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A Supplementary Discussion

Each of the beta, binomial, and Gaussian mixture models available in SciClone has advantages. The
binomial is theoretically most attractive for analysis of variant allele count data, while the (multivariate)
Gaussian distribution can capture correlation between samples. However, we have found the beta mixture
model to work best in practice. It is attractive in describing a non-negative domain, unlike the Gaussian
distribution, while offering more degrees of freedom than the binomial distribution. The latter concern
could be addressed by a beta-binomial (compound) distribution. However, like the binomial distribution,
the beta-binomial distribution can not describe non-count-based events (e.g., cellular fractions harboring
a CNA). Further, the beta-binomial distribution has no conjugate prior distribution and, hence, is not
immediately amenable to the variational Bayesian approach. A similar situation occurs with the beta
mixture model and was overcome by Ma and Leijon [1] through a non-linear approximation to an ex-
pectation value that yielded an approximate posterior distribution. Though a similar approach may be
suitable for the beta-binomial distribution, we have not found it warranted at this time.

B Integration of copy number information

In Fig. S1, we show how copy number information can be used in our framework as an additional signal
to help identify subclonal populations. In this example, we used THetA [2] to ascertain clonal and
subclonal copy number events in the multiple myeloma sample. THetA estimates both the percentage of
tumor cells that contain the copy number-altered regions in this sample and the normal admixture. This
allowed us to calculate the VAF that would be observed for single nucleotide variants in these regions.
We then added these VAFs to the SNV list and clustered as described in the main text. Fig. S1 shows
the copy number-derived points highlighted in yellow (at an arbitrary coverage). Due to computational
constraints, we applied THetA to a limited number of representative regions containing copy number
neutral, triploid, and subclonally deleted regions.
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C Bayesian variational inference

We briefly review the general approach to Bayesian variational inference, in which a probabilistic model
describes the joint distribution p(X,Φ) and we wish to infer approximations q(Φ) of the posterior dis-
tribution p(Φ|X). The interested reader is referred to the wealth of prior literature [3–7] providing the
motivation for and derivation of this theory. In this section, Φ is the set of all latent variables and
parameters, including Z and π, which were specified explicitly and independently of Φ in Materials and
Methods. The model evidence p(X) may be decomposed as

ln p(X) = L(q) +DKL(q||p)

using the Kullback-Leibler (KL) divergence

DKL(q||p) ≡

∫
q(Φ) ln

[
q(Φ)

p(Φ|X)

]
dΦ

and

L(q) ≡

∫
q(Φ) ln

[
p(X,Φ)

q(Φ)

]
dΦ , (S1)

and where any integrations over discrete variables should be interpreted as summations. This may be
verified by substituting the product rule of probability ln p(X,Φ) = ln p(Φ|X) + ln p(X) into L(q) and
noting that q(Φ) is a normalized distribution [3]. The Kullback-Leibler divergence is always non-negative,
DKL(q||p) ≥ 0, with equality if and only if q(Φ) = p(Φ|X). Thus, L(q) ≤ ln p(X) and is referred to as
the lower bound. Since the lower bound involves the joint distribution p(X,Φ), we can avoid the more
difficult task of directly considering the evidence p(X): our goal of finding a good approximate q(Φ) [i.e.,
with minimal Kullback-Leibler divergence from p(Φ|X)] is equivalent to maximizing the functional L(q)
with respect to q(Φ).

To make this task tractable, we limit the domain of our maximization to a restricted family of
distributions q(Φ). In particular, we consider factorizations

q(Φ) =
∏

i

qi(Φi) ≡
∏

i

qi (S2)

that effectively partition the parameters and latent variables into independent and non-overlapping sub-
sets Φi with Φ = ∪iΦi and with the short-hand notation qi ≡ qi(Φi). Though this imposed independence
is an approximation, no further restrictions are made on the form of the qi, which are determined by the
choice of prior distributions over Φ. Thus, the choice of factorization and prior are sufficient to define
q(Φ), as we will see in the derivations of the variational Bayesian binomial and Gaussian mixture models
below.

