Text S1

Modeling mutual exclusivity of cancer mutations

Ewa Szczurek ${ }^{1}$, Niko Beerenwinkel ${ }^{1, *}$
1 Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics

* E-mail: niko.beerenwinkel@bsse.ethz.ch

Likelihood in the mutual exclusivity model

The complete data likelihood of a given observation $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in the mutual exclusivity model, given the parameters, factorizes according to conditional independencies in the model:

$$
\begin{equation*}
P(\mathbf{y}, C, H, T \mid \theta)=\gamma^{C}(1-\gamma)^{1-C} \frac{1}{n} \prod_{g}\left(\left(0^{1-T_{g}}\right)^{C H_{g}}\left(\delta^{T_{g}}(1-\delta)^{1-T_{g}}\right)^{C\left(1-H_{g}\right)}\left(0^{T_{g}}\right)^{1-C} \epsilon\left(y_{g}, T_{g}\right)\right) \tag{1}
\end{equation*}
$$

Here, for convenience, the mutually mutated gene is specified by a vector of binary random variables $H=\left(H_{1}, \ldots, H_{n}\right)$, only one of which can be assigned value 1 at a time: $P\left(H_{g}=1\right)=\frac{1}{n}$, and $H_{g}=1$ implies that $H_{g^{\prime}}=0$ for all $g^{\prime} \neq g$.

To obtain $P(\mathbf{y} \mid \theta)$, the observed likelihood for observation \mathbf{y} (equation 1 in the main text), we need to marginalize the hidden variables out. This likelihood depends only on the number k of values 1 in this observation, its length n, and on the parameters θ, and will be shortly denoted $f_{\theta}(k, n)$. Let $d=\delta(1-\beta)+(1-\delta) \alpha$.

$$
\begin{align*}
f_{\theta}(k, n) & =\sum_{c} \sum_{h} \sum_{\mathbf{t}} P(C=c) P(H=h) P(\mathbf{y}, \mathbf{t} \mid C=c, H=h, \theta) \tag{2}\\
& =(1-\gamma) \prod_{g} \sum_{t_{g}} P\left(y_{g} \mid t_{g}\right) P\left(t_{g} \mid C=0\right)+\frac{\gamma}{n} \sum_{g^{\prime}} \prod_{g} \sum_{t_{g}} P\left(y_{g} \mid t_{g}\right) P\left(t_{g} \mid C=1, H_{g^{\prime}}=1\right) \\
& =(1-\gamma) \alpha^{k}(1-\alpha)^{n-k}+\frac{\gamma}{n} d^{k-1}(1-d)^{n-k-1}(k(1-\beta)(1-d)+(n-k) \beta d) .
\end{align*}
$$

Thus, knowing k, the observed likelihood for one observation can be computed in constant time, which is possible since we assumed $P\left(H_{g}=1\right)=\frac{1}{n}$. Parametrizing the distribution of H, for example by allowing parameters $p_{g}=P\left(H_{g}=1\right)$, with $\sum_{g} p_{g}=1$, would increase the complexity of computing this likelihood to $O(n)$. The likelihood value would no longer only depend on the number k of non-zero values, but also on which entries in the observation were non-zero. Consequently, computation of the observed likelihood of the entire dataset, now requiring initial $m n$ pre-computing steps and $n+1$ steps of constant time complexity (equation 2 in the main text), would change its complexity to $O(m n)$. This is important for the EM algorithm, which performs the initial pre-computation once, and the likelihood is computed for all iterations in $O(n+1)$.

Identifiability of the mutual exclusivity model

We first formally prove that the four model parameters in $\theta=\{\gamma, \delta, \alpha, \beta\}$ are identifiable from the data.
Proposition 1 For $n \geq 3$, the parameters in the mutual exclusivity model are identifiable.

Proof. Consider a mapping from the parameter space Θ to the probability simplex Δ defined by the probabilities $P(\mathbf{y} \mid \theta)$ for all possible observations \mathbf{y} (equation 2 above). We need to show that this mapping is invertible.

