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Supplementary Methods

Conditionally independent mechanisms

In this paper, it is assumed that mechanisms are conditionally independent. Consider a system consist-
ing of three elements ABC. Mathematically, conditional independence of mechanisms A, B, and C is
represented as

p(ABCt|ABCt−1) = p(At|ABCt−1)× p(Bt|ABCt−1)× p(Ct|ABCt−1). (1)

In words, given a system state at time t−1, the probability of A, B, and C at time t can be determined
independently. This corresponds to the assumption that there is no instantaneous interaction between
mechanisms and causes must precede their effects.

Background conditions

Choosing a “candidate set” for IIT analysis means defining a precise border between elements that are
inside the candidate set and elements that are outside. From the intrinsic perspective of the candidate
set, the outside elements are treated as background conditions. This means that they are not considered as
variables internal to the set over which to perform perturbations, but rather as fixed, external constraints.
For the purpose of IIT analysis, this means that the connections from the outside elements are not noised
and their state is kept fixed. Specifically, when evaluating a cause repertoire in the candidate set, the
outside elements are fixed at their past state at t−1. Similarly, when evaluating an effect repertoire, the
outside elements are fixed at their present states at t0.

As an example, in the candidate set of Fig. 1 (main text), the state of element D is taken to be 0 at t−1
and t0. Given these background condition, the candidate set ABC performs as if D did not exist. On the
other hand, the transition probability matrix (TPM) of ABC would be different for D(t−1) = 1. Thus,
the conceptual structure (C) of the candidate set may differ, depending on the background conditions,
even though the state of the elements within the candidate set is the same (Note that, for all example
systems in the Results and Discussion section, the system state at t−1 is the same as the current state
at t0. Also, when considering other candidate sets within ABC, it is assumed that ABC(t−1) = 110.)

A neurological example of background conditions would be the sensory input to the ports-in of a
cortical main complex. As was illustrated in the case of the segment/dot system (Fig. 22, main text), the
main complex does not include the “sensory” elements providing feed-forward input to it. However, their
input - some on and some off - constitutes a background condition over which cause-effect repertoires
internal to the main complex are evaluated. As a more extreme example, the activity of subcortical acti-
vating systems with diffuse projections that maintain the excitability of the cortex is likely to constitute
an essential background or “enabling” condition [1] for the existence of a cortical main complex. Without
the activating input they provide, cortical neurons become bistable and consciousness disintegrates [2].
Nevertheless, the neural elements that provide this essential activating input to cortex are themselves
likely to be excluded from the main complex [3].

Cause-effect repertoire, unconstrained repertoire puc, and partitions

To calculate the cause-effect information of a mechanism in a state over a purview, its cause-effect
repertoire is compared against the unconstrained repertoire puc. The integrated information φ of a
mechanism in a state over a purview is assessed by comparing its cause-effect repertoire against that of
the partitioned purview. How these probability distributions are derived is illustrated using the example
of mechanism A = 1 over the purview ABC from Fig. 4 (main text), as well as other mechanisms from
the candidate set ABC (Fig. 1, main text).
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Cause repertoire

The cause repertoire p(ABCp|Ac = 1) is obtained via Bayes rule by perturbing the set of elements into
all its states with equal likelihood, i.e. assuming a uniform prior distribution pper(ABCp) of past states
ABCp, where the superscript per stands for “perturbed”:

p(ABCp|Ac = 1) =
p(Ac = 1|ABCp)pper(ABCp)

p(Ac = 1)
. (2)

Here, pper(ABCp) = 1/8 for each past state, since the set is perturbed into each state with equal
probability, p(Ac = 1) = 3/4, and p(Ac = 1|ABCp) is either 0 (for states 000 and 100) or 1 (for all other
states).

In general, the cause repertoire can also be assessed over a subset of the candidate set, e.g. p(Cp|Ac =
1). In this case, one has to marginalize over the elements outside of the purview, which remain uncon-
strained:

p(Cp|Ac = 1) =
(
∑

ABp p(Ac = 1|Cp, ABp) pper(ABp)) pper(Cp)

p(Ac = 1)
, (3)

where pper(ABc) denotes the perturbed (uniform) distribution over the past states of the elements AB.
The sum in equation 3 is effectively the average over the probabilities p(Ac = 1|ABCp) calculated for
ABp = [00, 10, 01, 11].

