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Supplemental Information

Model analysis

Starting with non-negative initial conditions the structure of the model gives non-negative solutions.
The model disease free state (DFE), Ej is given by
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The model disease equilibrium state (DEE), Fy (we could not express the DEE in a closed form) is
given by S
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Computation of the basic model disease reproduction number (Ry)

The basic model disease reproduction number was obtained using the next generation method by
Castillo-Chavez et al [1]. The basic model can be written in the form:
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where X = (M@, Thy, Ty, Thy) € R, Y =1, € Rand Z = B € R and h(X,0,0) = 0. X denote
uninfected macrophages and T cell sub-types, Y denotes infected macrophages and Z denotes free



bacteria (the pathogen causing infection), therefore Ey = (X*,0,0). Assuming that §(X*,Y,Z) =0
implicitly determines a function Y = g(X*,Y). Let A = Dzh(X*,§(X*,0),0) and further assume
that A can be written in the form A = M — D, with M > 0 (that is m;; > 0) and D > 0, a
diagonal matrix. Then, the basic model disease reproduction number is defined as the spectral
radius (dominant eigenvalue) of the matrix M D~!, that is Ry = p(M D™!).

Now, with X = (M ¢, Thy, Th,,Th,), Y = I, and Z = B, we evaluate that

G(X*Y) = & f;ﬁiﬁ o and h(X* §(X*Y),Z) = ( kjvflsgf ﬁi 5 —B(kiM ¢+ ky M+p15).
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Theorem 1. Ey is locally asymptotically stable if Ry < 1 and unstable if Ry > 1.

Proof of local stability of Ey:
The Jacobian matrix of the system of equations (1)-(6) (which represent the basic model) evaluated
at the DFE is

— i, 0 —k; Mo 0 0 0
0 —(ky+ pur) 0 0 0
S0 Noky — —(kiMé+knM¢+pp) 0 0 0
0 —6mTh, —05Th, —uo 00
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The eigenvalues of the Jacobian matrix, J, can be determined by solving the characteristic equation
|J — M| = 0, which yeilds the following eigenvalues A\ = —pin, Ao = —po, A3 = —p1, Ay = — 2,
and the polynomial

X2+ \((ky + o) + (k1) + b M + pup) ) + (ki + pr) (ki VL& + b M+ pup) — ki NI 8l Ny = 0(S.2)

With Aj 234 <0, to complete the proof for local stability we apply the Routh Hurwitz criterion,
which requires that, in polynomial equation (S.2)

() (Rt ) + (kM + kin M + ) > 0,
(i) (ko + pr)(kiM ¢ + kMo + pp) — ki M @kyN, > 0.
These conditions are satisfied if (kp + ,uj)(kiMqS + k‘quS +up) > k:l-Mgbk:bNo, that is if
kpk; M N,
(kiM ¢ + ki M + pug) (ki + 1)’
hence 1 > Ry, therefore Ry < 1. Thus, the DFE is locally asymptotically stable
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Global stability of Fj

Using the method by Castillo-Chavez et al. [1] to establish the global stability of the DFE.
Set X = (Mg, Thy, Th,,Th,) and Z = (I, B). The model equations are rewritten as follows:

X = F(X,0),
7 = G(X,2).
Theorem 2. The DFE is globally asymptotically stable when Ry < 1, if (i) Ey = (X*,0) is locally

asymptotically stable and (i) G(X,Z) = AZ — G(X, Z) > 0 in the biological feasible region, where
A = Dz(X*,0) is the Jacobian of G(X,Z) evaluated at (X*,0).

