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Supplementary Information

SI1: Relation of measured rate constants to rate constants used in the model

In Figure 1 three binding schemes are shown. It is important to know how the rate constants in the
three panels are related to the rate constants determined from SPR binding experiments. SPR data for
Fab binding to HIV-1(Fig. 1 in Alam et al. [10]) shows a very rapid off rate constant indicating that
the binding from solution to the lipid membrane rapidly equilibrates. The transport of the bound Fab
to the epitope should also be very rapid since once an Fab is bound to a lipid binding site it should
diffuse with a diffusion coefficient that is comparable to that of the lipid ((10−8 − 10−9) cm2/s). Such
rapid transport will result in the Fab-epitope binding being reaction limited. Making these two quasi-
equilibrium approximations we can write the chemical rate equation for binding steps 1-3 as follows:

dE1/dt = (KLLA)(KD)3κ+1E0 − κ−1E1 (S1)

where KD = k+/k− is the diffusion limited equilibrium constant.
Noting that A1 = KLLA, the above equation becomes

dE1/dt = 3KLLKD(κ+1)E0A− κ−1E1 (S2)

We also have that
dE1/dt = 3k+eAE0 − k−eE1 (S3)

In the experiments of Alam et al. [4] k+e is determined for Fab binding to peptide-liposome conjugates.
The peptides on the liposome surfaces are not in the form of trimers. Therefore k+e is the rate constant
for binding to a single peptide binding site. For this reason, in Eq. (S3), there is a factor of three in the
expression for the forward rate for binding of an Fab to a spike.

Comparing Eqs. (S2) and (S3) we find

k+e = KLLKDκ+1 (S4)

Since L is the concentration of free lipid binding sites on HIV, in theory L changes with the concentration
of Fab. The higher the Fab concentration in solution the more bound sites on the verion are taken up
by Fab. However, we assume that the binding of Fab takes up a negligible fraction of lipid binding sites,
i.e., we treat L as a constant equal to the total concentration of lipid binding sites. When we consider
the binding of the antibodies 2F5 and 4E10 we make the same assumption.

We note that
k̄+1 = KDκ+1 (S5)

and therefore
k+e = k̄+1KLL (S6)
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Because we are in the reaction limit we also have that

k−e = κ−1 = k̄−1 (S7)

In the reaction limit diffusion away from the bound complex and dissociation from the lipid attachment
are much faster than dissociation from the MPER.

SI2: Solving equation 4-6

To solve Eqs. (4)–(6) we will use properties of Laplace Transforms (LTs) that are listed below, taking the
transform variable to be s and the LT of f(t) to be f̃(s). This can only be done because A is a constant
which makes the set of ODEs linear.

f(t) → f̃(s) (S8)
df(t)/dt → sf̃(s)− f(0) (S9)∫ t

0

f(u)du → 1
s
f̃(s) (S10)

lim
t→∞

f(t) = lim
s→0

sf̃(s) (S11)

Before solving the ODEs we note the following result which follows from Eq. (1) and the first, third
and fourth properties of LT above.

Ei(∞) = λ lim
t→∞

∫ t

0

E0(t′)dt′ = λ lim
s→0

s
1
s
Ẽ0(s) = λẼ0(0) (S12)

Therefore the probability of incapacitating an epitope is

pb = 1− λẼ0(0)/E0(0) (S13)

Let us now return to our set of ODEs, Eqs. (4)-(6), and solve them for Ẽ0(0). We start by taking
LTs of the ODEs, noting that at t = 0, E0 = E0(0), E1 = 0 and ET = 0.

sẼ0 − E0(0) = −(λ+ 3k+eA)Ẽ0 + k−eẼ1 (S14)
sẼ1 = 3k+eAẼ0 − (k−e + κ+d)Ẽ1 + κ−dẼT (S15)
sẼT = κ+dẼ1 − (κ−d + dT )ẼT (S16)

We next set s = 0 and solve these equations for Ẽ0. We start by defining the following determinants.

detD1 =

∣∣∣∣∣∣
−E0(0) k−e 0

0 −(k−e + κ+d) κ−d

0 κ+d −(κ−d + dT )

∣∣∣∣∣∣
detD =

∣∣∣∣∣∣
−(λ+ 3k+eA) k−e 0

3k+eA −(k−e + κ+d) κ−d

0 κ+d −(κ−d + dT )

∣∣∣∣∣∣
We now solve for Ẽ0(0).