Our goal is to maximize the lower bound of Eq. (S1) with respect to the qi, subject to the factorized
form of Eq. (S2), which, substituting the latter into the form, may be written as

L(q) =

∫ ∏

i

qi



ln p(X,Φ)−
∑

j

ln qj



 dΦ . (S3)

In order to perform this variational optimization with respect to each of the qi, we begin by extracting
the qi-dependent contribution Li(q) to L(q)

Li(q) ∝

∫
qi



∫

ln p(X,Φ)
∏

j 6=i

qjdΦj


 dΦi −

∫
qi ln qidΦi

≡

∫
qi ln p̃i(X,Φ)dΦi −

∫
qi ln qidΦi , (S4)
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where we have defined the distribution p̃i(X,Φ) according to

ln p̃i(X,Φ) ≡ Ej 6=i [ln p(X,Φ)] + const

and Ej 6=i [·] denotes the expectation with respect to the distributions qj (j 6= i) comprising the approxi-
mate posterior distribution

Ej 6=i [ln p(X,Φ)] ≡

∫
ln p(X,Φ)

∏

j 6=i

qjdΦj .

Since the qi are normalized and independent, the cross term integrals,
∫
qi ln qj 6=idΦ =

∫
ln qj 6=idΦj , are

constant with respect to qi and do not appear in Eq. (S4). By noting that Eq. (S4) is the negative
Kullback-Leibler divergence DKL(qi||p̃i), we see that the q∗i that maximizes Li(q) is defined by

ln q∗i ∝ Ej 6=i [ln p(X,Φ)] . (S5)

The constant of proportionality is fixed by the requirement that the qi be normalized.
Eq. (S5) implicitly defines q∗i in terms of all other q∗j (j 6= i). Therefore, to determine the q∗i , we

initialize them and then iterate, replacing each in turn with the right-hand side of Eq. (S5) evaluated
using the current value of the other q∗j (j 6= i), until convergence. Convergence is guaranteed because

L(q) is of the form of a Kullback-Leibler divergence and hence is convex with respect to each of the qi [8].

D Variational Bayesian mixture of binomials

To directly model count data (rather than their derived ratios, the VAFs), we assume that a genomic
location with xvar sequencing reads supporting the variant allele and xref reads supporting the reference
allele and belonging to component k is described by a binomial distribution

Bin(xvar;xref , µk) ≡

(
xvar + xref

xvar

)
µxvar

k (1− µk)
xref

.

As with the beta mixture model, we assume that counts are independent across samples. Hence,
collecting the reads xvars and xrefs from sample s into the S-vectors xvar ≡ (xvar1 , xvar2 , . . . , xvarS ) and
xref ≡ (xref1 , xref2 , . . . , xrefS ), defining µk as the S-vector whose sth component is µks, and instantiating the
abstract notation χ ≡ xvar (while suppressing xref for notational convenience) and Φbin

k ≡ µk, the analog
of Eq. (1) is

p(χ|Φbin
k ) ≡ Bin(xvar;xref ,µk) ≡

S∏

s=1

Bin(xvars ;xrefs , µks) . (S6)

Extending the abstract notation across all components, Φbin ≡ µ̃ ≡ {µk}, we may write the analog of
Eq. (3)

p(χn|zn,Φ
bin) ≡ p(xvar

n |zn, µ̃) =

K∏

k=1

Bin(xvar
n ;xref

n ,µk)
znk , (S7)

describing the probability that the variant arises from the mixture. This may be combined with Eq. (2)
to give the complete-data likelihood

p(X,Z|π,Φbin) ≡ p(R ,Z|π, µ̃) =

N∏

n=1

K∏

k=1

[
πkBin(xvar

n ;xref
n ,µk)

]znk

, (S8)

where R ≡ {xvar
n }.
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D.1 Prior distributions