Proof of global stability of Ey:
Therefore, Condition (ii)
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F(X,0)=|° _ng’m , and G(X,Z2) = [klg’”] > 0.
0

Therefore, G(X,Z) > 0. Condition (i) follows from Theorem: 1. Thus, the DFE is globally
asymptotically stable

Derivation of the Th1l/Th2 ratio equation

: . oy oy . . . .
We define the ratio, R, to be given by T_:l (R = T_Zl) Defferentiating R with respect to time gives
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Substituting Th1 and Th2 with the differential equation representing the time kinetics of Thl cells
and Th2 cells, respectively, gives
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Sensitivity analysis of the immune response parameters

Additional insights into the dynamics of the basic mathematical model can be obtained from the
basic model disease reproduction number, Ry (expression S.1), and carrying out sensitivity analy-
sis. The value of Ry determines whether infection will persist or is cleared . We find that the rate
of infection of macrophages by bacteria (k;), bursting rate of infected macrophages (k;) and the



amount of bacteria released in the extracellular environment (N,) are the main factors that define

kinetics of disease progression during MAP infection. The parameter k,, which models the killing

of bacteria by macrophages prevent infection progression. Thisar]%sult can easily be derived through
i Ohy

Ry 0X;

the Ry expression [2]. A positive normalised derivative indicates that increasing the value of the cor-

responding parameters will increase disease progression, while a negative value implies suppression

sensitivity analysis of Ry with respect to these parameters, , where X; are the parameters in

of infection progression.

Sensitivity analysis for infection (k;, kp, pp) and immune (k,,, ki, 61, 02, Om, 0B, p1, p2)
parameters was carried out using the LHS method [3] at the time when the ratio of Thl/Th2
response reaches 1 as the output variable (Figure S1). Sensitivity analysis identified parameters
that contribute the most to the timing of the Th1/Th2 switch including the decay rates of Thl and
Th2 cells (p; and p2), rates at which ThO cells differentiate into either Thl or Th2 cells (6, and
dp), clonal expansion factors (A1 and ), and rate of bursting of infected macrophages, k.

Using the equation for R (S.3), sensitivity analysis was carried out to determine parameters that
have significant influence to the Thl to Th2 switch (Figure S1).

Sensitivity Analysis of R,

Sensitivity indices for the basic model disease reproduction number, Ry, were evaluated. Sensitivity
indices allows us to measure the relative change in Ry with respect to its parameters. The normalised
forward senstivity of a variable to a parameter is the ratio of the relative change in the variable to
the relative change in the parameter [2]. The normalised forward sensitivity index of a variable, u,
that depends differentiably on a parameter, p, is defined as
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Therefore, we can derive analytical expressions of the sensitivity indices of Ry to be given by

Ry, X
i = =
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where X; are the eight parameters in the expression of Ry and are evaluated to be
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Parameter Sensitivity index

N, 1
Ky 0.96

1L - 0.96
k; 0.081
Fom -0.058
O 0.023
LB -0.023
Lim -0.023

Table S1: Sensitivity indices for Rjy. The parameters are ranked from the most sensitivity to the least.
Increasing the value of a parameter with a positive index results in the increase of the Ry value, hence
infection progression, while increasing the numeric value of a parameter with a negative index will reduce
infection progression. Parameters values used to calculate the sensitivity indices are given in Table 1.

N,, kp and k; are the most sensitivity parameters that favour infection progression. Since
Iﬁg = 1, therefore increasing (or decreasing) N, by 10% will increase (or decrease) Ry by 10%,
while increasing k; by 10% will increase Rg by 9.6%.

Alternative models

The basic mathematical model of the MAP infection predicts that the classical Thl to Th2 switch
occurs late in infection when the rate of removal of extracellular bacteria is relatively slow, the
burst size N, is small (N, ~ 100), and the decay rates of the Th1l/Th2 responses are similar
(1 =~ p2). Under these circumstances there is a slow build-up of bacteria in the host. Here we
investigate how additional immunological mechanisms may influence the timing of the Thl/Th2
switch if extracellular bacteria are short-lived. These mechanisms include inhibition of the Th1 cell
differentiation by Th2 effectors, proliferation of effector T cells at the site of infection, and functional
exhaustion of MAP-specific Thl responses (Figure S2).

