0 (that is mij ≥ 0) and D > 0, a
diagonal matrix. Then, the basi
 model disease reprodu
tion number is de�ned as the spe
tral

radius (dominant eigenvalue) of the matrix MD−1
, that is R0 = ρ(MD−1).

Now, with X = (Mφ,Th0
, Th1

, Th2
), Y = Im, and Z = B, we evaluate that

g̃(X∗, Y ) =
kiMφB

(kb + klTh1
+ µI)

and h(X∗, g̃(X∗, Y ), Z) =
NokbkiMφB

(kb + klTh1
+ µI)

−B(kiMφ+kmMφ+µB).

Therefore, A = DZh(X
∗, g̃(X∗, 0), 0) =

NokbkiM̂φ

(kb + µI)
−(kiM̂φ+kmM̂φ+µB). Hen
eM =

NokbkiM̂φ

(kb + µI)
,

D = (kiM̂φ+ kmM̂φ+ µB) and

R0 = MD−1,

=
kbkiM̂φNo

(kiM̂φ+ kmM̂φ+ µB)(kb + µI)
,

=
kbkiσmNo

(

σm(ki + km) + µmµB

)(

kb + µI

) . (S.1)

Theorem 1. E0 is lo
ally asymptoti
ally stable if R0 < 1 and unstable if R0 > 1.

Proof of lo
al stability of E0:

The Ja
obian matrix of the system of equations (1)-(6) (whi
h represent the basi
 model) evaluated

at the DFE is

J =



















−µm 0 −kiM̂φ 0 0 0
0 −(kb + µI) 0 0 0

0 Nokb −(kiM̂φ+ kmM̂φ+ µB) 0 0 0

0 −δmT̂h0
−δBT̂h0

−µ0 0 0

0 θ1δmT̂h0
0 0 −µ1 0

0 0 θ2δBT̂h0
0 0 −µ2



















.

The eigenvalues of the Ja
obian matrix, J, 
an be determined by solving the 
hara
teristi
 equation

|J − λI| = 0, whi
h yeilds the following eigenvalues λ1 = −µm, λ2 = −µ0, λ3 = −µ1, λ4 = −µ2,

and the polynomial

λ2 + λ
(

(kb + µI) + (kiM̂φ+ kmM̂φ+ µB)
)

+ (kb + µI)(kiM̂φ+ kmM̂φ+ µB)− kiM̂φkbNo = 0.(S.2)

With λ1,2,3,4 < 0, to 
omplete the proof for lo
al stability we apply the Routh Hurwitz 
riterion,

whi
h requires that, in polynomial equation (S.2)

(i) (kb + µI) + (kiM̂φ+ kmM̂φ+ µB) > 0,

(ii) (kb + µI)(kiM̂φ+ kmM̂φ+ µB)− kiM̂φkbNo > 0.

These 
onditions are satis�ed if (kb + µI)(kiM̂φ+ kmM̂φ+ µB) > kiM̂φkbNo, that is if

1 >
kbkiM̂φNo

(kiM̂φ+ kmM̂φ+ µB)(kb + µI)
,

hen
e 1 > R0, therefore R0 < 1. Thus, the DFE is lo
ally asymptoti
ally stable
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Global stability of E0

Using the method by Castillo-Chavez et al. [1℄ to establish the global stability of the DFE.

Set X = (Mφ, Th0
, Th1

, Th2
) and Z = (Im, B). The model equations are rewritten as follows:

Ẋ = F (X, 0),

Ż = G(X,Z).

Theorem 2. The DFE is globally asymptoti
ally stable when R0 < 1, if (i) E0 = (X∗, 0) is lo
ally

asymptoti
ally stable and (ii) Ĝ(X,Z) = AZ −G(X,Z) ≥ 0 in the biologi
al feasible region, where

A = DZ(X
∗, 0) is the Ja
obian of G(X,Z) evaluated at (X∗, 0).