We begin our variational Bayesian treatment of the binomial mixture model by specifying prior distribu-
tions over the parameters π and µ̃. Here, convenient conjugate prior distributions exist, unlike the case
of the beta mixture model. As there, we choose a Dirichlet prior distribution D(π; c0) over the mixing
coefficients π, since it is conjugate to Eq. (2). Since the beta distribution is conjugate to the binomials
appearing in Eq. (S7), we define the prior distribution p(µ̃) over µ̃ as

p(µ̃) =
K∏

k=1

Beta(µk; a
0
k,b

0
k) ≡

K∏

k=1

S∏

s=1

Beta(µks; a
0
ks, b

0
ks) . (S9)

D.2 Approximate posterior distribution

In specifying the form of the approximate posterior distribution, q(Z,π, µ̃), we make the standard
assumption that the latent variables and parameters factorize:

q(Z,π, µ̃) = q(Z)q(π, µ̃) . (S10)

We proceed to define the concrete realizations of q(π, µ̃) and q(Z) by applying Eq. (S5) to the joint
distribution

p(R ,Z,π, µ̃) = p(R ,Z|π, µ̃)p(π)p(µ̃) , (S11)

whose logarithm may be expressed via Eqns. (5), (S8), and (S9) as

lnp(R ,Z,π, µ̃) = ln p(R ,Z|π, µ̃) + ln p(π) + ln p(µ̃)

=
N∑

n=1

K∑

k=1

znk

{
lnπk +

S∑

s=1

[
ln

(
xvarns + xrefns

xvarns

)
+ xvarns lnµks + xrefns ln (1− µk)

]}
(S12)

+ lnC(c0) +
K∑

k=1

(
c0k − 1

)
lnπk

+

K∑

k=1

S∑

s=1

{
ln Γ

(
a0ks + b0ks

)
− ln Γ(a0ks)− ln Γ(b0ks) +

(
a0ks − 1

)
lnµks +

(
b0ks − 1

)
ln (1− µks)

}
.

We determine q(Z) via Eq. (S5) as

ln q(Z) = Eπ,µ̃[ln p(R ,Z,π, µ̃)] + const .

Taking the expectation value of the Z-dependent terms on the right-hand side of Eq. (S12) gives

ln q(Z) ∝

N∑

n=1

K∑

k=1

znk

(
Eπ[lnπk] +

S∑

s=1

{
ln

(
xvarns + xrefns

xvarns

)
+ xvarns Eµ̃[lnµks] + xrefnsEµ̃[ln (1− µk)]

})

≡

N∑

n=1

K∑

k=1

znk ln ρnk ,

with

ln ρnk ≡ Eπ[lnπk] +

S∑

s=1

{
ln

(
xvarns + xrefns

xvarns

)
+ xvarns Eµ̃[lnµks] + xrefnsEµ̃[ln (1− µk)]

}
. (S13)
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Exponentiating gives

q(Z) ∝

N∏

n=1

K∏

k=1

ρznk

nk ,

with the constant of proportionality fixed by the required normalization of the distribution over 1-of-K
variables as

q(Z) =
N∏

n=1

K∏

k=1

rznk

nk ,

with

rnk ≡
ρnk∑K
j=1 ρnj

. (S14)

Applying Eq. (S5) to determine q(π, µ̃) gives

ln q(π, µ̃) = EZ [ln p(R ,Z,π, µ̃)] + const

with the resulting expectation values of the π- and µ̃-dependent terms on the right-hand side of Eq.
(S12)

ln q(π, µ̃) ∝

N∑

n=1

K∑

k=1

EZ [znk]

{
lnπk +

S∑

s=1

[
xvarns lnµks + xrefns ln (1− µks)

]
}

(S15)

+
K∑

k=1

(
c0k − 1

)
lnπk +

K∑

k=1

S∑

s=1

{(
a0ks − 1

)
lnµks +

(
b0ks − 1

)
ln (1− µks)

}
.

This shows that π and µ̃ are decoupled, so that

q(π,µ) = q(π)

K∏

k=1

q(µk) .

Collecting the π-dependent terms accordingly gives

ln q(π) ∝

K∑

k=1

{
(
c0k − 1

)
+

N∑

n=1

EZ [znk]

}
lnπk

≡
K∑

k=1

(ck − 1) lnπk ,

where

ck ≡ c0k +Nk (S16)

Nk ≡
N∑

n=1

EZ [znk] .

