Dynamical systems: integral and differential formulations, transition from continuous to discrete time and Volterra kernels

Continuous dynamical systems: from integral to differential forms

Let be defined by the following integral equation:

										(A9)

where is an arbitrary function time. If is an invariant kernel (that is, if), then the right-hand term of equation A9 becomes a convolution operation and is simply the impulse response function of (to inputs). In this case, one can derive a differential form of Eq. A9. For example, let be given by the truncated (causal) exponential kernel:

											(A10)

Applying the Fourier transform on the left and right hand sides of equation A9 then yields:

										(A11)

where the tilde notation refers to the Fourier-transformed functions of time and is the Fourier dual variable (frequency). Applying the inverse Fourier transform on the left and right hand sides of equation A11 now gives the following differential form for Eqs. A9-10:

											(A12)

where the dot operator refers to the temporal derivative . Other forms of the convolution kernel basically yield different ordinary differential equations (cf. Table A1).

	impulse response function
	ODE

	

	

	

	

	

	

Table A1. Examples of ODEs induced by different impulse response functions.

When integrated over time (cf. next section), ODEs yield the temporal dynamics of , given inputs . Importantly, convolution and ODE formulations are exactly equivalent. In particular, this implies that the instantaneous relationship between the motion of and the inputs (implicit in the ODE formulation) captures the fact that is actually dependent upon the history of past inputs (implicit in the convolution formulation). We have used this equivalence in the last section of the manuscript, when deriving the "augmented" Q-learning model (cf. first line of Table A1).

From continuous to discrete dynamical systems
Most continuous dynamical systems can be described using ODEs, with the following normal form:

												(A13)

where are the system's states, are some arbitrary exogenous inputs that drive the system's states, and returns the system's motion given its current state . The ODE in Equation A13 can also be written using the following integral formulation:

								(A14)

where is the discretization step. Note that Equation A14 may not be a convolution operation. Equation A14 can be converted into a finite difference equation using local linearization, as follows:

								(A15)

where now indexes discrete time steps, is the identity matrix and is the system's Jacobian (evaluated at the current state). Critically, when the discretization step is small compared to the inverse of the highest eigenvalue of , one has: . Inserting this limit into Eq. A15 yields the so-called Euler discretization scheme, which is accurate whenever is orders of magnitude smaller than the quickest decay time of the system. We have used this in the section "Getting closer to continuous dynamical systems" of the main manuscript, when introducing the "microtime resolution" of dynamical systems in the VBA toolbox.

Volterra decomposition

Most dynamical systems can be described in terms of input-output relationships, where the output is typically a function of the history of past inputs to the system. Volterra series allow a decomposition of the input-output transformation, as follows:

								(A16)

where we have chosen a discrete-time formulation. Here, is some arbitrary time lag and we have truncated the series (up to second order). Equation A16 essentially derives from a recursive Taylor expansion of Equation A14. First-order Volterra kernels capture the linear weight of lagged inputs onto the output. First-order Volterra kernels would be equivalent to impulse response functions, would the system be linear (cf. Equation A9 in continuous time). Second-order Volterra kernels capture additional hysteresis effects, whereby the systematic response to some past input depends upon the input it received at some other point in time. For example, systems exhibiting "refractory periods" can be captured using second-order Volterra kernels that cancel the first-order impact of inputs during recovery time.
[bookmark: _GoBack]When performing dynamical systems' inversion, the VBA toolbox computes the first-order Volterra kernels of the sampled system's observable outputs and estimated hidden states and observables, w.r.t. to all inputs. The estimation is performed by the function ‘VBA_VolterraKernels.m’, which essentially uses the VBA inversion of Equation A16, given some maximum lag (set in options.kernelSize; default=16). Note that one can perform a Volterra decomposition of the system w.r.t. any arbitrary set of inputs by calling ‘VBA_VolterraKernels.m’, having appropriately reset the inputs in out.u. Replacing the estimated kernels in out.diagnostics.kernels allows one to eyeball the new Volterra decomposition from the "kernels" tab (cf. ‘VBA_ReDisplay.m’). Importantly, fit accuracy metrics (coefficient of determination in the continuous case, and balanced classification accuracy in the binomial case) allows one to evaluate whether the truncated Volterra series faithfully captures the input-output relationship.