Ẽ0(0) = detD1/detD (S17)

Ẽ0(0)/E0(0) =
κ−dk−e + dT (k−e + κ+d)

λκ−dk−e + dT (λk−e + κ+d(λ+ 3k+eA))
(S18)

With this result we can obtain the probability of disabling an epitope from Eq. (S13). Upon substitution
and rearranging terms, Eqs. (7) and (8) are obtained.
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SI3: Model equations and their solutions for any Fab concentration

Figure 2 shows the states that can arise when up to three Fabs can bind to a trivalent gp41. The reactions
between the states and their rate constants are indicated in the figure as well. The equations that describe
the model when d1 = 0 are:

dE0

dt
= −(λ+ 3k̄+1A1)E0 + k̄−1E1 (S19)

dE1

dt
= 3k̄+1A1E0 − (k̄−1 + κ+d + 2k̄+1A1)E1 + 2k̄−1D0 + κ−dET (S20)

dET

dt
= κ+dE1 − (κ−d + 2k̄+1A1 + dT )ET + k̄−1D1 (S21)

dD0

dt
= 2k̄+1A1E1 − (2k̄−1 + 2κ+d + k̄+1A1)D0 + κ−dD1 + 3k̄−1T0 (S22)

dD1

dt
= 2k̄+1A1ET + 2κ+dD0 − (k̄+1A1 + k̄−1 + κ−d + κ+d + dT )D1 + 2κ−dD2 + 2k̄−1T1 (S23)

dD2

dt
= κ+dD1 − (k̄+1A1 + 2κ−d + 2dT )D2 + k̄−1T2 (S24)

dT0

dt
= k̄+1A1D0 − (3k̄−1 + 3κ+d)T0 + κ−dT1 (S25)

dT1

dt
= k̄+1A1D1 + 3κ+dT0 − (κ−d + 2k̄−1 + 2κ+d + dT )T1 + 2κ−dT2 (S26)

dT2

dt
= k̄+1A1D2 + 2κ+dT1 − (k̄−1 + 2κ−d + κ+d + 2dT )T2 + 3κ−dT3 (S27)

dT3

dt
= κ+dT2 − 3(κ−d + dT )T3 (S28)

We solve Eqs (S19)-(S28) in the limit as t → ∞ and dT → ∞ as we previously did in SI2 for the three
equations that described the model in the low concentration limit. We take LT of these ODEs, converting
them to a set of algebraic equations, set the transform variable equal to zero (the t→∞ limit), and solve
these algebraic equations using Mathematica. We find that

Ẽ0/E0(0) =
“
2κ3
d + 2k̄3

−1 + κ2
d

“
6k̄−1 + 5A1k̄1

”
+ κd

“
6k̄2
−1 + 5A1k̄−1k̄1 + 2A2

1k̄
2
1

””
2λk̄3

−1 + 2κ3
d

`
λ + 3A1k̄1

´
+ κ2

d

“
6k̄−1

`
λ + 2A1k̄1

´
+ 5A1k̄1

`
λ + 3A1k̄1

´”
+ κd

“
6k̄2
−1

`
λ + A1k̄1

´
+ 2A2

1k̄
2
1

`
λ + 3A1k̄1

´
+ A1k̄−1k̄1

`
5λ + 12A1k̄1

´”
(S29)