Proof of global stability of E0:

Therefore, Condition (ii)

F (X, 0) =









σm − µmMφ

σ0 − µmTh0

0
0









, and Ĝ(X,Z) =

[

klT̄hi

0

]

≥ 0.

Therefore, Ĝ(X,Z) ≥ 0. Condition (i) follows from Theorem: 1. Thus, the DFE is globally

asymptoti
ally stable

Derivation of the Th1/Th2 ratio equation

We de�ne the ratio, R, to be given by

Th1

Th2

(R =
Th1

Th2

). De�erentiating R with respe
t to time gives

dR

dt
=

( 1

Th2

)

Ṫh1
−

(Th1

T 2

h2

)

Ṫh2
.

Substituting Ṫh1
and Ṫh2

with the di�erential equation representing the time kineti
s of Th1 
ells

and Th2 
ells, respe
tively, gives

dR

dt
=

1

Th2

(

Ṫh1
−

(Th1

Th2

)

Ṫh2

)

,

=
1

Th2

(

θ1δmImTh0
− µ1Th1

)

−
Th1

T 2

h2

(

θ2δBTh0
− µ2Th2

)

,

= θ1δmIm

(Th0

Th2

)

− µ1R−Rθ2δBB
(Th0

Th2

)

+Rµ2,

= (θ1δmIm − θ2δBBR)
(Th0

Th2

)

−R(µ1 − µ2). (S.3)

Sensitivity analysis of the immune response parameters

Additional insights into the dynami
s of the basi
 mathemati
al model 
an be obtained from the

basi
 model disease reprodu
tion number, R0 (expression S.1), and 
arrying out sensitivity analy-

sis. The value of R0 determines whether infe
tion will persist or is 
leared . We �nd that the rate

of infe
tion of ma
rophages by ba
teria (ki), bursting rate of infe
ted ma
rophages (kb) and the
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amount of ba
teria released in the extra
ellular environment (No) are the main fa
tors that de�ne

kineti
s of disease progression during MAP infe
tion. The parameter km whi
h models the killing

of ba
teria by ma
rophages prevent infe
tion progression. This result 
an easily be derived through

sensitivity analysis of R0 with respe
t to these parameters,

Xi

R0

∂R0

∂Xi

, where Xi are the parameters in

the R0 expression [2℄. A positive normalised derivative indi
ates that in
reasing the value of the 
or-

responding parameters will in
rease disease progression, while a negative value implies suppression

of infe
tion progression.

Sensitivity analysis for infe
tion (ki, kb, µB) and immune (km, ki, θ1, θ2, δm, δB , µ1, µ2)

parameters was 
arried out using the LHS method [3℄ at the time when the ratio of Th1/Th2

response rea
hes 1 as the output variable (Figure S1). Sensitivity analysis identi�ed parameters

that 
ontribute the most to the timing of the Th1/Th2 swit
h in
luding the de
ay rates of Th1 and

Th2 
ells (µ1 and µ2), rates at whi
h Th0 
ells di�erentiate into either Th1 or Th2 
ells (δm and

δB), 
lonal expansion fa
tors (θ1 and θ2), and rate of bursting of infe
ted ma
rophages, kb.

Using the equation for R (S.3), sensitivity analysis was 
arried out to determine parameters that

have signi�
ant in�uen
e to the Th1 to Th2 swit
h (Figure S1).

Sensitivity Analysis of R0

Sensitivity indi
es for the basi
 model disease reprodu
tion number, R0, were evaluated. Sensitivity

indi
es allows us to measure the relative 
hange in R0 with respe
t to its parameters. The normalised

forward senstivity of a variable to a parameter is the ratio of the relative 
hange in the variable to

the relative 
hange in the parameter [2℄. The normalised forward sensitivity index of a variable, u,

that depends di�erentiably on a parameter, p, is de�ned as

Iu
p :=

∂u

∂p
×

p

u
.

