
1

Text S2: Learning Algorithm for Sparse CGGMs

In this section, we provide the details of the optimization algorithm for learning sparse CGGM parameters.
Although the optimization problem for sparse CGGMs is convex, the main challenge for solving the
optimization problem arises from the non-smoothness of the L1 penalty function. In order to handle
this challenge efficiently, we notice that the optimization problem for sparse CGGM consists of the
smooth function of data log-likelihood and the non-smooth function of the L1 penalty. We adopt a
variant of accelerated proximal gradient algorithms, called a Nesterov’s second method [31], that has
been developed as a general-purpose algorithm for optimizing a convex function that consists of a smooth
continuously-differentiable part and a non-smooth part [31–33]. Among many variants of accelerated
proximal gradient methods, we choose to use the Nesterov’s second method because it has the additional
capability of ensuring Θyy to be positive definite throughout the iterative optimization procedure.

An accelerated proximal gradient method extends a proximal gradient method with an additional step
of acceleration in each iteration. The proximal gradient method generalizes the standard gradient descent
method for optimizing a smooth function, to handle the additional non-smooth part of the objective
function. The gradient descent step in each iteration of the gradient-descent method can be viewed as
constructing a local quadratic approximation of the objective around the current parameter estimate and
minimizing this local approximation to update the parameter estimate. The proximal gradient method
augment this gradient step with a proximal mapping step that amounts to a soft-thresholding operation
for the case of L1 penalty. An accelerated proximal gradient method further extends the proximal gradient
method with an additional acceleration step to speed up the convergence. The acceleration step adds
a momentum to the gradient step by updating the parameter in each iteration based on the results
from the two proceeding iterations, rather than updating based on the parameter estimate only from the
previous iteration. Such an acceleration step has been shown to improve both theoretical and empirical
convergence rates of proximal gradient methods significantly.

We present the full optimization procedure for learning sparse CGGM parameters Θall =

(

Θxy

Θyy

)

in Algorithm 1. W =

(

Wxy

Wyy

)

and U =

(

Uxy

Uyy

)

are auxiliary variables of the same dimension as

Θall that store the intermediate values of the parameters in each iteration. Steps 1 and 2 of Algorithm
1 correspond to acceleration steps, where the amount of momentum δt for acceleration in iteration t is
updated in Step 1 and the acceleration is performed on the intermediate variable W in Step 2 using δt.
Step 3, in preparation for the proximal gradient step in Step 4, computes the negative data log-likelihood
based on the current estimate of the parameters and its gradients given as:

∇L(Θall;X,Y) =

∂L(Θall;X,Y)

∂Θxy

∂L(Θall;X,Y)

∂Θyy

 , (1)

where

∂L(Θall;X,Y)

∂Θxy

= XTY −
∑

i

E
[

xiyiT
]

,

∂L(Θall;X,Y)

∂Θyy

=
1

2
YTY − 1

2

∑

i

E
[

yiyiT
]

.

The expectations in the above equations are taken with respect to p(yi|xi,Θxy,Θyy) and can be com-

2

Algorithm 1 Optimization Algorithm for Sparse CGGM

Input: X, Y, Θ0
all, line search parameters l0 > 0 and α ∈ (0, 1).

Initialization: δ0 = 1, U0 = Θ0
all, l = l0.

Iterate: For iteration t = 0, 1, 2, . . ., until convergence

1. Update δt+1 =

√
δ4
t
+4δ2

t
−δ2

t

2 .

2. Update W = (1− δt)Θ
t
all + δtU

t.

3. Compute L(W;X,Y), ∇L(W;X,Y) according to Eq. (1).

4. Line search: Find the smallest non-negative integer i ≥ 0 for l = l/αi, such that Θall and U are
positive definite and

L(Θall;X,Y) ≤ L(W;X,Y)+ <∇L(W;X,Y),Θall −W> +
l

2
||Θall −W||22, (2)

where

Θall = T[λ1

l
,
λ2

l
]

(

W − 1

l
∇f(W)

)

, U = T[λ1

δtl
,
λ2

δtl

]

(

Ut − 1

δtl
∇f(W)

)

with T[a,b](D) defined as in Eq. (3).

5. Set l = l, Θt+1
all = Θall = T[λ1

l
,
λ2

l]

(

W − 1
l
∇f(W)

)

, Ut+1 = U = T[λ1

δtl
,
λ2

δtl
]

(

Ut − 1
δtl

∇f(W)
)

.

Output: Θ̂all = Θt+1
all .

puted as

E
[

xiyiT
]

= −xixiTΘxyΘ
−1
yy ,

E
[

yiyiT
]

= Cov(yi) + E
[

yi
]

E
[

yi
]T

= Θ−1
yy +Θ−1

yyΘ
T
xyx

ixiTΘxyΘ
−1
yy .

Steps 4 and 5 of Algorithm 1 are the key steps of the algorithm and perform the proximal gradient step.
Step 4 performs a line search to obtain the appropriate gradient-descent step size by iteratively increasing
the gradient step size parameter l and checking line-search stopping conditions in each iteration. The
stopping condition in Eq. (2) ensures that the local quadratic approximation of the negative data log-
likelihood on the right-hand side of the inequality is an upper-bound of the negative data log-likelihood
on the left-hand side of the inequality. Given the gradient step size obtained from Step 4, Step 5 performs
a proximal gradient step, where a gradient update W′ = W − 1

l
∇L(W;X,Y) is first performed with

respect to the direction ∇L(W;X,Y) and then, the proximal mapping for the non-smooth L1 penalty
is performed as a soft-thresholding operation given as

T
[
λ1

l
,
λ2

l
]

(

W′

)

,

where

T
[
λ1

l
,
λ2

l
]
(W′

(j,k)) = sign(W′

(j,k))max(0, |W′

(j,k)| − vj,k), (3)

with vj,k = λ1

l
if W′

(j,k) is an element of W′

xy and vj,k = λ2

l
if W′

(j,k) is an element of W′

yy. U is
updated in a similar manner to W.

3

The per-iteration computational time complexity of Algorithm 1 is O(K3 + J2K + JK2). The main
computational cost arises from the inversion of the K × K matrix Θyy with the cost of O(K3) that is
necessary for computing the gradient of objective with respect to Θyy.