If the cause-repertoire of a higher order mechanism such as AB = 10 is determined over a limited
purview, e.g ABp, marginalizing over the remaining elements (Cp) can lead to correlations in ABc if C
provides common input to both A and B. Since the aim is to assess the cause-information of ABc about
ABp independent of Cp, Cp has to be replaced by “virtual elements” with independent output to every
element, as indicated by the subscript V :

p(ABp|ABc = 10) =

(∑
Cp

V
p(ABc = 10|ABp, Cp

V ) pper(Cp
V )
)
pper(ABp)

p(ABc = 10)
. (4)

The virtual element Cp
V means that the states 0 and 1 are imposed independently over every output

connection from C (Fig. 1A). The mechanisms considered here are 1st order Markov functions and
are thus conditionally independent given their respective inputs. Therefore, the cause repertoire of a
higher order mechanism such as AB = 01 can be calculated as the product of the cause-repertoires of
its elementary mechanisms, A = 1 and B = 0, obviating the need to add virtual elements in the actual
calculations:

p(ABp|ABc = 10) = p(ABp|Ac = 1)× p(ABp|Bc = 0). (5)

Unconstrained cause repertoire

As described in the main text (Fig. 4), the amount of cause information that A = 1 specifies about the
past, its cause information (ci), is measured as the distance D between the cause repertoire (eq. 2) and
the unconstrained repertoire puc. For the purview ABCp:

ci(ABCp|Ac = 1) = D(p(ABCp|Ac = 1)||puc(ABCp)) = 0.33. (6)

puc(ABCp) corresponds to the cause repertoire in the absence of any mechanism. The unconstrained
past distributions is thus the uniform distribution, since without the constraints of a mechanism in a
state puc(ABCp) = pper(ABCp).
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Figure 1. Virtual elements. The elements inside the candidate set but outside of the purview under
consideration are replaced by virtual elements. (A) For the past purview ABc/ABp, element Cp is
replaced by virtual elements Cp

A and Cp
B with independent outputs to Ac and Bc. This means that Cp

A

and Cp
B are independently set to 0 and 1 with equal probability when the cause repertoire of ABc/ABp

is assessed. (B) Likewise, to assess the effect repertoire of the future purview Ac/ABCf , the two
elements outside of the purview Bc and Cc are replaced by virtual elements with independent,
unconstrained inputs to ABCf .

Effect repertoire

The effect repertoire p(ABCf |Ac = 1) (Fig. 4, main text) is computed by fixing the current state of A to
1, while the remaining elements B and C are independently perturbed into all their possible states with
equal likelihood:

p(ABCf |Ac = 1) =
∑
BCc

V

p(ABCf |Ac = 1, BCc
V )pper(BCc

V ). (7)

Again, common inputs from B or C can lead to correlations between Af , Bf , and Cf . To avoid counting
these correlations as effects of element A, it is important to replace elements B and C by virtual elements
with independent outputs to every element (Fig. 1B). Since all mechanisms under consideration are
conditionally independent, in practice the effect repertoire can be calculated as:

p(ABCf |Ac = 1) = p(Af |Ac = 1)× p(Bf |Ac = 1)× p(Cf |Ac = 1), (8)

where the effect repertoire of a single future element, e.g. p(Af |Ac = 1) is simply:

p(Af |Ac = 1) =
∑
BCc

p(ABCf |Ac = 1, BCc)pper(BCc). (9)
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Unconstrained effect repertoire

Like the cause information (ci), the effect information (ei) of A = 1 is quantified as the distance D
between the effect repertoire of A and the unconstrained future distribution puc(ABCf ):

ei(ABCf |Ac = 1) = D(p(ABCf |Ac = 1)||puc(ABCf )) = 0.25. (10)

Without any constrains from a mechanism in a state, the unconstrained effect repertoire puc(ABCf ) is
given by:

puc(ABCf ) =
∑

ABCc
V

p(ABCf |ABCc
V )pper(ABCc

V ), (11)

where virtual elements are again used to avoid including effects arising from correlations due to common
inputs. For conditionally independent mechanisms, this is identical to:

puc(ABCf ) =
∑

ABCc

p(Af |ABCc)pper(ABCc)×
∑

ABCc

p(Bf |ABCc)pper(ABCc)× (12)

×
∑

ABCc

p(Cf |ABCc)pper(ABCc),

the product of the effect probability distributions of each element given unconstrained inputs. puc(ABCf )
is thus not simply the uniform distribution of future states of the candidate set. In the example set ABC,
the unconstrained effect repertoire for the OR-gate A is p(A = 0) = 0.25 and p(A = 1) = 0.75, for the
AND-gate B: p(B = 0) = 0.75 and p(B = 1) = 0.25, and for the XOR-gate C: p(C = 0) = 0.5 and
p(C = 1) = 0.5, obtained by perturbing their inputs to the states [00, 01, 10, 11] with equal probability.