Differentiation cross inhibition and Th1l/Th2 switch

There is strong evidence that cytokines produced by Th2 effectors skew differentiation of Th0 cells
towards Th2 phenotype and suppress differentiation of cells into Thl effectors (and vice versa) [4-7].
It is therefore possible that the switch from Thl to Th2 response during MAP infection is due to
suppression of the initially dominant Thl response by Th2 effectors. To investigate this hypothesis

Om L T
we modified the terms for the generation of Th1l and Th2 subsets in Eqns. (4)-6) to —momZho

0BTy,
1+ thhl
a rapid removal of bacteria from extracellular environment when the classical switch is not observed
(Figure 3B), inhibition of ThO cell differentiation into Thl subset by Th2 effectors allow for the loss
of the protective Thl response (Figure S3A). Increasing differentiation inhibition of Thl response
by Th2 effectors results in reduced Thl cell population and increased growth of the Th2 subset
of immune response. Reduced production of Thl cells from differentiation will gradually weaken
the protective immunity, which allows bacteria accumulation and disease progression. It should be
noted, however, that if efficiency of suppression of Th2 cell differentiation by Thl cells is high (hq is
large) then the switch will not be observed even under the conditions of slow removal of extracellular

, respectively, where h; and hg are inhibition constants. Interestingly, under conditions of



bacteria (results not shown). Thus, influence of Thl and Th2 responses on differentiation of naive
CD4 T cells into effectors has a large impact on the kinetics of the Th1/Th2 switch.

Maintenance of committed effectors at the site of infection by proliferation

In our basic mathematical model we assumed that MAP-specific effector T cell responses are main-
tained at the site of infection by continuous recruitment of differentiated cells to the site of infection.
However, it is possible that on site proliferation of effector T cells may contribute to the size of the
Thl and Th2 responses [4,7-9]. To investigate whether effector T cell proliferation at the site of
infection may influence the kinetics of the Th1/Th2 switch we extended the mathematical model.
As in the case with differentiation of ThO cells into Th1/Th2 effectors, we assume that proliferation
of MAP-specific Thl cells is mainly driven by the density of infected macrophages and that of Th2
OéljmTh1
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and % to Eqns. (5) and (6) for Thl and Th2 responses, respectively. Here a; and ay are the
2

maximal rates of proliferation of Thl and Th2 cells and 717 and Ty are half-saturation constants.

Proliferation of effector Th cells at the site of infection has a large impact on the kinetics of the
switch, and sensitivity of the Th1 and Th2 subsets to the local antigen concentrations determined
by the parameters T7 and 75, plays the major role. In the case of short-lived extracellular bacteria,
if only minute amounts of free bacteria are sufficient to drive Th2 cell proliferation, the Th1/Th2
switch will occur (Figure S3B). On the other hand, if Th1 cell sensitivity for the antigen is low (low
value of T ), the Th1/Th2 switch may not occur even if extracellular bacteria are long-lived (results
not shown). Thus, the specific details of how antigen availability influence the rate of proliferation of
MAP-specific CD4 T cells are important in determining the likelihood and kinetics of the Th1/Th2
switch.

cells by the density of extracellular bacteria. We thus add the following proliferation terms

Exhaustion of the Thl response

In chronic infections, T cells may become dysfunctional or exhausted [10-12]. Exhaustion has been
mainly documented for virus-specific CD8 T cell responses and has been thought to arise when
immune cells receive persistent stimulation. Exhausted T cells often fail to produce cytokines upon
recognition of pathogen-infected cells. While the mechanistic details of how exhaustion develops
especially for antigen-specific CD4 T cells are not fully understood, this mechanism may explain
why Thl responses are lost over the course of MAP infection. We investigated if exhaustion of the
MAP-specific Thl response may be responsible for the Th1/Th2 switch and disease progression. To

model cell exhaustion, we assume an additional death term in Eqn. (5) for Thl cells, vTy,, F (I, (t)),
t

where F(1,,(t)) = / I, (7)d7 [12,13]. The parameter, v, is the rate of Th1 immune cells exhaustion

and F(I,,) is the mgmory that is associated with accumulation of the number of times that a Thl
cell encounters an infected macrophage [13].

As expected, the possibility of exhaustion of MAP-specific Thl response naturally leads to the
loss of Thl cells and, as the consequence, accumulation of ineffective Th2 response (Figure S3C).
This occurs irrespectively of the death rate of extracellular bacteria suggesting that in this model
the loss of protective Thl response is the consequence of the disease progression in MAP-infected
animals.
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