image4.wmf
g

oleObject4.bin

image5.wmf
(

)

(

)

,''

gttgtt

=-

oleObject5.bin

oleObject6.bin

image6.wmf
(

)

xt

oleObject7.bin

image7.wmf
(

)

ut

oleObject8.bin

image8.wmf
g

oleObject9.bin

image9.wmf
(

)

 if 0

0 otherwise

at

et

gt

-

ì

³

=

í

î

oleObject10.bin

image10.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

2

xug

u

ai

ixuax

www

w

pw

pwwww

=

=Þ

+

=-

%%%

%

%%%

oleObject11.bin

image11.wmf
w

oleObject12.bin

image12.wmf
(

)

(

)

(

)

xtutaxt

=-

&

oleObject13.bin

image13.wmf
t

¶¶

oleObject14.bin

image14.wmf
(

)

 if 0

0 otherwise

at

atet

gt

g

-

ì

³

=

í

î

oleObject15.bin

image15.wmf
(

)

(

)

(

)

(

)

2

2

xtautaxtaxt

g

=--

&&&

oleObject16.bin

image16.wmf
(

)

at

gte

-

=

oleObject17.bin

image17.wmf
(

)

(

)

(

)

2

2

xtautaxt

=-

&&

oleObject18.bin

image18.wmf
(

)

t

gt

t

=

image1.wmf
(

)

xt

oleObject19.bin

image19.wmf
(

)

(

)

xtut

=

&

oleObject20.bin

image20.wmf
(

)

xt

oleObject21.bin

image21.wmf
(

)

ut

oleObject22.bin

oleObject23.bin

oleObject24.bin

oleObject25.bin

oleObject1.bin

image22.wmf
(

)

,

xfxu

=

&

oleObject26.bin

image23.wmf
x

oleObject27.bin

image24.wmf
u

oleObject28.bin

image25.wmf
f

oleObject29.bin

image26.wmf
x

&

oleObject30.bin

image2.wmf
(

)

(

)

(

)

',''

xtutgttdt

¥

-¥

=

ó

ô

õ

image27.wmf
x

oleObject31.bin

image28.wmf
(

)

(

)

(

)

(

)

(

)

',''

tt

t

xttxtfxtutdt

+D

ó

ô

ô

õ

+D=+

oleObject32.bin

image29.wmf
t

D

oleObject33.bin

image30.wmf
(

)

(

)

[

]

(

)

(

)

1

1

,

,exp,

ttt

ttttt

xFxu

FxuxJJtIfxu

+

-

=

»+D-

oleObject34.bin

image31.wmf
t

oleObject35.bin

oleObject2.bin

image32.wmf
I

oleObject36.bin

image33.wmf
Jfx

=¶¶

oleObject37.bin

image34.wmf
t

x

oleObject38.bin

oleObject39.bin

image35.wmf
J

oleObject40.bin

image36.wmf
[

]

(

)

0

1

exp

t

JJtIt

D®

-

D-¾¾¾®D

image3.wmf
(

)

ut

oleObject41.bin

oleObject42.bin

image37.wmf
t

x

oleObject43.bin

image38.wmf
12

,,...,

ttt

uuu

t

oleObject44.bin

image39.wmf
1212

12

(0)(1)(2)

,

...

tttt

xuuu

tttttt

ttt

www

=+++

ååå

oleObject45.bin

image40.wmf
t

oleObject46.bin

oleObject3.bin

image41.wmf
(1)

w

oleObject47.bin

image42.wmf
(2)

w

oleObject48.bin