We construct the Jacobian matrix with columns corresponding to the four parameters in θ, and rows to all possible observations. There are $n+1$ groups of identical rows, one group per the number of values 1 in the observations in this group, denoted k. Thus, already with $n \geq 3$, the Jacobian has at least 4 unique rows. Each unique row is of the form

$$
\left[\frac{\partial f_{\theta}(k, n)}{\partial \gamma}, \frac{\partial f_{\theta}(k, n)}{\partial \delta}, \frac{\partial f_{\theta}(k, n)}{\partial \alpha}, \frac{\partial f_{\theta}(k, n)}{\partial \beta}\right]
$$

with the individual entries defined by:

$$
\begin{gathered}
\frac{\partial f_{\theta}(k, n)}{\partial \gamma}=-\alpha^{k}(1-\alpha)^{n-k}+\frac{1}{n} d^{k-1}(1-d)^{n-k-1}(k(1-\beta)(1-d)+(n-k) \beta d) \\
\frac{\partial f_{\theta}(k, n)}{\partial \delta}=\frac{\gamma}{n}(1-\alpha-\beta) d^{k-2}(1-d)^{n-k-2}(k(1-\beta)(1-d)(k-1-d n+d)+(n-k) \beta d(k-d n+d)) \\
\frac{\partial f_{\theta}(k, n)}{\partial \alpha}=(1-\gamma) \alpha^{k-1}(1-\alpha)^{n-k-1}(k-\alpha n)+ \\
\\
\quad \frac{\gamma}{n}(1-\delta) d^{k-2}(1-d)^{n-k-2}(k(1-\beta)(1-d)(k-1-d n+d)+(n-k) \beta d(k-d n+d)) \\
\frac{\partial f_{\theta}(k, n)}{\partial \beta}=\frac{\gamma}{n}(1-\delta) d^{k-2}(1-d)^{n-k-2}(d(1-d)(n d-k)-k(1-\beta) \delta(1-d)(k-1-d n+d)-(n-k) \beta \delta d(k-d n+d))
\end{gathered}
$$

To prove that this Jacobian is full rank, we only need to show that any of its four by four sub-matrices is of rank four. We choose the sub-matrix with simple expressions for the partial derivatives, by selecting four unique rows in the Jacobian, with values k equal to $0,1, n-1$, and n, respectively. For those values, many of the terms in the above equations cancel out. The resulting sub-matrix

$$
\left[\begin{array}{cccc}
\frac{\partial f_{\theta}(0, n)}{\partial \gamma} & \frac{\partial f_{\theta}(0, n)}{\partial \delta} & \frac{\partial f_{\theta}(0, n)}{\partial \alpha} & \frac{\partial f_{\theta}(0, n)}{\partial \beta} \\
\frac{\partial f_{\theta}(1, n)}{\partial \gamma} & \frac{\partial f_{\theta}(1, n)}{\partial \delta} & \frac{\partial f_{\theta}(1, n)}{\partial \alpha} & \frac{\partial f_{\theta}(1, n)}{\partial \beta} \\
\frac{\partial f_{\theta}(n-1, n)}{\partial \gamma} & \frac{\partial f_{\theta}(n-1, n)}{\partial \delta} & \frac{\partial f_{\theta}(n-1, n)}{\partial \alpha} & \frac{\partial f_{\theta}(n-1, n)}{\partial \beta} \\
\frac{\partial f_{\theta}(n, n)}{\partial \gamma} & \frac{\partial f_{\theta}(n, n)}{\partial \delta} & \frac{\partial f_{\theta}(n, n)}{\partial \alpha} & \frac{\partial f_{\theta}(n, n)}{\partial \beta}
\end{array}\right]
$$

has its reduced row echelon form of the identity matrix. With no zero-rows in the row echelon form we conclude that the sub-matrix is of rank four, and thus, for $n \geq 3$ and generic parameters, the whole Jacobian is of full rank, and the mapping is invertible.

Derivation of the Expectation Maximization algorithm

The complete log likelihood of the whole dataset $\mathbf{Y}=\left\{\mathbf{y}_{1}, \ldots \mathbf{y}_{m}\right\}$ in the mutual exclusivity model reads

$$
\begin{align*}
\log (P(\mathbf{Y}, C, H, T \mid \theta))= & \sum_{p}\left(C_{p} \log (\gamma)+\left(1-C_{p}\right) \log (1-\gamma)-\log (n)+\right. \tag{3}\\
& \sum_{g}\left(\log \left(0^{C_{p} H_{p g}\left(1-T_{p g}\right)}\right)+\right. \\
& C_{p}\left(1-H_{p g}\right) T_{p g} \log (\delta)+C_{p}\left(1-H_{p g}\right)\left(1-T_{p g}\right) \log (1-\delta)+ \\
& \log \left(0^{\left(1-C_{p}\right) T_{p g}}\right)+ \\
& T_{p g} y_{p g} \log (1-\beta)+T_{p g}\left(1-y_{p g}\right) \log (\beta)+ \\
& \left.\left.\left(1-T_{p g}\right) y_{p g} \log (\alpha)+\left(1-T_{p g}\right)\left(1-y_{p g}\right) \log (1-\alpha)\right)\right)
\end{align*}
$$