The quantity Ẽ0(0) has the following form

Ẽ0(0) =
γE0(0)
γλ+ β

(S30)

where

γ = 2(κ+d + k̄−1)3 + 5(k̄+1A1)κ+d(κ+d + k̄−1) + 2κ+d(k̄+1A1)2 (S31)
β = 6κ+d(κ+d + k̄−1)2(k̄+1A1) + 3κ+d(5κ+d + 4k̄−1)(k̄+1A1)2 + 6κ+d(k̄+1A1)3

(S32)

and

pb = 1− λẼ0(0) =
(β/γ)

λ+ (β/γ)
(S33)
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We would like to know over what Fab concentration range Eqs. (7) and (10), that result from the simple
three equation model, hold. To do this we expand pb in a power series in (k̄+1A1) and see when the
second term in the expansion becomes comparable to the first. When this is done we have that

pb =
3κ+d

κ+d + k̄−1
k̄+1A1

(
1 +

2k̄−1

(κ+d + k̄−1)2
k̄+1A1 + o((k̄+1A1)2)

)
(S34)

We want to know when

1� 2k̄−1

(κ+d + k̄−1)2
k̄+1A1 =

2k̄−1

(κ+d + k̄−1)2
k+eA (S35)

or equivalently

A� (κ+d + k̄−1)2

2k̄−1k+e
(S36)

We have assumed that it takes only one Fab bound to an MPER to disable an epitope composed
of three gp41. If this is not the case, and it takes two or three bound Fab to disable an epitope, it is
straightforward to modify the model. For example, if the binding of two Fab is required, then dT should
be removed from Eqs. (S21) and (S23). If the binding of three Fab are required then dT should be
removed from Eqs. (S24), (S26) and (S27) and only be present in Eq. (S28). When two or three bound
Fab are required to disable an gp41 trimer, at low Fab concentrations, pb will be proportional to A2 and
A3 respectively.

SI4: The model equations for IgG binding

Figure 4 of the manuscript illustrates the surface reactions that polyreactive antibodies can undergo in
the model. We assume that these antibodies cannot cross-link MPERs on either the same spike or on
different spikes. However, the antibodies can bind bivalently in the ways shown in the figure. The model
expands from three to five ODEs since there are now two new states, E∗1 and E∗T , that involve the binding
of antibodies to MPERS. E∗1 is the concentration of MPERs that have not undergone a conformational
change and that have an antibody bound that has its second site bound to lipid. E∗T is the concentration
of those MPERs that have undergone a conformational change and that have an antibody bound that
has its second site bound to lipid. The set of ODEs now become

dE0/dt = −λE0 − 3k̄+1A1E0 − 6k̄+1A2E0 + k̄−1E1 + k̄−1E
∗
1 (S37)

dE1/dt = 3k̄+1A1E0 − k̄−1E1 − (k̄+2LE1 − k̄−2E
∗
1 )− κ+dE1 + κ−dET − d1E1

dE∗1/dt = 6k̄+1A2E0 − k̄−1E
∗
1 + (k̄+2LE1 − k̄−2E

∗
1 )− κ+dE

∗
1 + κ−dE

∗
T − d1E

∗
1

dET /dt = κ+dE1 − κ−dET − (k̄+2LET − k̄−2E
∗
T )− dTET

dE∗T /dt = κ+dE
∗
1 − κ−dE

∗
T + (k̄+2LET − k̄−2E

∗
T )− dTE

∗
T

However, we can reduce the number of equations back to three by adding equations two and three together
and equations four and five together. Calling Ē1 = E1 + E∗1 and ĒT = ET + E∗T

dE0/dt = −λE0 − 3k̄+1(2A2 +A1)E0 + k̄−1Ē1 (S38)
dĒ1/dt = 3k̄+1(2A2 +A1)E0 − k̄−1Ē1 − κ+dĒ1 + κ−dĒT − d1Ē1 (S39)
dĒT /dt = κ+dĒ1 − κ−dĒT − dT ĒT (S40)

