Text S1

Modeling mutual exclusivity of cancer mutations

Ewa Szczurek¹, Niko Beerenwinkel^{1,*}

- 1 Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB Swiss Institute of Bioinformatics
- * E-mail: niko.beerenwinkel@bsse.ethz.ch

Likelihood in the mutual exclusivity model

The complete data likelihood of a given observation $\mathbf{y} = (y_1, ..., y_n)$ in the mutual exclusivity model, given the parameters, factorizes according to conditional independencies in the model:

$$P(\mathbf{y}, C, H, T | \theta) = \gamma^{C} (1 - \gamma)^{1 - C} \frac{1}{n} \prod_{g} \left((0^{1 - T_g})^{CH_g} (\delta^{T_g} (1 - \delta)^{1 - T_g})^{C(1 - H_g)} (0^{T_g})^{1 - C} \epsilon(y_g, T_g) \right)$$
(1)

Here, for convenience, the mutually mutated gene is specified by a vector of binary random variables $H = (H_1, \ldots, H_n)$, only one of which can be assigned value 1 at a time: $P(H_g = 1) = \frac{1}{n}$, and $H_g = 1$ implies that $H_{g'} = 0$ for all $g' \neq g$.

To obtain $P(\mathbf{y}|\theta)$, the observed likelihood for observation \mathbf{y} (equation 1 in the main text), we need to marginalize the hidden variables out. This likelihood depends only on the number k of values 1 in this observation, its length n, and on the parameters θ , and will be shortly denoted $f_{\theta}(k, n)$. Let $d = \delta(1 - \beta) + (1 - \delta)\alpha$.

$$f_{\theta}(k,n) = \sum_{c} \sum_{h} \sum_{\mathbf{t}} P(C=c) P(H=h) P(\mathbf{y}, \mathbf{t} | C=c, H=h, \theta)$$

$$= (1-\gamma) \prod_{g} \sum_{t_{g}} P(y_{g} | t_{g}) P(t_{g} | C=0) + \frac{\gamma}{n} \sum_{g'} \prod_{g} \sum_{t_{g}} P(y_{g} | t_{g}) P(t_{g} | C=1, H_{g'}=1)$$

$$= (1-\gamma) \alpha^{k} (1-\alpha)^{n-k} + \frac{\gamma}{n} d^{k-1} (1-d)^{n-k-1} (k(1-\beta)(1-d) + (n-k)\beta d).$$
(2)

Thus, knowing k, the observed likelihood for one observation can be computed in constant time, which is possible since we assumed $P(H_g=1)=\frac{1}{n}$. Parametrizing the distribution of H, for example by allowing parameters $p_g=P(H_g=1)$, with $\sum_g p_g=1$, would increase the complexity of computing this likelihood to O(n). The likelihood value would no longer only depend on the number k of non-zero values, but also on which entries in the observation were non-zero. Consequently, computation of the observed likelihood of the entire dataset, now requiring initial mn pre-computing steps and n+1 steps of constant time complexity (equation 2 in the main text), would change its complexity to O(mn). This is important for the EM algorithm, which performs the initial pre-computation once, and the likelihood is computed for all iterations in O(n+1).

Identifiability of the mutual exclusivity model

We first formally prove that the four model parameters in $\theta = \{\gamma, \delta, \alpha, \beta\}$ are identifiable from the data.

Proposition 1 For $n \geq 3$, the parameters in the mutual exclusivity model are identifiable.

Proof. Consider a mapping from the parameter space Θ to the probability simplex Δ defined by the probabilities $P(\mathbf{y}|\theta)$ for all possible observations \mathbf{y} (equation 2 above). We need to show that this mapping is invertible.

