
Supplementary Text S1

1 Analytical model of DNA repair

We consider the simplified model of DNA repair depicted in Fig. 3: N proteins assemble to
form a repair complex which then executes the repair reaction with rate constant ρ. Assembly
of the individual components can be in a particular order (sequential) or without a specific
order (random) or by a mixed mechanism with random and sequential subsystems. We con-
sider completely sequential and completely random mechanisms as the extreme cases; Fig. 3
illustrates these two extremes for the case N = 3 (with the components of the repair complex A,
B and C). Note that similar ’recruitment-reaction’ schemes apply to other chromatin-associated
processes including transcription initiation.

Sequential assembly proceeds via a single pathway compared to the large number of path-
ways for random assembly, which amount to N ! different N -step pathways for N protein
components. For this reason, random assembly has an intrinsic advantage with respect to as-
sembly speed. However, the sequential scheme has fewer incomplete protein complexes (N −1)
than the random scheme (2N −1), thus favouring the complete, enzymatically active complex.
The efficiency of random and sequential schemes in assembling the complete repair complex
and carrying out the repair reaction will be affected by both these structural properties.

A second level of control is provided by the kinetic properties of the individual steps,
measured by the on-rates of the proteins, their off-rates as well as the catalytic rate constant
(ρ). Experimental measurements suggest that the apparent first-order on-rate constants (on-rate
constants × free concentration of the component) are of the same order of magnitude as the
off-rate constants (∼ 1/min; balanced reversibility of assembly), while catalysis of the reaction
will be faster (∼ 1/s) [1]. We will contrast this realistic case with the hypothetical scenario that
all proteins bind irreversibly.

To model the dynamics of repair, denote the composition of a macromolecular (multi-
protein) complex in the assembly pathway by an index vector p , where a component pi = 1
(pi = 0) if protein i is present (absent) in the complex. For example, p = (0,1,1,0, . . .) would
denote a complex in which molecular component 1 and 4 are absent and components 2 and 3
are present. Furthermore, let p(i ) denote a ’neighboring’ index vector that differs from p only
in position i (Hamming distance 1). The concentration of the complex with composition p , yp

is determined by the balance equation

d xp

d t
= ∑

i (pi=1)
κp,i ci xp(i ) − lp,i xp︸                            ︷︷                            ︸

complex p forms by binding of protein i

− ∑
i (pi=0)

κp(i ),i ci xp − lp(i ),i xp(i )︸                                ︷︷                                ︸
complex p forms by dissociation of protein i

(1)

where the κ and l denote the association and dissociation rate constants, with units M−1s−1

and s−1, respectively, and ci is the concentration of unbound component i . For the fully
assembled complex (p = (1,1,1, . . .)), whose concentration we denote by x̂(t ), the additional
term −ρx̂ appears on the right-hand side of equation (1). For the concentrations of unbound
components, we have

dci

d t
= ∑

i (pi=1)
−κp,i ci xp(i ) − lp,i xp (2)

The rate of the reaction catalysed by the multiprotein complex is given by v(t ) = ρ x̂(t ). The
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mean time at which the reaction occurs can be defined by

τi = µ1

µ0
(3)

with

µk =
∫ ∞

0
t k v(t )d t (4)

denoting the k th moment of the reaction rate.
The mean reaction time τ can be calculated analytically when only a small fraction of any

protein is bound to DNA at any time (i.e., ci (t ) ≈ constant), and all binding and dissociation rate
constants are assumed equal (κi ci = k and li = l ). Then integrating Eq. 1 to find the required
zeroth and first moments of the catalytic rate yields linear systems of algebraic equations. We
have solved them explicitly for N ≤ 20; the solutions can be expressed as

τ= 1

k

N−1∑
i=0

Ai

(
l

k

)i

︸             ︷︷             ︸
first assembly

+ 1

ρ

N∑
i=0

Bi

(
l

k

)i

︸            ︷︷            ︸
reassembly and reaction

(5)

for a complex of N proteins. When catalysis is fast compared to protein binding and disso-
ciation (ρÀ k, l ), the reaction is limited by the rate of complex assembly, and only the first
term is significant on the right-hand side in Eq. (5). This term, with coefficients Ai , gives the
average time until the protein complex is fully assembled for the first time. The second term,
with coefficients Bi , gives the additional time needed to carry out the reaction. It takes into
account the possibility that the complete complex disassembles before the reaction takes place
and must reassemble. The coefficients Ai and Bi depend on the assembly mechanism. We
have for random and sequential assembly