Partitions

As illustrated above, when the cause/effect repertoire of a mechanism is computed over a particular
purview, the elements outside of the purview, but within the candidate set, remain unconstrained. Simi-
larly, if a purview is partitioned, elements outside of the part under consideration become unconstrained
and thus effectively act as independent noise sources (they are “injected with noise”). This renders the
connections across the partition causally inactive.

In the example shown in Fig. 2, the purview ABCc/ABCf is partitioned into ABc/ABf × Cc/Cf .
To obtain the partitioned effect repertoire, the effect repertoires of the purviews ABc/ABf and Cc/Cf

are calculated independently and then multiplied. Considering the purview of ABc/ABf , the element C
is outside of the purview and thus unconstrained:

p(ABf |ABc = 10) =
∑
Cc

V

p(ABf |ABc = 10, Cc
V )pper(Cc

V ). (13)

To causally disconnect C from AB, it is again important to introduce virtual elements, which ensure
independent noise in the connections across the partition. Even if A and B receive a common input from
C, such a common input is ignored in the purview of ABc/ABf . Since A, B, and C are conditionally
independent p(ABf |ABc = 10) can be calculated without explicitly introducing virtual units:

p(ABf |ABc = 10) =
∑
Cc

p(Af |ABc = 10, Cc)pper(Cc)×
∑
Cc

p(Bf |ABc = 10, Cc)pper(Cc). (14)

Similarly, the purview of Cc/Cf is the computed as:

p(Cf |Cc = 0) =
∑
ABc

p(Cf |Cc = 0, ABc)pper(ABc). (15)

The partitioned effect repertoire, ABc/ABf × Cc/Cf , is the product of p(ABf |ABc) and p(Cf |Cc).
Partitioned cause repertoires are calculated in the same way.
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Figure 2. Partitioning a purview. The purview ABCc/ABCf is partitioned into
ABc/ABf × Cc/Cf . Connections outside of each partition are “injected with noise”. This means that
the elements outside of the respective part ABc/ABf and Cc/Cf are replaced by virtual elements with
independent, unconstrained outputs. The partitioned effect repertoire is the product of the effect
repertoires of the parts.

Earth mover’s distance

Distance for probability distributions

Integrated information ϕ measures the difference between two probability distributions, a partitioned
distribution and an unpartitioned distribution. In previous work, the Kullback-Leibler divergence (KLD)
was used to compare distributions. KLD has several useful properties, but it is not a true metric (it is not
symmetric) and it is unbounded. Moreover, KLD only measures how “sharp” a distribution is compared
to the other, without taking into account whether some states of the system are closer than others (e.g.
that [0 0] is closer to [1 0] than to [1 1]).

A more appropriate measure that corresponds better to the IIT notion of information as “differences
that make a difference” is the earth mover’s distance (EMD). As indicated by its name, an intuitive
interpretation of the EMD is that it measures the minimum cost of transportation that arises when one
probability distribution has to be transformed into another [5, 6]. In this view, a probability value is
associated with a certain amount of “earth” that is moved across a certain distance, the distance from
one state to another. The cost of transportation is then the amount of “earth” moved times the distance
by which it is moved. The distance between binary states is measured by the Hamming distance, which
counts the number of places by which two strings differ. For instance, the Hamming distance between
the states ABC = 000 and ABC = 111 is 3; the distance between ABC = 010 and ABC = 100 is 2.
The EMD is in principle extendable to account for non-binary states, as long as a distance between the
individual states is given, which is an intrinsic property of the mechanisms under consideration.

