Text S1

Implicit thresholding of binned per-base counts is a Poisson assumption

Assume we are given per-base counts at base i as ¢; and we want to test whether this set of counts was generated
from a null distribution A.

First, we show that a Poisson assumption leads to thresholding based on per-base counts. By the Neyman-
Pearson lemma, the only admissible test statistic is the log-likelihood ratio which is:

fle) = Zc (log <Z ci> - log()\)> - (Z i — )\> .

It is straightforward to see that this function is monotone with respect to > ¢;, which is due to the fact that
> ¢; is the sufficient statistic of the Poisson.

Now we extend this to the converse: thresholding on per-base counts implies a Poisson assumption. Assume
we have some admissible procedure which thresholds on the sum of counts Y ¢;. By Neyman-Pearson, there
exists a log-likelihood f” such that exp(f' (> ¢;)) is the distribution of ¢ under the alternative hypothesis.

This implies the distribution of ¢ is completely determined by the sufficient statistic > ¢;, and it is a standard
result that the Poisson is the only distribution with this sufficient statistic [1].

Examples of latent \ distributions and mapping function

To help illustrate the fitted latent distribution over log-lambda, we include the latent probability distributions
estimated by FIXSEQ in Figure Sla. FIXSEQ accounts for zero-inflation by placing more mass near negative
log-lambda values as well as towers through a larger tail on the right. For a perfectly Poisson experiment we
would expect to see a single spike at the true log-lambda value.

We also display the set of mapping functions for ChIP-seq, DNase-seq, and RNA-seq as Figure S1b. All
three assays display a short and rapid rise that preserves small counts followed by a plateau that remaps large
counts to relatively similar values, leading to a soft thresholding effect.

Enhancing covariate based sequence correction

We demonstrate that FIXSEQ can be used to model residual overdispersion after correction of common sequencing
confounders such as GC content and mappability. We ran BEADS using the recommended defaults to create
mappability- and GC-corrected windowed read counts (see documentation at http://beads.sourceforge.net).
We compared the BEADS output to data corrected only using FIXSEQ, only BEADS, as well as BEADS output
in conjunction with FIXSEQ, in Figure S2.

RNA-seq exon counting is an ideal test case for covariate count correction, since the assumptions for cor-
recting for mappability and GC content are reasonable and BEADS outputs binned count statistics, which are
difficult to use in base-pair resolution methods used in the ChIP-seq and DNase-seq comparisons. The benefits
of FIXSEQ are its universal nature, which does not require additional tuning or modeling for new sequencing
assay types, and its creation of processed datasets that are in the same form as the original data, allowing for
their use in any downstream processing algorithm.

The results demonstrate that FIXSEQ provides complementary information to covariate based count cor-
rection and enhances the output of BEADS. Therefore even in cases where covariate count correction is more
appropriate due to suitability of covariate assumptions and binning, FIXSEQ still provides benefits via post-
correction processing.

Comparison to specialized ChIP-caller (GEM)

We compared FIXSEQ to an assay-specific adaptive overdispersion correction heuristic developed for a sequence-
aware ChIP-seq caller [2].

A total of four cases were tested on human h-ESC CTCF ChIP-seq as an example of an well-established
quality ChIP experiment and we measured the replicate correlation in g-value. The results are shown in Table

S1.


http://beads.sourceforge.net

Datasets

All ChIP-seq and RNA-seq experiments for the h1-ESC cell line and DNAse-seq experiments for the K562
cell line outside the publication embargo window were identified from the ENCODE website at http://www.
encodeproject.org/ENCODE/dataMatrix/encodeDataMatrixHuman.html. Aligned read files for each experi-
ment were downloaded as BAM files from http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC.
Table S2 lists the ChIP-seq experiments analyzed in this work, Table S3 lists the RN A-seq experiments, and Ta-
ble S4 lists the DN Ase-seq experiments. Only experiments with available replicates were analyzed in consistency
comparisons.

Read analysis pipeline

The DNAse analysis software CENTIPEDE was downloaded from http://centipede.uchicago.edu.

ChIP-seq datasets were analyzed by first matching each signal run to the corresponding lab-specific input
control experiment. When multiple control experiments were available, they were pooled at the read level
(following the ENCODE workflow described in the “Reproducibility and automatic thresholding of ChIP-seq
data” section at http://encodeproject.org/ENCODE/encodeTools.html).

Peaks were called using two of the three preferred ENCODE event callers, MACS and PeakSeq. MACS
version 2.0.10.20120913 was downloaded from https://github.com/taoliu/MACS/ and PeakSeq version 1.1
was downloaded from http://info.gersteinlab.org/PeakSeq. MACS was called with the flags -g hs —-q
0.01 --keep-dup all --to-large. PeakSeq was run with a target_FDR of 0.01 and max_Qvalue of 0.01. For
all other settings, the default parameters were used.

For the RNA-seq data, exon counts were obtained by analyzing the BAM read mapping files with the
bedtools multicov command (BEDTools version 2.16.2). CCDS exon annotations were obtained from the
UCSC Genome Browser (http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/database/ccdsGene. txt.gz).
For exon sums using reweighted read counts, we modified the bedtools package to use per-read weights in its
exon-level sums.

For read rescaling comparisons, including de-duplication and FIXSEQ rescaling, modified datasets were con-
structed when streaming read input data to the respective processing algorithms.
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