Arand
i =

N−i∑
j=1

1

i + j

( N
j−1

)
( N

i+ j

) , B rand
i =

(
N

i

)
and Aseq

i = N − i , B seq
i = 1, (6)

respectively.
These analytical expressions provide insight into the dependence of the reaction time on

the complex assembly mechanism and its parameters. In the limit of irreversible component
binding, the sequential assembly time grows linearly with N while the random assembly time
increases only logarithmically,

τseq(l = 0) = N

k
+ 1

ρ
, τrand(l = 0) ≈ 1

k
(0.577+ ln N )+ 1

ρ
(7)

(Figure 3A). Thus irreversible assembly is always faster with a random mechanism, which is
due to the larger number of potential assembly pathways. The larger number of incompletely
assembled complexes in the random scheme are not detrimental to assembly speed when the
components bind irreversibly.

For reversible component binding, the reaction is slower because protein complexes may
disassemble and reassemble before the reaction takes place. This effect can become partic-
ularly pronounced with a large number of components N . However, for sequential assembly
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the reaction time increases only as an algebraic function of N up to the case of balanced
irreversibility, l = k , where

τseq(l = k) = N (N +1)

2k
+ N

ρ
. (8)

For stronger reversibility l > k , the reaction time of the sequential mechanism grows exponen-
tially with N .

For reversible binding of the proteins, random complex formation can still be faster than
sequential assembly for a small number of components but eventually becomes much slower as
the number of components grows (Figure 3B). In particular, for fast catalysis (ρÀ l ,k), random
and sequential assembly mechanisms are of comparable efficiency for N ≤ 10. Eqs (5) and (6)
have been used to compute Fig. 3B; Eq. 1 with the simplifications κi ci = k (ci (t ) = constant)
and li = l and N = 9 components has been used to compute Fig. 3C.

2 Data-based model of DNA repair

2.1 Model formulation

The model describes 5 DNA intermediates (I, damaged; II, unwound; III, incised; IV, resyn-
thesized and V, rechromatinized). In total 7 repair proteins can bind to one or more repair
intermediates (see Figure 4A). From now on we will use the following notation: XPC = C, TFIIH
= T, XPG = G, XPF = F, XPA = A, RPA = R and PCNA = P. Apart from the restriction that TFIIH
can bind only after lesions were detected by XPC [2] protein binding is assumed random and
characterized by a protein binding constants ki and a dissociation constants li . Transitions
between different repair intermediates are described by catalytic rate constants ( α, unwinding;
ε, re-annealing; β, dual incision; γ, resynthesis; δ rechromatinization). We have the following
system of equations for the protein complexes at the different repair intermediates (see also
Luijsterburg et al. [1]):

d

d t
yR
π =∑

p
(−1)π(p) l R

π yR
π |π(p)=1 + (−1)1+π(p) kR

π Cp (t ) yR
π |π(p)=0 +E(yR

π ) (9)

The yR
π variables denote the concentrations of the repair intermediate R to which the proteins

described by index vector π are bound (see Section 1). We define p ∈ {C ,T,G ,F, A,R,P }
and have π(p) = 1 if the corresponding repair factor is bound and π(p) = 0 otherwise. The
protein binding kinetics are governed additionally by the unbound nuclear concentrations Cp

(analogous to Eq. 2). The enzymatic reaction rate E(y) from one repair intermediate to the
next is catalysed by a specific complex of repair proteins. If a state has no in- or outgoing
enzymatic reactions then E = 0. For the transition from damaged to unwound DNA, we have

E(y I
00) = ε y I I

000000, E(y I
11) =−α y I

11 (10)

For simplicity, we assume that the rate of incision is very fast and hence that as soon as
all necessary enzymes are bound to the unwound state the lesion strand is rapidly incised
(β→∞). This has the following consequences for unwound and incised DNA (R = II and R =
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III):

E(y I I
110000) = α y I

11 (11)

E(y I I
000000) = −ε y I I

000000 (12)
d

d t
y I I
π(011111) = 0 (13)

d

d t
y I I I
π(0111110) = ∑

p
(−1)π(p) l I I I

π y I I I
π |π(p)=1 (14)

+ (−1)1+π(p) k I I I
π Cp (t ) y I I I

π |π(p)=0

+∑
p

(−1)1+π(p) k I I
π Cp (t ) y I I

π |π(p)=0

E(y I I I
0000111) = −γ y I I I

0000111 (15)

We further have for resynthesized DNA (R = IV):

E(y IV
111) = γ y I I I

0000111, E(y IV
011) =−δ y IV

011, (16)

and for rechromatinized DNA (R = V):

E(yV
11) = δ y IV

011. (17)

The free nuclear protein concentrations are governed by 7 additional differential equations:

d

d t
Cp = r

(
V∑

R=I

∑
π

δp1 l R
π yR

π −δp0 kR
p Cp yR

π

)
, (18)

where we have used the Kronecker δ to ensure binding of the proteins to the correct inter-
mediate. The factor r takes account of the volume ratio of local damage to nuclear volume
(estimated to be about 0.1).