We show how to use the EM algorithm to estimate parameters in this model. In the E-step, we compute the expected values of relevant variables given the data and the parameters. First, we evaluate

$$
\begin{align*}
\overline{C_{p}} & =E\left[C_{p} \mid \mathbf{Y}, \theta\right]=\frac{P\left(C_{p}=1, Y_{p} \mid \theta\right)}{P\left(Y_{p} \mid \theta\right)} \tag{4}\\
& =\frac{\gamma}{n P\left(Y_{p} \mid \theta\right)} d^{k_{p}-1}(1-d)^{n-k_{p}-1}\left(k_{p}(1-\beta)(1-d)+\left(n-k_{p}\right) \beta d\right)
\end{align*}
$$

Note that since we assume that $P\left(H_{g}=1\right)=\frac{1}{n}$, the nominator in equation (4) can be computed in constant time. This would not be the case if a set of parameters would describe the exclusive mutation frequencies instead, with one parameter per each gene: then, the exact placement of the mutually exclusive alteration in each observation would matter, and the hidden variable values would have to be summed out explicitly, in n steps. Remarkably, the value of $\overline{C_{p}}$ depends only on the number k_{p} of values 1 in observation p. Thus, instead of computing m values of $\overline{c_{p}}$ for each $p \in\{1, \ldots, m\}$, it suffices to compute $n+1$ unique values, for each $k \in\{0, \ldots, n\}$:

$$
\begin{equation*}
\overline{c_{k}}=\frac{\gamma}{n f_{\theta}(k, n)} d^{k-1}(1-d)^{n-k-1}(k(1-\beta)(1-d)+(n-k) \beta d) \tag{5}
\end{equation*}
$$

where the observed data likelihood $f_{\theta}(k, n)=P\left(Y_{p} \mid \theta\right)$ is computed using equation 2 . Next, we compute

$$
\begin{equation*}
\overline{C_{p} T_{p g}}=E\left[C_{p} T_{p g} \mid \mathbf{Y}, \theta\right]=\frac{P\left(C_{p}=1, T_{p g}=1, Y_{p} \mid \theta\right)}{P\left(Y_{p} \mid \theta\right)} \tag{6}
\end{equation*}
$$

This value depends only on the total number of values 1 in observation p, as well as on whether $y_{p g}=0$, or $y_{p g}=1$. For each $k \in\{0, \ldots, n\}$ we define auxiliary values $\overline{t_{k}^{0}}, \overline{t_{k}^{1}}$ respectively. Given that $k_{p}=k$ we have

$$
\overline{C_{p} T_{p g}}= \begin{cases}\overline{t_{k}^{0}} & \text { if } y_{p g}=0 \\ \overline{t_{k}^{1}} & \text { if } y_{p g}=1\end{cases}
$$

where

$$
\begin{gather*}
\overline{t_{k}^{0}}=\frac{\gamma}{n f_{\theta}(k, n)} \beta d^{k-1}(1-d)^{n-k-2}(d(1-d)+k \delta(1-\beta)(1-d)+(n-k-1) \delta \beta d) \tag{7}\\
\overline{t_{k}^{1}}=\frac{\gamma}{n f_{\theta}(k, n)}(1-\beta) d^{k-2}(1-d)^{n-k-1}(d(1-d)+(k-1) \delta(1-\beta)(1-d)+(n-k) \delta \beta d) \tag{8}
\end{gather*}
$$

Similarly, we compute

$$
\begin{equation*}
\overline{C_{p} H_{p g}}=E\left[C_{p} H_{p g} \mid \mathbf{Y}, \theta\right]=\frac{P\left(C_{p}=1, H_{p g}=1, Y_{p} \mid \theta\right)}{P\left(Y_{p} \mid \theta\right)} \tag{9}
\end{equation*}
$$

and define auxiliary values $\overline{h_{k}^{0}}$ and $\overline{h_{k}^{1}}$ such that, for $k_{p}=k$,

$$
\overline{C_{p} H_{p g}}= \begin{cases}\overline{h_{k}^{0}} & \text { if } y_{p g}=0 \\ \overline{h_{k}^{1}} & \text { if } y_{p g}=1\end{cases}
$$

where

$$
\begin{equation*}
\overline{h_{k}^{0}}=\frac{\gamma}{n f_{\theta}(k, n)} \beta d^{k}(1-d)^{n-k-1} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{h_{k}^{1}}=\frac{\gamma}{n f_{\theta}(k, n)}(1-\beta) d^{k-1}(1-d)^{n-k} \tag{11}
\end{equation*}
$$

Finally, we show that

$$
\begin{equation*}
\overline{T_{p g}}=E\left[T_{p g} \mid \mathbf{Y}, \theta\right]=E\left[C_{p} T_{p g} \mid \mathbf{Y}, \theta\right]=\overline{C_{p} T_{p g}} \tag{12}
\end{equation*}
$$