Thus, as expected from the choice of a conjugate prior, q(π) has the form of a Dirichlet distribution,
from which we can infer its normalization:

q(π) = D(π; c) .
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Focusing in turn on the µ̃-dependent terms of Eq. (S15) gives

ln q(µks) ∝

{
(
a0ks − 1

)
+

N∑

n=1

EZ [znk]x
var
ns

}
lnµks +

{
(
b0ks − 1

)
+

N∑

n=1

EZ [znk]x
ref
ns

}
ln (1− µks)

≡ aks lnµks + bks ln (1− µks) ,

where

aks ≡
(
a0ks − 1

)
+Nkx̄

var
ks (S17)

bks ≡
(
b0ks − 1

)
+Nkx̄

ref
ks (S18)

x̄varks ≡
1

Nk

N∑

n=1

EZ [znk]x
var
ns

x̄refks ≡
1

Nk

N∑

n=1

EZ [znk]x
ref
ns .

Again, as anticipated from our choice of conjugate prior, ln q(µks) has the form of a beta distribution,
from which we may infer its normalization constant:

q(µks) = Beta (µks; aks, bks) . (S19)

Abstractly,

q(Φbin) ≡
K∏

k=1

S∏

s=1

q(µks) =
K∏

k=1

S∏

s=1

Beta(µks; aks, bks) . (S20)

Having determined the form and parameterization of the approximate posterior distribution, expec-
tation values in the above equations may be evaluated using standard properties of the corresponding
distributions [3]

EZ [znk] = rnk (S21a)

Eπ[lnπk] = ψ (ck)− ψ




K∑

j=1

cj


 (S21b)

Eµ̃[lnµks] = ψ (aks)− ψ (aks + bks) (S21c)

Eµ̃[ln (1− µks)] = ψ (bks)− ψ (aks + bks) , (S21d)

where the latter two expectation values over the beta distribution are special cases of the preceding
expectation value over the Dirichlet distribution and where ψ(·) is the digamma function

ψ(a) ≡
d

da
ln Γ(a) .

D.3 Variational lower bound

The variational lower bound may be calculated by substituting Eqns. (S10) and (S11) into Eq. (S1) as

L(q) =
∑

Z

∫
q(Z,π, µ̃) ln

{
p(R ,Z,π, µ̃)

q(Z,π, µ̃)

}
dπdµ̃

= EZ,π,µ̃[ln p(R ,Z,π, µ̃)]− EZ,π,µ̃[ln q(Z,π, µ̃)]

= EZ,µ̃[ln p(R |Z, µ̃)] + EZ,π[ln p(Z|π)] + Eπ[ln p(π)] + Eµ̃[ln p(µ̃)] (S22)

− EZ [ln q(Z)]− Eπ[ln q(π)]− Eµ̃[ln q(µ̃)]
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with

EZ,µ̃[ln p(R |Z, µ̃)] =

N∑

n=1

K∑

k=1

EZ [znk]

{
S∑

s=1

ln

(
xvarns + xrefns

xvarns

)
+ xvarns Eµ̃[lnµks] + xrefnsEµ̃[ln (1− µks)]

}

EZ,π[ln p(Z|π)] =

N∑

n=1

K∑

k=1

EZ [znk]Eπ[ln πk]

Eπ[ln p(π)] = lnC(c0) +
K∑

k=1

(
c0k − 1

)
Eπ[lnπk]

Eµ̃[ln p(µ̃)] =
K∑

k=1

S∑

s=1

{
ln Γ

(
a0ks + b0ks

)
− ln Γ

(
a0ks
)
− ln Γ

(
b0ks
)

+
(
a0ks − 1

)
Eµ̃[lnµks] +

(
b0ks − 1

)
Eµ̃[ln (1− µks)]

}

EZ [ln q(Z)] =
N∑

n=1

K∑

k=1

EZ [znk] ln rnk

Eπ[ln q(π)] = lnC(c) +

K∑

k=1

(ck − 1)Eπ[lnπk]

Eµ̃[ln q(µ̃)] =

K∑

k=1

S∑

s=1

{ln Γ (aks + bks)− ln Γ (aks)− ln Γ (bks)

+ (aks − 1)Eµ̃[lnµks] + (bks − 1)Eµ̃[ln (1− µks)]
}
.