Note that the term in Eqs. (S38) and (S39)

3k̄+1(2A2 +A1)E0 = 3k̄+1A1(K2L+ 1)E0 = 6k̄+1KLL(K2L+ 1)AE0 (S41)
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From the argument presented in S1, for the bivalent antibody

3kIgG
+e = 6k̄+1KLL(K2L+ 1) (S42)
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SI5: Fitting methods used to determine N and the IC50 values

We fit four neutralization experiments simultaneously to determine the best fit values of N and four
different IC50s. As described in the Methods section, the best fit values were obtained using a program
(FUI) based on the Levenberg-Marquardt algorithm for solving nonlinear least squares problems. We
found N = 0.64 ± 0.07, where the error estimate is the 95 % confidence interval obtained from 500
simulations using the bootstrap method [46]. Because the model we used to derive pb is only exact at
low mAb concentrations we refit a reduced data set, dropping the two data points at the highest mAb
concentrations from each of the five neutralization experiments. To two places the value we obtained for
N was the same. We also used the commercial software pro Fit (http://www.quansoft.com/) with the
robust fitting option and found N = 0.62. When we fit each experiment separately N ranged from 0.45
to 1.15 with an average N = 0.77± 0.15.

Because we were expecting N ≥ 1, we were concerned that these methods may have not found a global
minimum. We therefore carried out the following search procedure in parameter space. We evaluated
the sum of squares of the theoretical values of pcell minus the experimental values of pcell over parameter
space. The evaluations were done for every value of N in the range N = 0.01 − 3.01 with a step size of
0.01. At each N the four IC50 values were randomly sample 1 × 106 times from a uniform distribution
between zero and ten. All the N , IC50 and sum of squares were recorded generating a text file of 13GB.
In Table 1 we list the ten parameter sets having the lowest values of the sum of squares. All are within the
95% confidence interval we obtained for N using the Levenberg-Marquardt algorithm and the bootstrap
method.
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N 2F5 4E10 Fab 4E10 Fab 2E5 Sum of Squares
0.59 0.75 2.69 4.72 3.21 418.4
0.59 0.77 2.61 4.51 3.46 422.2
0.59 0.76 2.59 4.74 3.08 423.1
0.64 0.68 4.51 3.25 4.33 423.3
0.60 0.80 2.44 4.67 3.29 425.2
0.63 0.76 2.56 4.78 3.07 427.5
0.57 0.77 2.61 4.57 3.14 428.7
0.61 0.70 2.50 4.70 3.59 429.8
0.61 0.78 2.85 4.80 3.37 430.2
0.62 0.74 2.46 517 3.30 431.6

Table 1. Listed are the ten sets of parameter values (black print) that had the lowest sum of squares in
our search over parameter space. The parameter values and the sum of squares in red were obtained
using a program (FUI) based on the Levenberg-Marquardt algorithm.
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Figure 1. Kinetic binding schemes for a polyreactive Fab binding from solution to an epitope on a
HIV membrane. A. 1. The Fab binds from solution to a lipid on the membrane with rate constants k+L

and k−L; 2. The Fab bound to lipid diffuses with diffusion limited rate constants k+ and k− to within a
distance where it can react with an epitope; 3. The Fab binds to an epitope with chemical rate
constants κ+1 and κ−1. B. The surface reactions 2. and 3. are incorporated into a single surface
reaction with rate constants k̄+1 and k̄−1, where k̄+1 = κ+1KD and KD = k+/k−. C. Binding from
solution to the membrane, diffusion to the epitope, and reaction with the epitope are combined into a
single reaction with the rate constants k+e and k−e. This corresponds to the first reaction in the
induced conformational fit model [4,15,17].
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Figure 2. Binding scheme for a polyreactive Fab binding to a trimer of gp41 epitopes. The brown
boxes represent unbound gp41, the grey boxes bound gp41, and the grey elliptical boxes represent gp41
bound to Fab that have undergone a conformational change.


