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Likelihood in the mutual exclusivity model

The complete data likelihood of a given observation y = (y1,...,¥,) in the mutual exclusivity model,
given the parameters, factorizes according to conditional independencies in the model:
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Here, for convenience, the mutually mutated gene is specified by a vector of binary random variables
H = (Hy,...,H,), only one of which can be assigned value 1 at a time: P(H, =1) = 1 and H, =1
implies that Hy = 0 for all ¢’ # g.

To obtain P(y|f), the observed likelihood for observation y (equation 1 in the main text), we need
to marginalize the hidden variables out. This likelihood depends only on the number k of values 1
in this observation, its length n, and on the parameters 6, and will be shortly denoted fy(k,n). Let
d=6(1-08)+(1—-d)a.
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Thus, knowing k, the observed likelihood for one observation can be computed in constant time, which is
possible since we assumed P(H, = 1) = % Parametrizing the distribution of H, for example by allowing
parameters p, = P(H, = 1), with ) gPg =1, would increase the complexity of computing this likelihood
to O(n). The likelihood value would no longer only depend on the number k of non-zero values, but also
on which entries in the observation were non-zero. Consequently, computation of the observed likelihood
of the entire dataset, now requiring initial mn pre-computing steps and n + 1 steps of constant time
complexity (equation 2 in the main text), would change its complexity to O(mn). This is important for
the EM algorithm, which performs the initial pre-computation once, and the likelihood is computed for
all iterations in O(n + 1).

Identifiability of the mutual exclusivity model

We first formally prove that the four model parameters in § = {7, d, «, B} are identifiable from the data.

Proposition 1 For n > 3, the parameters in the mutual exclusivity model are identifiable.



Proof. Consider a mapping from the parameter space © to the probability simplex A defined by the
probabilities P(y|6) for all possible observations y (equation 2 above). We need to show that this mapping
is invertible.

We construct the Jacobian matrix with columns corresponding to the four parameters in 6, and rows
to all possible observations. There are n+ 1 groups of identical rows, one group per the number of values
1 in the observations in this group, denoted k. Thus, already with n > 3, the Jacobian has at least 4
unique rows. Each unique row is of the form
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with the individual entries defined by:
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To prove that this Jacobian is full rank, we only need to show that any of its four by four sub-matrices
is of rank four. We choose the sub-matrix with simple expressions for the partial derivatives, by selecting
four unique rows in the Jacobian, with values k equal to 0,1,n — 1, and n, respectively. For those values,
many of the terms in the above equations cancel out. The resulting sub-matrix
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has its reduced row echelon form of the identity matrix. With no zero-rows in the row echelon form we
conclude that the sub-matrix is of rank four, and thus, for n > 3 and generic parameters, the whole
Jacobian is of full rank, and the mapping is invertible.

Derivation of the Expectation Maximization algorithm

The complete log likelihood of the whole dataset Y = {y1,...y,,} in the mutual exclusivity model reads
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We show how to use the EM algorithm to estimate parameters in this model. In the E-step, we
compute the expected values of relevant variables given the data and the parameters. First, we evaluate
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Note that since we assume that P(H, = 1) = 1, the nominator in equation (4) can be computed in
constant time. This would not be the case if a set of parameters would describe the exclusive mutation
frequencies instead, with one parameter per each gene: then, the exact placement of the mutually exclusive
alteration in each observation would matter, and the hidden variable values would have to be summed
out explicitly, in n steps. Remarkably, the value of C’TQ depends only on the number k, of values 1 in
observation p. Thus, instead of computing m values of ¢, for each p € {1,...,m}, it suffices to compute
n 4+ 1 unique values, for each k € {0,...,n}:
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where the observed data likelihood fg(k,n) = P(Y,|0) is computed using equation 2. Next, we compute

P(Cp = 1an9 - 17YP|0)

Cprg = E[Cprg\Y,G]: P(Y|9)
P

(6)

This value depends only on the total number of values 1 in observation p, as well as on whether y,, = 0,

or yps = 1. For each k € {0,...,n} we define auxiliary values zg , % respectively. Given that k, = k we

have
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Similarly, we compute
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and define auxiliary values @ and hi}ﬁ such that, for k£, = k,
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Finally, we show that o
Tpg = E[Tpg|Y, 0] = E[CpTp|Y, 0] = Cplp,. (12)

Indeed,
ET,,|Y,0] =PI,y =1,Cp,=1Y,0)+ P(T,g=1,C, =0|Y,0) = P(T), = 1,C, = 1|Y,0),
since by definition P(T},, = 1|C, = 0) = 0. Moreover, we have
CpHpgTpg = E[CpHpgTyg| Y, 0] = E[CypHpg|Y, 6] = CpHpg, (13)

since P(Tpq = 1|Hpg = 1) = 1. In total, the E-step comprises computations of 6(n+1) values, namely,

fo(k,n), e, 19, t, hY), hi, each for k € {0, ...,n}.

In the M-step, we estimate the parameters maximizing the expected complete likelihood, given the
estimated expected values of the variables. Let k € {0,...,n}, and g; denote the number of observations
which have exactly k entries equal 1. Denote 5 = ki1, + (n—k)t?, the expected number of true mutations
in the observation with k£ observed mutations. The expected complete likelihood reads
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using equations (12) and (13), and since we have

khl + (n—k)h) = .

maximization with respect to § yields
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Finally, maximization with respect to o and (3, results in, respectively:
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