Since the lower bound is guaranteed not to decrease across iterations, we detect convergence of the
optimization when the difference in the lower bound between consecutive iterations is small (less than
10−4). Ensuring that it does not decrease is a check on the correctness of the implementation.

D.4 Parameter and prior distribution initialization

We assign the hyperparameters a0ks = b0ks = 1 ∀k, which gives a flat prior distribution over the µks. As
with the beta mixture model, we choose c0k = 0.001 for all k.

Also as in the beta mixture model case, we initialize the rnk according to the hard assignments
computed by k-means. Initial values of the parameters ck, aks, and bks are then computed by the
update Eqns. (S16), (S17), and (S18). We then iterate the calculation of the expectation values [Eq.
(S21)] and of the responsibilities [Eqns. (S13) and (S14)] via the variational E step with parameter
updates [Eqns. (S16), (S17), and (S18)] via the M step until convergence of the lower bound [Eq. (S22)].

D.5 Posterior predictive density

Substituting Eqns. (S6) and (S20) into Eq. (8) defines the posterior predictive density

p(χ̂|X) ≈

K∑

k=1

ck
ĉ

S∏

s=1

∫
Bin(x̂vars ; x̂refs , µks)Beta(µks; aks, bks)dµks

for the binomial mixture model. Recalling that the above compound distribution is a beta-binomial,

∫
Bin(x; η, µ)Beta(µ; a, b)dµ =

(
x+ η

x

)
B(x+ a, η + b)

B(a, b)
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where B(·, ·) is the beta function

B(a, b) ≡
Γ(a)Γ(b)

Γ(a+ b)
,

we can derive the final result

p(χ̂|X) ≈

K∑

k=1

ck
ĉ

S∏

s=1

(
x̂vars + x̂refs

x̂vars

)
B(x̂vars + aks, x̂

ref
s + bks)

B(aks, bks)
.

D.6 Error bars on cluster VAFs

Statistics and Bayesian confidence intervals on cluster centers may be calculated directly from the pos-
terior distribution q(µks) defined in Eq. (S19).

E Variational Bayesian mixture of Gaussians

A Gaussian mixture model assumes that the N VAFs fn from S samples are drawn from one of K
multivariate Gaussian distributions, each of which is described by an S-dimensional mean vector, µk,
and an S × S-dimensional precision (i.e., inverse covariance) matrix, Λk. As before, the K-dimensional
latent variable z indicates the Gaussian component that generated VAF f . Hence, collecting the Gaussian
parameters into aggregate parameters µ̃ ≡ {µk} and Λ̃ ≡ {Λk} and instantiating the abstract notation

χ ≡ f , ΦGauss ≡ {µ̃, Λ̃}, and ΦGauss
k ≡ {µk,Λk}, allows us to write the analogs to Eq. (1), i.e., the

conditional probability that VAF f arises from a particular Gaussian component k,

p(χ|ΦGauss
k ) ≡ p(f |µk,Λk) = N (f ;µk,Λk) (S23)

where

N (x;µ,Λ) = (2π)−
S

2 |Λ|
1
2 exp

[
−
1

2
(x− µ)TΛ(x− µ)

]

is the multivariate Gaussian distribution and the precision matrix Λ is symmetric and positive definite.
The analog of Eq. (3)

p(χn|zn,Φ
Gauss) ≡ p(fn|zn, µ̃, Λ̃) =

K∏

k=1

N (fn;µk,Λk)
znk , (S24)

may be combined with Eq. (2) to define the complete-data likelihood

p(X,Z|π,ΦGauss) ≡ p(F ,Z|π, µ̃, Λ̃) =

N∏

n=1

K∏

k=1

[
πkN (fn;µk,Λk)

]znk

. (S25)