We construct the Jacobian matrix with columns corresponding to the four parameters in θ , and rows to all possible observations. There are n+1 groups of identical rows, one group per the number of values 1 in the observations in this group, denoted k. Thus, already with $n \geq 3$, the Jacobian has at least 4 unique rows. Each unique row is of the form

$$[\frac{\partial f_{\theta}(k,n)}{\partial \gamma}, \frac{\partial f_{\theta}(k,n)}{\partial \delta}, \frac{\partial f_{\theta}(k,n)}{\partial \alpha}, \frac{\partial f_{\theta}(k,n)}{\partial \beta}],$$

with the individual entries defined by:

$$\frac{\partial f_{\theta}(k,n)}{\partial \gamma} = -\alpha^{k} (1-\alpha)^{n-k} + \frac{1}{n} d^{k-1} (1-d)^{n-k-1} (k(1-\beta)(1-d) + (n-k)\beta d),$$

$$\frac{\partial f_{\theta}(k,n)}{\partial \delta} = \frac{\gamma}{n} (1-\alpha-\beta) d^{k-2} (1-d)^{n-k-2} (k(1-\beta)(1-d)(k-1-dn+d) + (n-k)\beta d(k-dn+d)),$$

$$\frac{\partial f_{\theta}(k,n)}{\partial \alpha} = (1-\gamma)\alpha^{k-1} (1-\alpha)^{n-k-1} (k-\alpha n) + \frac{\gamma}{n} (1-\delta) d^{k-2} (1-d)^{n-k-2} (k(1-\beta)(1-d)(k-1-dn+d) + (n-k)\beta d(k-dn+d)),$$

$$\frac{\partial f_{\theta}(k,n)}{\partial \beta} = \frac{\gamma}{n} (1-\delta) d^{k-2} (1-d)^{n-k-2} (d(1-d)(nd-k) - k(1-\beta)\delta (1-d)(k-1-dn+d) - (n-k)\beta \delta d(k-dn+d)).$$

To prove that this Jacobian is full rank, we only need to show that any of its four by four sub-matrices is of rank four. We choose the sub-matrix with simple expressions for the partial derivatives, by selecting four unique rows in the Jacobian, with values k equal to 0, 1, n-1, and n, respectively. For those values, many of the terms in the above equations cancel out. The resulting sub-matrix

$$\begin{bmatrix} \frac{\partial f_{\theta}(0,n)}{\partial \gamma} & \frac{\partial f_{\theta}(0,n)}{\partial \delta} & \frac{\partial f_{\theta}(0,n)}{\partial \alpha} & \frac{\partial f_{\theta}(0,n)}{\partial \beta} \\ \frac{\partial f_{\theta}(1,n)}{\partial \gamma} & \frac{\partial f_{\theta}(1,n)}{\partial \delta} & \frac{\partial f_{\theta}(1,n)}{\partial \alpha} & \frac{\partial f_{\theta}(1,n)}{\partial \beta} \\ \frac{\partial f_{\theta}(n-1,n)}{\partial \gamma} & \frac{\partial f_{\theta}(n-1,n)}{\partial \delta} & \frac{\partial f_{\theta}(n-1,n)}{\partial \alpha} & \frac{\partial f_{\theta}(n-1,n)}{\partial \beta} \\ \frac{\partial f_{\theta}(n,n)}{\partial \gamma} & \frac{\partial f_{\theta}(n,n)}{\partial \delta} & \frac{\partial f_{\theta}(n,n)}{\partial \alpha} & \frac{\partial f_{\theta}(n,n)}{\partial \beta} \end{bmatrix}$$

has its reduced row echelon form of the identity matrix. With no zero-rows in the row echelon form we conclude that the sub-matrix is of rank four, and thus, for $n \geq 3$ and generic parameters, the whole Jacobian is of full rank, and the mapping is invertible.

Derivation of the Expectation Maximization algorithm

The complete log likelihood of the whole dataset $\mathbf{Y} = \{\mathbf{y}_1, \dots \mathbf{y}_m\}$ in the mutual exclusivity model reads

$$\log(P(\mathbf{Y}, C, H, T | \theta)) = \sum_{p} \left(C_{p} \log(\gamma) + (1 - C_{p}) \log(1 - \gamma) - \log(n) + \sum_{q} \left(\log(0^{C_{p}H_{pg}(1 - T_{pg})}) + C_{p}(1 - H_{pg})T_{pg}\log(\delta) + C_{p}(1 - H_{pg})(1 - T_{pg})\log(1 - \delta) + \log(0^{(1 - C_{p})T_{pg}}) + T_{pg}y_{pg}\log(1 - \beta) + T_{pg}(1 - y_{pg})\log(\beta) + (1 - T_{pg})y_{pg}\log(\alpha) + (1 - T_{pg})(1 - y_{pg})\log(1 - \alpha) \right).$$
(3)

