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1 Components of the model

The queueing network model used in the present study is relatively abstract
and simple. Despite their long history of use in cognitive psychology [14],
queueing models are not as physiologically realistic as other types of mod-
els. For example, nonlinear dynamic models can capture the physiological
complexity of neural activity to a much greater extent [5, 6, 10, 11].

However, the purpose of our queueing model is not to re-create neural
activity. Rather, it is intended as an analysis; a way to generate relative met-
rics about network communication, so that we can compare different network
topologies to each other, or different nodes to each other. Our approach is
similar to how graph theory is used in neuroscience, where networks can be
compared on the basis of their efficiency, or brain regions can be compared
on the basis of their centrality. By sacrificing some physiological realism, we
are able to explicitly operationalize several aspects of network communica-
tion that could not otherwise be modeled by traditional means, such speed,
throughput and fidelity. These metrics are not accessible with other types of
models, such as nonlinear dynamic systems.

1.1 Discrete signal units

Central to our approach is the use of discrete signal units. Our primary
interest is how pairs of nodes communicate in the context of the whole net-
work, and these signal units merely represent the ability of brain regions
to influence one another. This is a major assumption, because the diverse
array of emergent neural phenomena, such as perception, cognition and mo-
tor control is surely more than just “message passing” between brain areas.
However, this simplifying assumption allows us to trace the trajectory of each
signal unit as it propagates in the network, and to calculate various metrics
about the potential for communication that is afforded by the anatomical
connectivity.

At the present time, there is no consensus in the literature as to what the
basic unit of information is at this “large” spatial scale. The discrete packets
in our model merely represent the ability of distal regions to influence each
other. This is an assumption made by virtually every study in which the
brain is represented as a large-scale graph.

1.2 Queues and buffers

The second major feature of our approach is the use of queues and finite
buffers, which allow us to model how network topology constrains informa-
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tion flow. A central tenet of cognitive psychology is the notion that we have
limited cognitive resources, and this is reflected by a finite capacity for var-
ious faculties, such as attention and working memory. For instance, iconic
memory is fleeting, barely lasting more than a few moments [21]. A typical
high-functioning adult is only able to maintain approximately seven items
in working memory [16]. Even the ability to simply register two successive
events presents considerable difficulties and eventually becomes impossible
if they occur within a short span of each other [18]. However, the reasons
for such limits are unknown and typically attributed to scarce “cognitive
resources”.

Queueing is a mechanism by which signal units are made to interact as
they flow through the network. Unlike graph theoretic models, a queueing
network explicitly models the interplay between multiple information flows
on top of a given topology. For example, a common graph-theoretic measure
of node centrality is betweenness, calculated as the proportion of all shortest
paths in the network that pass through a given node. This metric implic-
itly assumes that (a) information travels with perfect knowledge of global
topology and (b) information travels completely unobstructed through the
network. Thus, in a graph theoretic analysis, a node that is well-connected is
assumed to be a hub. In a queueing network model, a node can be a hub or a
bottleneck, and the framework allows us to investigate how the architecture
of the network shapes and limits communication.

Likewise, finite buffers provide a way to model limited cognitive resources
and imperfect information transmission in brain networks. Finite buffers
allow for the possibility of signal loss, mimicking the poor fidelity of neural
networks [7].

1.3 Poisson arrivals

“External” arrivals represent the assumption that new information is con-
tinuously generated and communicated in the network. The source of this
information may be either stimulation exogenous to the nervous system, or
some endogenous process. We chose to use Poisson arrivals for empirical rea-
sons. In the single-cell literature, inter-spike intervals (ISIs) are thought to
be exponentially distributed [13, 19, 20, 25]. Likewise, in the psychophysics
and signal detection literature, the Poisson process is often used to model
stimulus fluctuations and other statistical properties of the sensory environ-
ment, most notably in the classic models of Barlow [1] and McGill [15]. This
assumption is largely based on the theoretical work of Pirenne [17], who
showed that the number of light quanta impinging on the retina would have
to be Poisson distributed, both temporally and spatially.
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2 Analytical model

In the following section we seek to confirm the numerical model via analysis.
We attempt to derive an analytical queueing network model comprised of N
nodes. The network is represented as a binary adjacency matrix R of size
N ×N . Each element Ri,j is equal to 1 if there is a link from node i to node
j. If there is no link from node i to node j then Ri,j = 0.