Therefore, we 
an derive analyti
al expressions of the sensitivity indi
es of R0 to be given by

IR0

Xi
=

∂R0

∂Xi

×
Xi

R0

,

where Xi are the eight parameters in the expression of R0 and are evaluated to be

IR0

No = 1, IR0

kb
=

µi

kb + µi

,

IR0

µi
=

−µi

kb + µi

, IR0

ki
=

σmkm + µmµB

σm(ki + km) + µmµB

,

IR0

µB
=

−µBµm

σm(ki + km) + µmµB

, IR0

km
=

−σmkm

σm(ki + km) + µmµB

,

IR0

µm
=

−µmµB

σm(ki + km) + µmµB

, IR0

σm
=

µBµm

σm(ki + km) + µmµB

.

(S.4)
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Parameter Sensitivity index

No 1

kb 0.96

µi - 0.96

ki 0.081

km -0.058

σm 0.023

µB -0.023

µm -0.023

Table S1: Sensitivity indi
es for R0. The parameters are ranked from the most sensitivity to the least.

In
reasing the value of a parameter with a positive index results in the in
rease of the R0 value, hen
e

infe
tion progression, while in
reasing the numeri
 value of a parameter with a negative index will redu
e

infe
tion progression. Parameters values used to 
al
ulate the sensitivity indi
es are given in Table 1.

No, kb and ki are the most sensitivity parameters that favour infe
tion progression. Sin
e

IR0

No = 1, therefore in
reasing (or de
reasing) No by 10% will in
rease (or de
rease) R0 by 10%,

while in
reasing kb by 10% will in
rease R0 by 9.6%.

Alternative models

The basi
 mathemati
al model of the MAP infe
tion predi
ts that the 
lassi
al Th1 to Th2 swit
h

o

urs late in infe
tion when the rate of removal of extra
ellular ba
teria is relatively slow, the

burst size No is small (No ≈ 100), and the de
ay rates of the Th1/Th2 responses are similar

(µ1 ≈ µ2). Under these 
ir
umstan
es there is a slow build-up of ba
teria in the host. Here we

investigate how additional immunologi
al me
hanisms may in�uen
e the timing of the Th1/Th2

swit
h if extra
ellular ba
teria are short-lived. These me
hanisms in
lude inhibition of the Th1 
ell

di�erentiation by Th2 e�e
tors, proliferation of e�e
tor T 
ells at the site of infe
tion, and fun
tional

exhaustion of MAP-spe
i�
 Th1 responses (Figure S2).

Di�erentiation 
ross inhibition and Th1/Th2 swit
h

There is strong eviden
e that 
ytokines produ
ed by Th2 e�e
tors skew di�erentiation of Th0 
ells

towards Th2 phenotype and suppress di�erentiation of 
ells into Th1 e�e
tors (and vi
e versa) [4�7℄.

It is therefore possible that the swit
h from Th1 to Th2 response during MAP infe
tion is due to

suppression of the initially dominant Th1 response by Th2 e�e
tors. To investigate this hypothesis

we modi�ed the terms for the generation of Th1 and Th2 subsets in Eqns. (4)-6) to

δmImTh0

1 + h2Th2

and

δBBTh0

1 + h1Th1

, respe
tively, where h1 and h2 are inhibition 
onstants. Interestingly, under 
onditions of

a rapid removal of ba
teria from extra
ellular environment when the 
lassi
al swit
h is not observed

(Figure 3B), inhibition of Th0 
ell di�erentiation into Th1 subset by Th2 e�e
tors allow for the loss

of the prote
tive Th1 response (Figure S3A). In
reasing di�erentiation inhibition of Th1 response

by Th2 e�e
tors results in redu
ed Th1 
ell population and in
reased growth of the Th2 subset

of immune response. Redu
ed produ
tion of Th1 
ells from di�erentiation will gradually weaken

the prote
tive immunity, whi
h allows ba
teria a

umulation and disease progression. It should be

noted, however, that if e�
ien
y of suppression of Th2 
ell di�erentiation by Th1 
ells is high (h1 is

large) then the swit
h will not be observed even under the 
onditions of slow removal of extra
ellular
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ba
teria (results not shown). Thus, in�uen
e of Th1 and Th2 responses on di�erentiation of naïve

CD4 T 
ells into e�e
tors has a large impa
t on the kineti
s of the Th1/Th2 swit
h.

