Text S1: Detailed methods

Here we describe a general method for computing the optimal schedules to re-entrain, in minimum time, a limit cycle oscillator of two or more variables. In particular, when the controlled quantity (e.g. light) appears monotonically (strictly increasing or strictly decreasing) in the model equations, we describe how this method can be modified to make it several times faster. Moreover, we discuss how the method can be adapted to highly stiff systems. Such systems appear often in biology due to the presence of widely separated timescales.


The method we present is a modification of a highly cited algorithm by Meier and Bryson 1[]
 called the switch time optimization (STO) method. This method is an indirect method, which means that it uses necessary conditions for an optimum to find a relatively small set of candidate solutions 2[]
. The optimum is then found by picking the best one. An advantage of such a method over direct methods, which recast the problem to one that is easier to solve, is that the solutions are mathematically optimal according to Pontryagin’s Minimum Principle (PMP) 3[,4]
.

Notation

The n-dimensional limit cycle oscillator (LCO) will be described by the equation
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 (here mod means remainder). In the sequel we move back and forth between the notations 
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 where convenient. See figure 7 for a visual description of this notation.

Setting up the Problem

Suppose that the oscillator is entrained and that, at phase 
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(See figure 8).

If we can control 
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, then we may be able to quicken re-entrainment. Specifically, we would like to solve the following problem. Find 
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Modifying the Constraint

Notice that the point 
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 is given by the intersection of the orbit (closed loop)  
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 (See figure 7.) Therefore instead of requiring that 
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we can require only that
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so long as we have a way of ensuring that 
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 gives the distance from the origin, also called amplitude. (We use this penalty to optimize the circadian models.) 

Our problem thus becomes the following. Find 
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 are positive constants controlling how close we want the penalty functions to be to 
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In practical terms, we require as a constraint that the final phase be exactly entrained, but allow, by using penalties and carefully adjusting their weights, other variables (including circadian amplitude) to deviate from their entrained values within experimentally observed ranges.

Connecting the Problem to Optimal Control Theory

Letting 
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, it is not too hard to see that the above problem can be rewritten in the following more general form. (It is a canonical one in the field of optimal control theory2[]
.) Let 
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The method we use to find the solution works in the following way. Let 
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 is linearly extrapolated, see Ch. 3 of 6[]
). Since the control 
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. If we are able to find the increment 
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Sensitivity Functions

To motivate the method, we will first consider the case 
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be the gradient of the cost with respect to a perturbation in the states at time [image: image104.wmf]t
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We’d like to scale this sensitivity backwards from time 
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Rearranging this and taking the limit as [image: image119.wmf]0
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Solving this backward from (1) gives us the sensitivity of the cost to changes in the states at any time [image: image121.wmf]t
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Changes in Final Time

We are allowed to vary 
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Thus incorporating changes in final time into (3) gives us
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Variations in the Controls

We are allowed only to change the states 
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Substituting into (4) we get
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In optimal control theory the expression 
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Notice that 
[image: image155.wmf](/)()

Hut

¶¶

 can be a considered the “gradient” of 
[image: image156.wmf]J

 with respect to the control 
[image: image157.wmf]()

ut

 and 
[image: image158.wmf](/)

f

t

tH

f

¶¶+

 the “gradient” with respect to 
[image: image159.wmf]f

t

.
Optimal Perturbations

From (5), we see that the cost 
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for small enough values of 
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In fact, these are the necessary conditions for optimality called Pontryagin’s Minimum Principle 4[]
.

PMP1 4[]
: If a control 
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Terminal Constraints

To address the issue of t​​erminal constraints, we begin by asking how changes in the controls and final time affect 
[image: image184.wmf]((),)

ff

xtt

y

. Replacing 
[image: image185.wmf]j

 by 
[image: image186.wmf]y

 and re-deriving equation (5) gives us



[image: image187.wmf]0

()()()

f

f

t

TT

f

t

f

fdtttutdt

tu

yy

y

dylld

¶¶

æö

=++

ç÷

¶¶

èø

ò


(8)

where 
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If we perturb the control and final time by 
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are guaranteed to increase 
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If the nominal control 
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Optimal Perturbations with Constraints

Since the equations for the sensitivity functions are linear, it’s possible to show that the augmented increments 
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If we increment the control and final time by
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In fact, these are the necessary conditions for optimality when terminal constraints are present, called Pontryagin’s Minimum Principle with terminal constraints 4[]
.