Each node is modeled as server which has to process a received signal unit
before it is forwarded to a neighboring node. The routing of signal units is
random, i.e. the signal units are forwarded to randomly selected neighbours.

The external arrivals to each node are modeled as a Poisson process. We
assume that the sum of processing time at the intermediate node j and its
forwarding time is exponentially distributed with parameter µj. In addition
to biological considerations, we choose the exponential distribution because
allows for a tractable analytical model and because it has a coefficient of
variation equal to 1. The relatively conservative coefficient of variation allows
for tighter performance bounds for many other sub-exponential service and
forwarding times. We also assume that each node has a finite buffer and uses
an impartial Last Come First Served (LCFS) service discipline with pushout.
Thus, in the case of buffer overflow due to high input load, the signal unit
that arrived least recently will be lost.

2.1 Modeling a node

In the classical M/M/1/K First Come First Served (FCFS) system with finite
capacity, each arriving signal which finds the system (buffer and server) full
is blocked and lost [12, 24]. Alternatively, in the pushout model, the arriving
signal is always accepted, while the signal which has been waiting for the
longest time is pushed out of the system. In this non-preemptive system, a
signal which is already in service cannot be pushed out. It can be shown
that the blocking probability of the wider class of M/G/1/K FCFS systems
is equal to the pushout probability of a pushout system [24]. We will denote
this value as PB.

In addition, the probability distribution of buffer occupancy is the same
for blocking and pushout systems as long as the service policy is impartial.
However, it is also known [24] that the mean waiting time of a signal which is
eventually served in LCFS pushout system is smaller than the waiting time
in a FCFS system (although its variance is larger) [24].

Let us denote total arrival rate to node j as λin,j. Then offered load for
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node is denoted as:

ρo,j =
λin,j
µj

. (1)

Then, probability of having 0 ≤ k ≤ K messages in the node’s j buffer is
given by:

pj,k = ρko,j
1− ρo,j

1− ρK+1
o,j

. (2)

Pushout, i.e. blocking probability is then equal to:

Pj,B = pj,K = ρKo,j
1− ρo,j

1− ρK+1
o,j

. (3)

2.2 Modeling a network of nodes

According to Burke’s theorem, the output of a M/M/m system is also a
Poisson process [12]. This result can be extended to finite M/M/m/K systems
due to the memoryless property of the distribution of signal interarrival times,
which is exponential. This result allows for the analysis of any feedforward
interconnection of nodes using node-by-node decomposition analysis.

Likewise, Jackson’s theorem extends the previous result to a network of
N nodes with feedback interconnections and allows a node-by-node decom-
position [12]. This fits our analysis since the queuing network based on the
macaque anatomy has a significant feedback structure.

Let us define Pdest as the probability that the node which receives the
signal unit is a destination for that unit. We also define the probability that
the node which receives the unit has to forward it further as Ptr = 1− Pdest,
i.e. the transit probability. Under the random routing assumption, these
probabilities depend on the topology of the graph. A conservative estimate
would be Ptr = 1

N−1 and Pdest = 1 − 1
N−1 , although we will discuss less

conservative approaches as well.
Let us assume that each node j in the network has an external input

Poisson rate γj. The remaining part of the input rate comes from nodes that
project to node j. By Burke’s Theorem, the output process of each node is
also Poisson [12].

Under the decomposition approach, the input Poisson rate to node j is
equal to:

λin,j = γj +
N∑
i=1

λout,iri,j (4)
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where ri,j denote routing probabilities from node i towards node j. Under
random routing and a known connectitivity matrix R, routing probabilities
are equal to:

ri,j =
Ri,j

odl
, (5)

where odi =
∑N

n=1Ri,n is the output degree of node i.
The output rate from each node is affected by blocking caused by the

node’s finite buffer and by the portion of signals for which this node is a
destination. Therefore, the output rate from node j is equal to:

λout,j = λin,j(1− Pj,B)Ptr (6)

note that the output rate is also known as the throughput of the node. The
carried load for node j can also be obtained as ρc,j = ρo,j(1− Pj,B)Ptr.