Indeed,

$$
E\left[T_{p g} \mid \mathbf{Y}, \theta\right]=P\left(T_{p g}=1, C_{p}=1 \mid \mathbf{Y}, \theta\right)+P\left(T_{p g}=1, C_{p}=0 \mid \mathbf{Y}, \theta\right)=P\left(T_{p g}=1, C_{p}=1 \mid \mathbf{Y}, \theta\right)
$$

since by definition $P\left(T_{p g}=1 \mid C_{p}=0\right)=0$. Moreover, we have

$$
\begin{equation*}
\overline{C_{p} H_{p g} T_{p g}}=E\left[C_{p} H_{p g} T_{p g} \mid \mathbf{Y}, \theta\right]=E\left[C_{p} H_{p g} \mid \mathbf{Y}, \theta\right]=\overline{C_{p} H_{p g}}, \tag{13}
\end{equation*}
$$

since $P\left(T_{p g}=1 \mid H_{p} g=1\right)=1$. In total, the E-step comprises computations of $6(\mathrm{n}+1)$ values, namely, $f_{\theta}(k, n), \overline{c_{k}}, \overline{t_{k}^{0}}, \overline{t_{k}^{1}}, \overline{h_{k}^{0}}, \overline{h_{k}^{1}}$, each for $k \in\{0, \ldots, n\}$.

In the M-step, we estimate the parameters maximizing the expected complete likelihood, given the estimated expected values of the variables. Let $k \in\{0, \ldots, n\}$, and q_{k} denote the number of observations which have exactly k entries equal 1 . Denote $\overline{s_{k}}=k \overline{t_{k}^{1}}+(n-k) \overline{t_{k}^{0}}$, the expected number of true mutations in the observation with k observed mutations. The expected complete likelihood reads

$$
\begin{align*}
E[\log (P(\mathbf{Y}, C, H, T \mid \theta))]= & \sum_{p}\left(\overline{C_{p}} \log (\gamma)+\left(1-\overline{C_{p}}\right) \log (1-\gamma)-\log (n)+\right. \tag{14}\\
& \sum_{g}\left(\left(\overline{C_{p} T_{p g}}-\overline{C_{p} H_{p g}}\right) \log (\delta)+\right. \\
& \left(\overline{C_{p}}-\overline{C_{p} T_{p g}}\right) \log (1-\delta)+ \\
& \overline{T_{p g}} y_{p g} \log (1-\beta)+\overline{T_{p g}}\left(1-y_{p g}\right) \log (\beta)+ \\
& \left.\left.\left(1-\overline{T_{p g}}\right) y_{p g} \log (\alpha)+\left(1-\overline{T_{p g}}\right)\left(1-y_{p g}\right) \log (1-\alpha)\right)\right) \\
= & \sum_{k} q_{k}\left(\overline{c_{k}} \log (\gamma)+\left(1-\overline{c_{k}}\right) \log (1-\gamma)+\right. \\
& \left(\overline{s_{k}}-\overline{c_{k}}\right) \log (\delta)+ \\
& \left(n \overline{c_{k}}-\overline{s_{k}}\right) \log (1-\delta)+ \\
& k \overline{t_{k}^{1}} \log (1-\beta)+(n-k) \overline{t_{k}^{0}} \log (\beta)+ \\
& \left.k\left(1-\overline{t_{k}^{1}}\right) \log (\alpha)+\left(n-(n-k) \overline{t_{k}^{0}}\right) \log (1-\alpha)\right),
\end{align*}
$$

using equations (12) and (13), and since we have

$$
k \overline{h_{k}^{1}}+(n-k) \overline{h_{k}^{0}}=\overline{c_{k}} .
$$

Maximization of the expected complete likelihood with respect to γ gives

$$
\begin{equation*}
\tilde{\gamma}=\frac{\sum_{k} q_{k} \overline{c_{k}}}{m} \tag{15}
\end{equation*}
$$

maximization with respect to δ yields

$$
\begin{equation*}
\tilde{\delta}=\frac{\sum_{k} q_{k}\left(\overline{s_{k}}-\overline{c_{k}}\right)}{(n-1) \sum_{k} q_{k} \overline{c_{k}}} \tag{16}
\end{equation*}
$$

Finally, maximization with respect to α and β, results in, respectively:

$$
\begin{equation*}
\tilde{\alpha}=\frac{\sum_{k} q_{k} k\left(1-\overline{t_{k}^{1}}\right)}{m n-\sum_{k} q_{k} \overline{s_{k}}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\beta}=\frac{\sum_{k} q_{k}(n-k) \overline{t_{k}^{0}}}{\sum_{k} q_{k} \overline{s_{k}}} \tag{18}
\end{equation*}
$$