PMP2 4[]
: If a control 
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Bang-bang Controls

Suppose that for each 
[image: image261.wmf]x

 and 
[image: image262.wmf]0

t

³

, 
[image: image263.wmf](,,)

fxut

 is a monotonic function of 
[image: image264.wmf]u

. Let 
[image: image265.wmf]01

[,]

Uuu

=

 instead of 
[image: image266.wmf](,)

U

=-¥+¥

 as in the previous sections. From PMP2, we have that an optimal control 
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If we consider only bang-bang controls then all the information over the interval 
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so (6) and (9) become
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Stiff Problems

Problems in biology are often stiff in the sense that both very fast and very slow timescales are present. If the problem is stiff, then often the increments 
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tend to become very large, violating the linearity assumption (Our conclusions are based on first-order approximations.) One possible solution is to make 
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 very small, but often it must be made so tiny that the problem cannot be solved in a reasonable amount of time. However, when the problem is bang-bang and the fastest timescale of the problem is known, another solution is available. At each iteration, we can choose 
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In this way we can take, at each step, the largest increment which does not violate the linearity assumption. This is the critical modification which allows us to optimize 7[]
 and 8[]
, which are both quite stiff.

The Switch Time Optimization Algorithm (STO) 

Incorporating the above changes for bang-bang controls and summarizing the method we described, we arrive at the following modification of the algorithm proposed by Meier and Bryson in 1[]
.
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Step 2   Determine the trajectory 
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Step 4   Let 
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Step 5   Determine the optimal perturbations for decreasing 
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Step 6   Determine the effect of these perturbations on 
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Step 7   Choose some small 
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Step 8   Record the optimal increments 
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Once the cost stops decreasing and the constraint is satisfied, we check that the solutions given by this algorithm satisfy the necessary conditions of Pontryagin’s Minimum Principle (PMP2).

The Jewett-Forger-Kronauer Model


The Jewett-Forger-Kronauer model of the human circadian system 7[]
 is given by the following system of differential equations:


[image: image328.wmf]37

14256

1233105

c

x

xxxxB

t

p

m

æö

¶

æö

=++-+

ç÷

ç÷

¶

èø

èø

,


[image: image329.wmf]2

24

120.99729

c

c

x

x

qBxxkB

t

p

t

æö

éù

æö

¶

ç÷

êú

=+

ç÷

¶

ç÷

êú

èø

ëû

èø

-



[image: image330.wmf](

)

60()(1)

n

Inn

t

ab

¶

=--

¶

,

where


[image: image331.wmf]0

0

()

p

I

I

I

aa

æö

=

ç÷

èø

,

and


[image: image332.wmf]()(1)(10.4)(10.4)

c

BGInxx

a

=---

.

with 
[image: image333.wmf]0

0.05

a

=

, 
[image: image334.wmf]0.0075

b

=

, 
[image: image335.wmf]33.75

G

=

, 
[image: image336.wmf]0

9500

I

=

, 
[image: image337.wmf]0.5

p

=

, 
[image: image338.wmf]0.55

k

=

, 
[image: image339.wmf]0.13

m

=

, 
[image: image340.wmf]1/3

q

=

, and 
[image: image341.wmf]24.2

x

t

=

.

The variable 
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 is assigned to closely reflect the endogenous core body temperature, while 
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 is an associated complementary variable.  The phase of the oscillator is defined relative to the timing of the minimum of 
[image: image344.wmf]x
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 models how light effects the circadian system (phototransduction), by processing the light input 
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 into a term 
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 which directly influences the oscillator. Notice that 
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 and treat the model as a 2-dimensional oscillator. Therefore, while the oscillator is 3-dimensional, the dynamics of the unforced oscillator are essentially 2-dimensional. The isochrons of the model, projected onto the 
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The Simpler Model

The Simpler model of the human circadian system 8[]
 is given by the following system of differential equations:
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 are the same as for the Jewett-Forger-Kronauer model, except with 
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Computing the Isochrons

The isochrones were computed using the method given by Izhikevich (See Ch. 10 ex. 3 of 9[]
) for 2-dimensional LCOs (we set 
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), with some minor modifications. The initial isochron segment was computed using Malkin’s method (See Ch. 10 ex. 12 of 9[]
), instead of taking a radial line segment. Also, instead of using Euler’s method for the backward integrations we used the leap-frog method 10[]
, which works better for oscillatory solutions. 

Optimizing the Schedules


Each model is a 3-dimensional LCO which behaves like a 2-dimensional LCO. We proceed just as in the 3-dimensional case, except instead of using two penalty function (See Setting up the Problem) we only need to use one. We set 
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is the circadian amplitude (See 7[]
 and 8[]
). We set 
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which ends up recovering approximately 85-95% of amplitude (with the exception of figure 1G, in which we used 
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).

We choose a 16:8 LD-cycle of 100 lux as our entraining stimulus (
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 hours). Without loss of generality we then find, for each maximum light level (100 lux to 10,000 lux) and each [image: image391.wmf]0
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 between 0 and 24, the optimal schedule to re-entrain the oscillator to a shift of 
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. Hence we find the optimal schedules to reset the oscillator from any initial phase (See figures 4 and 5 and supplemental figures S7 and S8).