In total the model comprises 206 distinct DNA repair states and has 31 binding and disso-
ciation parameters. As initial conditions we used the nuclear concentrations shown in Table SI
and an average concentration of 3.33 µM for the amount of inflicted damages [1]. To quantify
the accumulation of a particular repair protein we summed up the states where the protein is
bound. For the representation of the FLIP experiments we assumed that each protein dissoci-
ating from the repair intermediate is rapidly bleached. Thus, in the model representation all
kR

i for the respective protein were set to zero from the time when bleaching was started. The
starting point of the FLIP experiment depends on the time when the repair protein reached
maximal accumulation (600s for XPC and ERCC1-XPF, 900s for XPG and TFIIH, 2,000s for XPA,
and 7,200s for RPA and PCNA).

2.2 Parameter fitting and identifiability analysis

We performed the identifiability analysis by calculating the profile likelihood estimate (PLE) for
all 31 parameters. Detailed description how to implement and perform PLE can be found in
Raue et al. [3]. Initial fitting was performed by maximizing the likelihood with the MATLAB
implementation of the trust-region method and user-supplied derivatives [4]. To reach a global
minimum we began the fitting procedure from distant locations in parameter space by Latin-
Hypercube sampling of the initial parameter values. Starting from the best fit for each PLE

4



the current parameter was fixed stepwise in ascending and descending direction. At every
step all other parameters were locally re-fitted simultaneously. A parameter was determined
as identifiable if the likelihood profile crossed the 95 % confidence level drawn from a χ2

distribution (all binding and dissociation rate constants of the proteins). For the enzymatic rate
constants, only a lower bound was found, implying that these parameters need to be sufficiently
fast. This case of practical non-identifiability proved without consequence for the goodness of
the predictions made with the model (Section 2.3).

2.3 Prediction profile likelihoods

To determine the confidence bounds for the responds coefficients (RC) we calculated their
Prediction Profile Likelihood (PPL). To this end, we fixed the value for the RC prediction.
This value is increased or decreased stepwise, and this nonlinear constraint is used as an
additional penalty during the least square fitting procedure. For each step all remaining model
parameters are fitted simultaneously until the convergence is reached. A detailed description
about implementation of this method can be found in the supplemental material of Kreutz et
al. [5].

3 Estimating the measurement error for fluorescence-microscopy quan-
tification of repair factors

To dissect the natural variability of XPC from the measurement error we correlated the GFP-
tagged expression values (Ix ) with the immunofluorescence signal (Iy ). We assume that both
quantities have a normalized error xerr ∼ yerr → Normal(0, p(Ix,y )) that can be decomposed
into measurement error and natural variability. Measuring GFP and immunofluorescence signal
independently at the same time, the measurement error should be orthogonal to the natural
variability, which is equal in both measurements. Thus, we approximate the measurement error
geometrically by

pmerr =σ
(

1p
2

(
Ix

IE
− Iy

IE

))
, where IE = 1

2
(Ix + Iy ). (19)

4 Derivation of Equation [4]

Consider the repair rate v as a function of the concentration of the repair factors Ci and the
initial amount of DNA lesions L:

v = L f (C1, . . . ,CN ) (20)

The dependence on L is linear as we have shown here that the repair is first-order in the
amount of inflicted lesions. Let us assume that L and Ci vary independently between different
cells. According to the standard law for propagation of uncertainty, the resulting variability in
v is approximated by

σ(v) =
√√√√∑

i

(
∂v

∂Ci
σ(Ci )

)2

+
(
∂v

∂L
σ(L)

)2

, (21)

where σ(x) denotes the standard deviation of x . Introducing the response coefficients

Ri = Ci

v

∂v

∂Ci
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and noting that σ(v)/v =CV (v) and σ(Ci )/Ci =CV (Ci ) are the coefficients of variation, Eq. 21
can be rewritten in the form

CV (v) =
√∑

i
(Ri CV (Ci ))2 +CV (L)2 (22)

Obviously, the ’response coefficient’ for the initial amount of inflicted lesions is 1.
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