Equations (3), (4) and (6) for each node form a system of 3N equations
which can be solved in an iterative way. The first iteration of the system
is started with only external input to the nodes and iterations are stopped
when the relative increment of blocking probabilities between two iterations
falls below a threshold of 0.0001.

2.3 Modeling delay in a node

Let us first consider the FCFS system and the waiting time of the signal that
arrives to the buffer and finds k − 1 > 0 waiting messages and one signal
being serviced. That signal has to wait for remaining service time of the
signal being served plus k − 1 complete service times.

Assume that the probability density function (pdf) of the message service
time is denoted as bj(x) = µje

−µjx and its probability distribution function
(PDF) is Bj(x) =

∫ x
y=0

bj(y)dy. The mean value of service time is b =∫∞
x=0

xb(x)dx.
The Laplace-Stieltjes Transform (LST) of message service time in node j

is denoted as:

B∗j (s) =

∫ ∞
0

e−sxbj(x)dx =
µj

µj + s
(7)

The pdf of remaining service time is bj,+(x) =
1−Bj(x)

b
. The LST of the

remaining signal service time is denoted as [4, 23]:

B+∗
j (s) =

∫ ∞
x=0

e−sxbj,+(x)dx =
1−B∗j (s)

s
. (8)
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Due to the memoryless property, for the exponential distribution it holds
that B+∗

j (s) = B∗j (s) =
µj
µj+s

.

Therefore, the LST of the delay in FCFS system with an exponentially
distributed service time has the form:

W ∗
fcfs,j(s) =

1

1− Pj,B

(
pj,0 +

K−1∑
k=1

pj,kB
+∗
j (s)B∗j (s)

k−1

)

=
1

1− Pj,B

(
pj,0 +

K−1∑
k=1

pj,kB
∗
j (s)

k

)
(9)

The mean value of the delay can be derived as W ∗
fcfs,j = − dW ∗

fcfs,j(s)

ds

∣∣∣
s=0

.

Analysis of message delay in the LCFS system with pushout is more
involved due to the recursive nature of the delay process. In order to derive
a distribution of this delay we first attain some intermediate results.

First, we define the LST of the joint distribution of service time and
number of signals that arrive during service time as a∗j,n. By the same token,
we define the LST of the joint distribution of residual signal service time and
number of signal arrivals as d∗j,n. Expressions for a∗j,n and d∗j,n are presented
as:

a∗j,n(s) =

∫ ∞
x=0

(λin,jx)n

n!
e−(s+λin,j)xb(x)dx (10)

d∗j,n(s) =

∫ ∞
x=0

(λin,jx)n

n!
e−(s+λin,j)xbj,+(x)dx (11)

Note that for the exponential distribution of service time a∗j,n(s) = d∗j,n(s).
We also denote W ∗

j,k(s) as the LST of the delay for the waiting time of a
signal that has k signals ahead at the end of service and is eventally served
(index k ranges from 0 ≤ k ≤ K − 2).

W ∗
j,0(0) = 0

W ∗
j,k(s) =

K−k−1∑
n=0

a∗j,n(s)W ∗
j,k+n−1(s), 1 ≤ k ≤ K − 2 (12)

Using elimination, the system of equations (12) can be solved such that
W ∗
j,k(s) = f(a∗j,n(s)), n = 0..K − 2.
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For signals that receive service, the LST of the delay has been presented
as [24]:

W ∗
lcfs,j(s) = πj,0 + ρo,j

K−2∑
k=0

a∗j,k(s)W
∗
j,k(s) (13)

where πj,0 denotes the probability that the system is empty at signal depar-
ture time. Fortunately, for exponentially distributed service times πj,0 = pj,0.

The mean value of node delay can be obtained asW ∗
lcfs,j = − dW ∗

lcfs,j(s)

ds

∣∣∣
s=0

.

Finally, we need to mention that the signal response time for node j is the
sum of signal waiting and processing times, i.e. T ∗lcfs,j(s) = W ∗

lcfs,j(s)B
∗(s)

and T ∗lcfs,j = W ∗
lcfs,j + 1

µ
.