Maintenan
e of 
ommitted e�e
tors at the site of infe
tion by proliferation

In our basi
 mathemati
al model we assumed that MAP-spe
i�
 e�e
tor T 
ell responses are main-

tained at the site of infe
tion by 
ontinuous re
ruitment of di�erentiated 
ells to the site of infe
tion.

However, it is possible that on site proliferation of e�e
tor T 
ells may 
ontribute to the size of the

Th1 and Th2 responses [4, 7�9℄. To investigate whether e�e
tor T 
ell proliferation at the site of

infe
tion may in�uen
e the kineti
s of the Th1/Th2 swit
h we extended the mathemati
al model.

As in the 
ase with di�erentiation of Th0 
ells into Th1/Th2 e�e
tors, we assume that proliferation

of MAP-spe
i�
 Th1 
ells is mainly driven by the density of infe
ted ma
rophages and that of Th2


ells by the density of extra
ellular ba
teria. We thus add the following proliferation terms

α1ImTh1

Im + T1

and

α2BTh2

B + T2

to Eqns. (5) and (6) for Th1 and Th2 responses, respe
tively. Here α1 and α2 are the

maximal rates of proliferation of Th1 and Th2 
ells and T1 and T2 are half-saturation 
onstants.

Proliferation of e�e
tor Th 
ells at the site of infe
tion has a large impa
t on the kineti
s of the

swit
h, and sensitivity of the Th1 and Th2 subsets to the lo
al antigen 
on
entrations determined

by the parameters T1 and T2, plays the major role. In the 
ase of short-lived extra
ellular ba
teria,

if only minute amounts of free ba
teria are su�
ient to drive Th2 
ell proliferation, the Th1/Th2

swit
h will o

ur (Figure S3B). On the other hand, if Th1 
ell sensitivity for the antigen is low (low

value of T1), the Th1/Th2 swit
h may not o

ur even if extra
ellular ba
teria are long-lived (results

not shown). Thus, the spe
i�
 details of how antigen availability in�uen
e the rate of proliferation of

MAP-spe
i�
 CD4 T 
ells are important in determining the likelihood and kineti
s of the Th1/Th2

swit
h.

Exhaustion of the Th1 response

In 
hroni
 infe
tions, T 
ells may be
ome dysfun
tional or exhausted [10�12℄. Exhaustion has been

mainly do
umented for virus-spe
i�
 CD8 T 
ell responses and has been thought to arise when

immune 
ells re
eive persistent stimulation. Exhausted T 
ells often fail to produ
e 
ytokines upon

re
ognition of pathogen-infe
ted 
ells. While the me
hanisti
 details of how exhaustion develops

espe
ially for antigen-spe
i�
 CD4 T 
ells are not fully understood, this me
hanism may explain

why Th1 responses are lost over the 
ourse of MAP infe
tion. We investigated if exhaustion of the

MAP-spe
i�
 Th1 response may be responsible for the Th1/Th2 swit
h and disease progression. To

model 
ell exhaustion, we assume an additional death term in Eqn. (5) for Th1 
ells, νTh1
F(Im(t)),

where F(Im(t)) =

∫ t

0

Im(τ)dτ [12,13℄. The parameter, ν, is the rate of Th1 immune 
ells exhaustion

and F(Im) is the memory that is asso
iated with a

umulation of the number of times that a Th1


ell en
ounters an infe
ted ma
rophage [13℄.

As expe
ted, the possibility of exhaustion of MAP-spe
i�
 Th1 response naturally leads to the

loss of Th1 
ells and, as the 
onsequen
e, a

umulation of ine�e
tive Th2 response (Figure S3C).

This o

urs irrespe
tively of the death rate of extra
ellular ba
teria suggesting that in this model

the loss of prote
tive Th1 response is the 
onsequen
e of the disease progression in MAP-infe
ted

animals.
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