We show how to use the EM algorithm to estimate parameters in this model. In the E-step, we compute the expected values of relevant variables given the data and the parameters. First, we evaluate

$$\overline{C_p} = E[C_p | \mathbf{Y}, \theta] = \frac{P(C_p = 1, Y_p | \theta)}{P(Y_p | \theta)}
= \frac{\gamma}{nP(Y_p | \theta)} d^{k_p - 1} (1 - d)^{n - k_p - 1} (k_p (1 - \beta)(1 - d) + (n - k_p)\beta d),$$
(4)

Note that since we assume that $P(H_g = 1) = \frac{1}{n}$, the nominator in equation (4) can be computed in constant time. This would not be the case if a set of parameters would describe the exclusive mutation frequencies instead, with one parameter per each gene: then, the exact placement of the mutually exclusive alteration in each observation would matter, and the hidden variable values would have to be summed out explicitly, in n steps. Remarkably, the value of $\overline{C_p}$ depends only on the number k_p of values 1 in observation p. Thus, instead of computing m values of $\overline{c_p}$ for each $p \in \{1, ..., m\}$, it suffices to compute n+1 unique values, for each $k \in \{0, ..., n\}$:

$$\overline{c_k} = \frac{\gamma}{n f_{\theta}(k, n)} d^{k-1} (1 - d)^{n-k-1} (k(1 - \beta)(1 - d) + (n - k)\beta d), \tag{5}$$

where the observed data likelihood $f_{\theta}(k,n) = P(Y_p|\theta)$ is computed using equation 2. Next, we compute

$$\overline{C_p T_{pg}} = E[C_p T_{pg} | \mathbf{Y}, \theta] = \frac{P(C_p = 1, T_{pg} = 1, Y_p | \theta)}{P(Y_p | \theta)}$$

$$(6)$$

This value depends only on the total number of values 1 in observation p, as well as on whether $y_{pg} = 0$, or $y_{pg} = 1$. For each $k \in \{0, ..., n\}$ we define auxiliary values $\overline{t_k^0}$, $\overline{t_k^1}$ respectively. Given that $k_p = k$ we have

$$\overline{C_p T_{pg}} = \begin{cases} \overline{t_k^0} & \text{if } y_{pg} = 0, \\ \overline{t_k^1} & \text{if } y_{pg} = 1, \end{cases}$$

where

$$\overline{t_k^0} = \frac{\gamma}{n f_{\theta}(k, n)} \beta d^{k-1} (1 - d)^{n-k-2} \left(d(1 - d) + k \delta (1 - \beta) (1 - d) + (n - k - 1) \delta \beta d \right) \tag{7}$$

$$\overline{t_k^1} = \frac{\gamma}{nf_{\theta}(k,n)} (1-\beta) d^{k-2} (1-d)^{n-k-1} \left(d(1-d) + (k-1)\delta(1-\beta)(1-d) + (n-k)\delta\beta d \right)$$
(8)

Similarly, we compute

$$\overline{C_p H_{pg}} = E[C_p H_{pg} | \mathbf{Y}, \theta] = \frac{P(C_p = 1, H_{pg} = 1, Y_p | \theta)}{P(Y_p | \theta)}$$
(9)

and define auxiliary values $\overline{h_k^0}$ and $\overline{h_k^1}$ such that, for $k_p=k$,

$$\overline{C_p H_{pg}} = \begin{cases} \overline{h_k^0} & \text{if } y_{pg} = 0, \\ \overline{h_k^1} & \text{if } y_{pg} = 1, \end{cases}$$

where

$$\overline{h_k^0} = \frac{\gamma}{n f_{\theta}(k, n)} \beta d^k (1 - d)^{n - k - 1}, \tag{10}$$

and

$$\overline{h_k^1} = \frac{\gamma}{n f_{\theta}(k, n)} (1 - \beta) d^{k-1} (1 - d)^{n-k}. \tag{11}$$

