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Likelihood in the mutual exclusivity model

The complete data likelihood of a given observation y = (y1, ..., yn) in the mutual exclusivity model,
given the parameters, factorizes according to conditional independencies in the model:

P (y, C,H, T |θ) = γC(1− γ)1−C
1

n

∏
g

(
(01−Tg )CHg (δTg (1− δ)1−Tg )C(1−Hg)(0Tg )1−Cε(yg, Tg)

)
(1)

Here, for convenience, the mutually mutated gene is specified by a vector of binary random variables
H = (H1, . . . ,Hn), only one of which can be assigned value 1 at a time: P (Hg = 1) = 1

n , and Hg = 1
implies that Hg′ = 0 for all g′ 6= g.

To obtain P (y|θ), the observed likelihood for observation y (equation 1 in the main text), we need
to marginalize the hidden variables out. This likelihood depends only on the number k of values 1
in this observation, its length n, and on the parameters θ, and will be shortly denoted fθ(k, n). Let
d = δ(1− β) + (1− δ)α.

fθ(k, n) =
∑
c

∑
h

∑
t

P (C = c)P (H = h)P (y, t|C = c,H = h, θ) (2)

= (1− γ)
∏
g

∑
tg

P (yg|tg)P (tg|C = 0) +
γ

n

∑
g′

∏
g

∑
tg

P (yg|tg)P (tg|C = 1, Hg′ = 1)

= (1− γ)αk(1− α)n−k +
γ

n
dk−1(1− d)n−k−1(k(1− β)(1− d) + (n− k)βd).

Thus, knowing k, the observed likelihood for one observation can be computed in constant time, which is
possible since we assumed P (Hg = 1) = 1

n . Parametrizing the distribution of H, for example by allowing
parameters pg = P (Hg = 1), with

∑
g pg = 1, would increase the complexity of computing this likelihood

to O(n). The likelihood value would no longer only depend on the number k of non-zero values, but also
on which entries in the observation were non-zero. Consequently, computation of the observed likelihood
of the entire dataset, now requiring initial mn pre-computing steps and n + 1 steps of constant time
complexity (equation 2 in the main text), would change its complexity to O(mn). This is important for
the EM algorithm, which performs the initial pre-computation once, and the likelihood is computed for
all iterations in O(n+ 1).

Identifiability of the mutual exclusivity model

We first formally prove that the four model parameters in θ = {γ, δ, α, β} are identifiable from the data.

Proposition 1 For n ≥ 3, the parameters in the mutual exclusivity model are identifiable.
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Proof. Consider a mapping from the parameter space Θ to the probability simplex ∆ defined by the
probabilities P (y|θ) for all possible observations y (equation 2 above). We need to show that this mapping
is invertible.

We construct the Jacobian matrix with columns corresponding to the four parameters in θ, and rows
to all possible observations. There are n+ 1 groups of identical rows, one group per the number of values
1 in the observations in this group, denoted k. Thus, already with n ≥ 3, the Jacobian has at least 4
unique rows. Each unique row is of the form

[
∂fθ(k, n)

∂γ
,
∂fθ(k, n)

∂δ
,
∂fθ(k, n)

∂α
,
∂fθ(k, n)

∂β
],

with the individual entries defined by:

∂fθ(k, n)

∂γ
= −αk(1− α)n−k +

1

n
dk−1(1− d)n−k−1(k(1− β)(1− d) + (n− k)βd),

∂fθ(k, n)

∂δ
=
γ

n
(1− α− β)dk−2(1− d)n−k−2

(
k(1− β)(1− d)(k − 1− dn+ d) + (n− k)βd(k − dn+ d)

)
,

∂fθ(k, n)

∂α
= (1− γ)αk−1(1− α)n−k−1(k − αn) +

γ

n
(1− δ)dk−2(1− d)n−k−2

(
k(1− β)(1− d)(k − 1− dn+ d) + (n− k)βd(k − dn+ d)

)
,

∂fθ(k, n)

∂β
=
γ

n
(1−δ)dk−2(1−d)n−k−2

(
d(1−d)(nd−k)−k(1−β)δ(1−d)(k−1−dn+d)−(n−k)βδd(k−dn+d)

)
.

To prove that this Jacobian is full rank, we only need to show that any of its four by four sub-matrices
is of rank four. We choose the sub-matrix with simple expressions for the partial derivatives, by selecting
four unique rows in the Jacobian, with values k equal to 0, 1, n− 1, and n, respectively. For those values,
many of the terms in the above equations cancel out. The resulting sub-matrix

∂fθ(0,n)
∂γ

∂fθ(0,n)
∂δ

∂fθ(0,n)
∂α

∂fθ(0,n)
∂β

∂fθ(1,n)
∂γ

∂fθ(1,n)
∂δ

∂fθ(1,n)
∂α

∂fθ(1,n)
∂β

∂fθ(n−1,n)
∂γ

∂fθ(n−1,n)
∂δ

∂fθ(n−1,n)
∂α

∂fθ(n−1,n)
∂β

∂fθ(n,n)
∂γ

∂fθ(n,n)
∂δ

∂fθ(n,n)
∂α

∂fθ(n,n)
∂β


has its reduced row echelon form of the identity matrix. With no zero-rows in the row echelon form we
conclude that the sub-matrix is of rank four, and thus, for n ≥ 3 and generic parameters, the whole
Jacobian is of full rank, and the mapping is invertible.