EMD is symmetric, is bounded (by the number of elements N for binary mechanisms) and takes into
account the distance between states. Fig. 3 shows a cause repertoire over two elements with two of its
possible partitioned repertoires. In the intact cause repertoire, the only possible cause is 00. Partitions
1 and 2 both have state 00 as a possible cause, but add state 10 (Partition 1) and state 11 (Partition
2), with equal probability. Since state 00 is closer to 10 than to 11, the intact distribution is closer
to Partition 1 than to the Partition 2, as captured with EMD. From the intrinsic perspective of the
system, then, Partition 2 makes more of a difference, since the state of two system mechanisms becomes
undetermined instead of just one. By contrast, KLD assigns the same distance to both partitions, since
it only measures the “reduction of uncertainty.”
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Figure 3. Earth Mover’s Distance EMD, but not Kullback-Leibler Distance KLD, takes
into account distances between states. A cause repertoire and two of its possible partitions are
shown. KLD assigns the same value to both partitions, since it only measures the reduction of
uncertainty of the cause repertoire with respect to the partitions. By contrast, EMD is sensitive to the
distance between states. Since 00 is less distant from 10 than from 11, in terms of EMD Partition 2
makes more of a difference than Partition 1.

Distance for constellations of concepts

Integrated conceptual information ΦMax measures the difference between the intact constellation of a
set of elements C and that of its minimum information partition CMIP

→ . Like the difference between
probability distributions ϕ, the difference between constellations is assessed by an extended version
of the earth mover’s distance (EMD). The extended EMD measures the minimal cost of transforming
one constellation into another. Instead of probabilities, in the extended EMD it is the ϕ value of the
concepts that corresponds to the “earth” that is redistributed from constellation C to CMIP

→ . Instead of
the Hamming distance, the distance between the concepts of C and CMIP

→ is given by their distance in
concept space. Since

∑
(ϕMax) of all concepts of C is usually higher than that of CMIP

→ , any residual ϕMax

is assigned to the “null” concept (the unconstrained distribution puc), which is included as an additional
location in CMIP

→ .
Fig. 4 shows how the ΦMax value of candidate set ABC (Fig. 12, main text) is calculated. To

illustrate the analogy between the standard EMD for probability distributions and the extended EMD
for constellations, the ϕMax values of the concepts of C and CMIP

→ are displayed as two distributions. In
this example, the concept of A and B are unaffected by the partition, while the other 4 concepts are
destroyed. The optimal way to transform C into CMIP

→ is thus to move the ϕMax values of the concepts
C, AB, BC, and ABC to the “null” concept puc. The distance between two concepts in concept space
is measured by the EMD distance of their cause-effect repertoires. The distance from concept C to
the “null” concept, for example (Fig. 4B), is the sum of the standard EMD distance of the two cause
repertoires and the two effect repertoires of C and the puc. To obtain ΦMax for this example, the distances
of concepts C, AB, BC, and ABC to the “null” concept are multiplied by the ϕMax value of each concept
and then summed up. In the general case, the optimal way to redistribute ϕMax form C to CMIP

→ must
be found using an optimization algorithm [5,6].

Custom-made MATLAB software was used for all calculations. The program to calculate the complex
of a small system of logic gates and its constellation of concepts is available under: [7]. EMD calculations
were performed using the open source fast MATLAB code of Pele and Werman [5,6].
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Figure 4. Extended earth mover’s distance EMD in concept space. The extended EMD
measures the distance between the concept constellation C of the whole set ABC and the constellation
CMIP
→ of the unidirectionally partitioned set (see Fig. 12, main text). (A) The concepts of C and CMIP

→
from the candidate set ABC are plotted as distributions. The height of the bars corresponds to the
amount of ϕMax of each concept. As for probability distributions, the EMD quantifies the minimal cost
of transforming one ϕMax-distribution into the other. Since

∑
(ϕMax) of C is typically larger than that

of CMIP
→ , any residual ϕMax is assigned to the “null” concept, the unconstrained cause-effect repertoire

puc, in CMIP
→ . The distance between concepts in concept space is the EMD distance of their cause-effect

repertoires. In the set ABC, the concepts of mechanisms A and B are not affected by the partition
(A = A′ and B = B′). Therefore, the distance between A and A′ and B and B′ is 0. All other concepts
are destroyed by the partition. Their ϕMax values are thus transported to puc. (B) The distance from
concept C, for example, to puc is the sum of the EMD values obtained by comparing the
cause-repertoire of C with puc,p and its effect repertoire with puc,f . (C) The distance between concept C
and puc is then multiplied by the difference in ϕMax, where ϕ(puc) = 0 in C. Adding these values for all
concepts, one obtains the ΦMax value of set ABC. In the general case, calculating EMD involves
optimizing the overall distance between all concepts.
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