Finally, we show that

$$\overline{T_{pg}} = E[T_{pg}|\mathbf{Y}, \theta] = E[C_p T_{pg}|\mathbf{Y}, \theta] = \overline{C_p T_{pg}}.$$
(12)

Indeed,

$$E[T_{pq}|\mathbf{Y},\theta] = P(T_{pq} = 1, C_p = 1|\mathbf{Y},\theta) + P(T_{pq} = 1, C_p = 0|\mathbf{Y},\theta) = P(T_{pq} = 1, C_p = 1|\mathbf{Y},\theta),$$

since by definition $P(T_{pq} = 1 | C_p = 0) = 0$. Moreover, we have

$$\overline{C_p H_{pq} T_{pq}} = E[C_p H_{pq} T_{pq} | \mathbf{Y}, \theta] = E[C_p H_{pq} | \mathbf{Y}, \theta] = \overline{C_p H_{pq}}, \tag{13}$$

since $P(T_{pg}=1|H_pg=1)=1$. In total, the E-step comprises computations of 6(n+1) values, namely, $f_{\theta}(k,n)$, $\overline{c_k}$, $\overline{t_k^0}$, $\overline{t_k^1}$, $\overline{h_k^0}$, $\overline{h_k^1}$, each for $k \in \{0,...,n\}$.

In the M-step, we estimate the parameters maximizing the expected complete likelihood, given the estimated expected values of the variables. Let $k \in \{0,...,n\}$, and q_k denote the number of observations which have exactly k entries equal 1. Denote $\overline{s_k} = k\overline{t_k^1} + (n-k)\overline{t_k^0}$, the expected number of true mutations in the observation with k observed mutations. The expected complete likelihood reads

$$E[\log(P(\mathbf{Y}, C, H, T | \theta))] = \sum_{p} \left(\overline{C_p} \log(\gamma) + (1 - \overline{C_p}) \log(1 - \gamma) - \log(n) + \right)$$

$$\sum_{g} \left((\overline{C_p} T_{pg} - \overline{C_p} \overline{H_{pg}}) \log(\delta) + \right)$$

$$(\overline{C_p} - \overline{C_p} T_{pg}) \log(1 - \delta) +$$

$$T_{pg} y_{pg} \log(1 - \beta) + T_{pg} (1 - y_{pg}) \log(\beta) +$$

$$(1 - \overline{T_{pg}}) y_{pg} \log(\alpha) + (1 - \overline{T_{pg}}) (1 - y_{pg}) \log(1 - \alpha) \right)$$

$$= \sum_{k} q_k \left(\overline{c_k} \log(\gamma) + (1 - \overline{c_k}) \log(1 - \gamma) + \right)$$

$$(\overline{s_k} - \overline{c_k}) \log(\delta) +$$

$$(n\overline{c_k} - \overline{s_k}) \log(1 - \delta) +$$

$$k \overline{t_k^1} \log(1 - \beta) + (n - k) \overline{t_k^0} \log(\beta) +$$

$$k (1 - \overline{t_k^1}) \log(\alpha) + (n - (n - k) \overline{t_k^0}) \log(1 - \alpha) \right).$$

$$(14)$$

using equations (12) and (13), and since we have

$$k\overline{h_k^1} + (n-k)\overline{h_k^0} = \overline{c_k}.$$

Maximization of the expected complete likelihood with respect to γ gives

$$\tilde{\gamma} = \frac{\sum_{k} q_k \overline{c_k}}{m},\tag{15}$$

maximization with respect to δ yields

$$\tilde{\delta} = \frac{\sum_{k} q_{k} (\overline{s_{k}} - \overline{c_{k}})}{(n-1) \sum_{k} q_{k} \overline{c_{k}}}$$
(16)

Finally, maximization with respect to α and β , results in, respectively:

$$\tilde{\alpha} = \frac{\sum_{k} q_k k (1 - \overline{t_k^1})}{mn - \sum_{k} q_k \overline{s_k}},\tag{17}$$

and

$$\tilde{\beta} = \frac{\sum_{k} q_k (n-k) \overline{t_k^0}}{\sum_{k} q_k \overline{s_k}}.$$
(18)