Since 
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 appears linearly in both models, the optimal control is always bang-bang. Thus we use the STO algorithm to compute the optimal schedules. We use the shifted LD-cycle in the new time zone as our initial guess for 
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. We do this because the LD-cycle is entraining, so for a large enough final time (
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) we are guaranteed that the constraint is nearly satisfied. This is very desirable for the initial guess.

The fastest timescale of the model is on the order of 10 minutes 5[]
. Thus we set “ts” to 0.1 (6 min) (See The Switch Time Optimization Algorithm). When 
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 is large and 
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 (6 min) to match the timescale of the problem. It can be made larger but this increases the chance of violating the linearity assumptions.

We then fix the number of iterations, making it large enough so that the control can settle at a local optimum. Estimating this number is not too difficult. For example, when 
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 by approximately 100 hours. Once we obtain a solution, we verify that it satisfies conditions (1)-(3) of PMP2.

The optimal trajectories corresponding to figure 3 are plotted in phase-space in supplemental figure S12, demonstrating visually that 
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 is on the desired isochron and condition (3) of PMP2 is satisfied. The derivative of the Hamiltonian, 
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Designing schedules for partial re-entrainment
It has been suggested that symptoms associated with jet lag and shiftwork could be alleviated if the much weaker condition that CBTmin fall within the sleep/dark (SD) region is met 11[]
. In particular, some have claimed that it is desirable for CBTmin to occur at the beginning of the SD region. This has been found to facilitate sleep, since it feels good to fall asleep at CBTmin. In fact, free-running humans in temporal isolation fall asleep at CBTmin and sleep a normal amount of time.


For these reasons, a widely accepted rule of thumb for resolving jet lag is to place CBTmin at the start of the SD region as rapidly as possible, with the understanding that symptoms may begin to abate when CBTmin enters the SD region. Thus instead of finding schedules which cause complete circadian re-entrainment in minimum time, a reasonable alternative is to find schedules which place CBTmin at the start of the SD region in minimum time.


Fortunately, the latter problem can be framed in terms of the former. Consider a 24-hour LD cycle with 
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 hours of light followed by 
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 hours of darkness, and let 
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=

, we find that 
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 (according to the Jewett-Forger-Kronauer model 7[]
). In other words, CBTmin occurs 2.42 hours before the end of the dark period. Suppose 
[image: image414.wmf]f

D

 is the desired phase shift and 
[image: image415.wmf]0

f

 is the phase at which the schedule shift occurs (See Methods, especially figure 8). Notice that 
[image: image416.wmf]L

F-

 gives the timing of CBTmin relative to the start of the dark region (e.g. 
[image: image417.wmf]1

L

F-=

 hour means that CBTmin occurs 1 hour after start of the dark region). In our example 
[image: image418.wmf]5.58
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 hours.


If we were to complete a shift of 
[image: image419.wmf]f

D

 hours, then CBTmin would occur 
[image: image420.wmf]L
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 hours past dusk in the new time zone. In other words, we would overshoot dusk by 
[image: image421.wmf]L
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 hours. To correct this, we can simply advance (increase) 
[image: image422.wmf]f

D

 by this amount. Thus, completely re-entraining to a shift of 
[image: image423.wmf]actual
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ff
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 hours would place CBTmin at dusk. For instance, in figure 1G, we have 
[image: image424.wmf]12
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 hours (a 12 hour delay), and 
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f
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 hours.


Another important consideration, besides phase, is circadian amplitude. It has been observed, as a general principle of circadian clocks, that greater circadian amplitude corresponds to better circadian adaptation 12[]
. When we compute optimal schedules, we are able to adjust, using a parameter 
[image: image426.wmf]1

C

, how much amplitude the schedules must recover. A large value of 
[image: image427.wmf]1

C

 severely penalizes amplitude suppression at the end of the schedule (See Modifying the Constraint in supplemental text S1); a small value does not.


The choice of 
[image: image428.wmf]1

C

 governs the tradeoff between time to re-entrainment and amplitude recovery. The smaller 
[image: image429.wmf]1

C

 is, the faster re-entrainment occurs, at the cost of weaker restrictions on final amplitude (it may be large or small). In most of the schedules presented here, 
[image: image430.wmf]1

200

C

=

, recovering 85-95% of final amplitude. When the goal is to resolve jet lag however, it may be beneficial to emphasize shifting CBTmin into the proper region as quickly as possible. To demonstrate this, we set 
[image: image431.wmf]1

10
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=

 in figure 1G, placing almost no importance on the final amplitude.


Finally, we note that figure 4, by summarizing optimal schedules for complete re-entrainment to every possible shift, can be used to effect partial re-entrainment as well. For example, if 
[image: image432.wmf]12

f
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 hours, simply locate 
[image: image433.wmf]actual

125.586.42

f

D=-+=-

 hours (equivalently 
[image: image434.wmf]246.4217.58

-=

 hours) on figure 4 and draw a vertical line downwards. The corresponding schedule will be an optimal schedule for partial re-entrainment.
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