2.4 End to end delay (transit times)

Given the fact that CoCoMac graph is relatively large, well connected and
that we use random routing, we used a computationally efficient approxima-
tion, whereby the number of traversed hops between source and destination
node has a probability distribution similar to the geometric [8]. However, a
parameter of this distribution is the transit probability Ptr, which can not be
fully oblivious to the traversed path. If it was fully oblivious to the traversed
path, then Ptr = 1

N−1 , giving the Probability Generating Function (PGF) of
the total number of hops:

Nhp(z) =
∞∑
k=0

P k
tr(1− Ptr)zk+1 (14)

giving mean number of hops as Nhp =
dNhp(z)

dz

∣∣∣
z=1

= 1
1−Ptr

= N − 1.

A better approximation would assume that the transit probability de-
creases with each traversed hop until the number of hops reaches a number
that is significantly larger than the diameter of the network. In the case
of the macaque network with diameter equal to 4, we limit this to N − 1,
which is 60 times larger than the diameter. In that case, for i traversed hops
Ptr,i = 1

N−i , and the PGF for the number of traversed hops becomes:

Nhp,m(z) =
N∑
k=0

k∏
i=1

Ptr,i(1− Ptr,k+1)z
k+1 (15)
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The mean number of hops using this approximation is approximately N/2.
The LST of the end to end delay and processing time for signals origi-

nating in node j - according to both approaches - is:

E∗j (s) =
∞∑
k=0

P k
tr(1− Ptr)T ∗lcfs,j(s)k+1 (16)

Em∗j(s) =
∞∑
k=0

k∏
i=1

Ptr,i(1− Ptr,k+1)T
∗
lcfs,j(s)

k+1 (17)

with mean values of Ej = (N − 1)T ∗lcfs,j and Emj = − dEm∗
j (s)

ds

∣∣∣
s=0

.

Additional averaging over all nodes in the graph gives E =
∑N

j=1Ej/N .

2.5 Comparing analysis and simulation

As mutual verification of the analytic expressions derived above and the nu-
merical simulations reported in the main manuscript, we compare the two for
network- and node-level statistics (Figs. S3,S4). In general, the two methods
are in good agreement for the node-level statistics (Fig. S4). There is also
considerable agreement for the network-level statistics (Fig. S3) and the two
methods show the same pattern of results. There are also some small dif-
ferences between the two, particularly for transit times, and these are likely
due to the fact that we had to approximate the distribution of “hops” from
source to target node using the geometric distribution.

3 Exploring parameter space

In general, the present model has two characteristic modes of operation. At
low intensities (external arrival rates) the total number of signal units in
the network fluctuates around some finite value and the system is stable
(Fig. 2). As the intensity is increased, there is a qualitative change in the
system dynamics, characterized by a monotonic increase in the number of
signal units in the network until all buffers are filled. This is analogous to
a phase transition in dynamical systems theory and is sometimes referred to
as a “jamming” transition [2, 22]. The focus of the present study was on the
steady-state behavior of the network.

The key variable is the ratio between the arrival rate and service rate
at each node. Therefore, we fixed the service rate (µ) and varied the rate
of external arrivals (λ). The latter effectively becomes an order parameter,
capable of inducing a phase transition at some critical value.

9



The only other free parameter is the buffer capacity H. Buffer capacity is
not a critical parameter in the sense that it cannot induce a phase transition
in the system. Changes in buffer capacity will produce quantitative, but
not qualitative, changes in system behaviour. To demonstrate this point,
we show node-specific metrics at three different capacities in Fig. S5. As
buffer capacity is increased from H = 5 to H = 100, the total number of
signal units in the system will increase because congested nodes can now hold
more signal units in their buffers. Node contents are increased, particularly
for the high-degree rich club nodes. Likewise, blocking probabilities remain
unchanged, save for a few nodes where, due to the higher capacities, fewer
signal units are lost. Node utilizations are slightly increased for all nodes,
because fewer signal units are lost and there is a greater number of signal
units in the system. However, the utilizations are fairly consistent across
different buffer capacities, because the limiting factor in the utilization of
each node is the ratio of arrival rate and service rate at each node.