Derivation of the Expectation Maximization algorithm

The complete log likelihood of the whole dataset Y = {y1, . . .ym} in the mutual exclusivity model reads
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log(P (Y, C,H, T |θ)) =
∑
p

(
Cp log(γ) + (1− Cp) log(1− γ)− log(n) + (3)

∑
g

(
log(0CpHpg(1−Tpg)) +

Cp(1−Hpg)Tpg log(δ) + Cp(1−Hpg)(1− Tpg) log(1− δ) +

log(0(1−Cp)Tpg ) +

Tpgypg log(1− β) + Tpg(1− ypg) log(β) +

(1− Tpg)ypg log (α) + (1− Tpg)(1− ypg) log (1− α)
))
.

We show how to use the EM algorithm to estimate parameters in this model. In the E-step, we
compute the expected values of relevant variables given the data and the parameters. First, we evaluate

Cp = E[Cp|Y, θ] =
P (Cp = 1, Yp|θ)

P (Yp|θ)
(4)

=
γ

nP (Yp|θ)
dkp−1(1− d)n−kp−1(kp(1− β)(1− d) + (n− kp)βd),

Note that since we assume that P (Hg = 1) = 1
n , the nominator in equation (4) can be computed in

constant time. This would not be the case if a set of parameters would describe the exclusive mutation
frequencies instead, with one parameter per each gene: then, the exact placement of the mutually exclusive
alteration in each observation would matter, and the hidden variable values would have to be summed
out explicitly, in n steps. Remarkably, the value of Cp depends only on the number kp of values 1 in
observation p. Thus, instead of computing m values of cp for each p ∈ {1, ...,m}, it suffices to compute
n+ 1 unique values, for each k ∈ {0, ..., n}:

ck =
γ

nfθ(k, n)
dk−1(1− d)n−k−1(k(1− β)(1− d) + (n− k)βd), (5)

where the observed data likelihood fθ(k, n) = P (Yp|θ) is computed using equation 2. Next, we compute

CpTpg = E[CpTpg|Y, θ] =
P (Cp = 1, Tpg = 1, Yp|θ)

P (Yp|θ)
(6)

This value depends only on the total number of values 1 in observation p, as well as on whether ypg = 0,

or ypg = 1. For each k ∈ {0, ..., n} we define auxiliary values t0k, t1k respectively. Given that kp = k we
have

CpT pg =

{
t0k if ypg = 0,

t1k if ypg = 1,

where

t0k =
γ

nfθ(k, n)
βdk−1(1− d)n−k−2

(
d(1− d) + kδ(1− β)(1− d) + (n− k − 1)δβd

)
(7)

t1k =
γ

nfθ(k, n)
(1− β)dk−2(1− d)n−k−1

(
d(1− d) + (k − 1)δ(1− β)(1− d) + (n− k)δβd

)
(8)
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Similarly, we compute

CpHpg = E[CpHpg|Y, θ] =
P (Cp = 1, Hpg = 1, Yp|θ)

P (Yp|θ)
(9)

and define auxiliary values h0k and h1k such that, for kp = k,

CpHpg =

{
h0k if ypg = 0,

h1k if ypg = 1,

where

h0k =
γ

nfθ(k, n)
βdk(1− d)n−k−1, (10)

and

h1k =
γ

nfθ(k, n)
(1− β)dk−1(1− d)n−k. (11)

Finally, we show that
Tpg = E[Tpg|Y, θ] = E[CpTpg|Y, θ] = CpTpg. (12)

Indeed,

E[Tpg|Y, θ] = P (Tpg = 1, Cp = 1|Y, θ) + P (Tpg = 1, Cp = 0|Y, θ) = P (Tpg = 1, Cp = 1|Y, θ),

since by definition P (Tpg = 1|Cp = 0) = 0. Moreover, we have

CpHpgTpg = E[CpHpgTpg|Y, θ] = E[CpHpg|Y, θ] = CpHpg, (13)

since P (Tpg = 1|Hpg = 1) = 1. In total, the E-step comprises computations of 6(n+1) values, namely,

fθ(k, n), ck, t0k, t1k, h0k, h1k, each for k ∈ {0, ..., n}.
In the M-step, we estimate the parameters maximizing the expected complete likelihood, given the

estimated expected values of the variables. Let k ∈ {0, ..., n}, and qk denote the number of observations

which have exactly k entries equal 1. Denote sk = kt1k+(n−k)t0k, the expected number of true mutations
in the observation with k observed mutations. The expected complete likelihood reads

E[log(P (Y, C,H, T |θ))] =
∑
p

(
Cp log(γ) + (1− Cp) log(1− γ)− log(n) + (14)

∑
g

(
(CpTpg − CpHpg) log(δ) +

(Cp − CpTpg) log(1− δ) +

Tpgypg log(1− β) + Tpg(1− ypg) log(β) +

(1− Tpg)ypg log(α) + (1− Tpg)(1− ypg) log(1− α)
))

=
∑
k

qk
(
ck log(γ) + (1− ck) log(1− γ) +

(sk − ck) log(δ) +

(nck − sk) log(1− δ) +

kt1k log(1− β) + (n− k)t0k log(β) +

k(1− t1k) log(α) + (n− (n− k)t0k) log(1− α)
)
,
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using equations (12) and (13), and since we have

kh1k + (n− k)h0k = ck.

Maximization of the expected complete likelihood with respect to γ gives

γ̃ =

∑
k qkck
m

, (15)

maximization with respect to δ yields

δ̃ =

∑
k qk(sk − ck)

(n− 1)
∑
k qkck

(16)

Finally, maximization with respect to α and β, results in, respectively:

α̃ =

∑
k qkk(1− t1k)

mn−
∑
k qksk

, (17)

and

β̃ =

∑
k qk(n− k)t0k∑

k qksk
. (18)