4 Assessing similarity between network sce-

narios

To assess the similarity between the patterns of results produced by the three
different scenarios (CoCoMac, Small-World and Rich-Club), we employed
the following procedure. For each network measure (e.g. transit time), we
constructed a vector containing the results for the original, randomized and
latticized networks at all simulation intensities (0.05, 0.1, 0.15, 0.2). For
instance, for the CoCoMac (C) network and its randomized (R) and latticized
(L) null models, the vector was organized as:

VCoCoMac =



C(0.05)
R(0.05)
L(0.05)

...
C(0.20)
R(0.20)
L(0.20)


(18)

This vector, representing the overall pattern of results for a given measure,
was then correlated with analogous vectors constructed for the Small-World
and Rich-Club scenarios. The correlation coefficients and associated p-values
are displayed in Table S1. Both the Small-World and Rich-Club scenarios
are highly correlated with the CoCoMac pattern and this is due to the fact
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that increasing simulation intensity leads to similar behaviour in all networks,
such as increasing throughput, blocking and utilization. Importantly, pat-
terns associated with the CoCoMac scenario were consistently more highly
correlated with the Rich-Club scenario (≈ 0.99) than with the Small-World
scenario (≈ 0.85). Note that these results are invariant to whether the vector
is constructed by arranging networks within intensities (as shown above) or
intensities within networks.

Finally, to assess whether there is any difference between the correlation
coefficients obtained for CoCoMac-Small World and CoCoMac-Rich Club
scenarios, we apply Fisher’s r-to-z transformation. Following Cohen and
Cohen [3], we express the difference between the two transformed correlation
coefficients as a z score (Table S1, bottom row). The comparison is treated
as a one-tailed test, and z scores greater than |1.645| are taken to indicate
that the CoCoMac-Rich Club correlation is significantly greater than the
CoCoMac-Small World correlation.

5 T -values and p-values

In section 2.1 of the main manuscript we report differences in network and
node statistics for the CoCoMac network and it’s degree-matched random-
ized and latticized null models. Statistical assessment was performed by
taking the average results for 100 simulations on the CoCoMac network and
comparing these to 100 simulations on 100 realizations of the null networks.
The average t-statistics and p-values associated with these comparisons are
shown in Tables S2 (transit times), S3 (throughput) and S4 (node contents).
Thus, Tables S2 and S3 correspond to Fig. 2 in the main manuscript, while
Table S4 corresponds to Fig. 4 in the main manuscript.

6 Effect of resampling

In a discrete-event simulation, the system state is updated only when an
event occurs. This event may be the creation of a signal unit, a signal unit
entering a queue or leaving a server, or a signal unit being removed from
the network. As a result, in many models system state is sampled at non-
uniform time intervals. This is true of the present model, because system
dynamics are governed by random variables, such as signal inter-arrival times
and service times.

To facilitate conventional time series analysis, we used simple linear in-
terpolation (also known as “table lookup”) to resample the system state at
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uniform time intervals. The new time series were effectively downsampled
because an original simulation run had an average of 2.21 samples per time
unit, while the interpolated time series were sampled once per time unit.

Fig. S6 shows the effects of linear interpolation for one sample time series
of network load. Compared to the original (Fig. S6), the interpolated time
series appears slightly smoother (Fig. S6B), indicating some loss of high fre-
quencies as expected. However, there appears to be little difference between
the two time series.

7 Effect of rich club size

To demonstrate that network-level behavior reported in the manuscript could
be replicated with a wide range of synthetic rich club networks, we create
three additional such networks, with rich clubs of 10, 20 and 30 nodes. As
described in the main manuscript, the networks were created from a random
network by endowing a sub-set of nodes (the rich club) with greater connec-
tion density than the rest of the network, and an even greater connection
density amongst each other.

Fig. S7 shows the network-level metrics for each of these synthetic rich
club networks, as well as their randomized and latticized versions. The pat-
tern of results appears to be invariant to rich club size, and very similar to
the network with 25 rich club nodes reported in the main manuscript. The
small differences between the networks are likely due to the slight differences
in density between the networks.
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