Specification of a conjugate prior and application of the general variational Bayesian inference framework
(Section C) result in an approximate posterior distribution through steps completely analogous to those
for the binomial mixture model (Section D), though involving more sophisticated algebraic manipulations.
In what follows, we briefly summarize those results, which are fully derived in Ref. 3.
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E.1 Prior distributions

As in both the beta and binomial mixture models, we choose the Dirichlet conjugate prior distribution
of Eq. (5) over the mixing coefficients π. The remaining parameters are also governed by conjugate prior
distributions

p(µ̃, Λ̃) = p(µ̃|Λ̃)p(Λ̃)

p(µ̃|Λ̃) =

K∏

k=1

N (µk;m
0
k, β

0
kΛk) (S26a)

p(Λ̃) =
K∏

k=1

W(Λk;W
0
k, ν

0
k) , (S26b)

where

W(Λ|W, ν) = B(W, ν)|Λ|
ν−S−1

2 exp

[
−
1

2
tr
(
W−1Λ

)]

is the Wishart distribution,

B(W, ν) ≡ |W|−
ν

2

[
2

νS

2 π
S(S−1)

4

S∏

s=1

Γ

(
ν + 1− s

2

)]−1

,

and the S × S matrices Λ and W are symmetric and positive definite. The current notation differs
slightly from and trivially generalizes Ref. 3, which chooses the hyperparameters to be identical across
clusters, i.e., c0k = α0, m

0
k = m0, β

0
k = β0 = 0, W0

k = W0, and ν
0
k = ν0 ∀k.

E.2 Approximate posterior distribution

As before, we make the assumption that the latent variables and parameters factorize. This and the form
of the prior distributions are sufficient to induce the further factorizations

q(Z,π, µ̃, Λ̃) ≡ q(Z)q(π, µ̃, Λ̃) = q(Z)q(π)q(µ̃, Λ̃) = q(Z)q(π)
K∏

k=1

q(µk,Λk) , (S27)

involving the distributions

q(π) = D(π; c)

q(µk,Λk) = q(µk|Λk)q(Λk)

q(µk|Λk) = N (µk;mk, βkΛk)

q(Λk) = W(Λk;Wk, νk) .

These result from applying Eq. (S5) to the joint distribution

p(F ,Z,π, µ̃, Λ̃) = p(F |Z, µ̃, Λ̃)p(Z|π)p(π)p(µ̃, Λ̃) . (S28)

Abstractly, we have

q(ΦGauss) ≡ q(µ̃, Λ̃) = q(µ̃|Λ̃)q(Λ̃) =

K∏

k=1

N (µk;mk, βkΛk)W(Λk;Wk, νk) . (S29)
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The values of the parameters c, βk, mk, Wk, and νk are provided by the update Eqns. 10.58 and 10.60-
10.63, respectively, in Ref. 3, subject to the change in naming convention between this work and that
mentioned previously. As usual, the rnk are given by Eq. (S14), though with ln ρnk defined as

ln ρnk = Eπ [lnπk] +
1

2
E
Λ̃
[ln |Λk|]−

S

2
ln(2π)−

1

2
E
µ̃,Λ̃

[
(fn − µk)

T
Λk (fn − µk)

]
.

The required expectation values are provided in Eqns. 10.64-10.66 of Ref. 3.

E.3 Variational lower bound

The variational lower bound may be calculated by substituting Eqns. (S27) and (S28) into Eq. (S1) as

L(q) =
∑

Z

∫
q(Z,π, µ̃, Λ̃) ln

{
p(F ,Z,π, µ̃, Λ̃)

q(Z,π, µ̃, Λ̃)

}
dπdµ̃dΛ̃

= EZ,µ̃,Λ̃[ln p(F |Z, µ̃, Λ̃)] + EZ,π[ln p(Z|π)] + Eπ[ln p(π)] + E
µ̃,Λ̃[ln p(µ̃, Λ̃)]

− EZ [ln q(Z)]− Eπ[ln q(π)]− E
µ̃,Λ̃[ln q(µ̃, Λ̃)] ,

where the above expectation values are provided in Eqns. 10.71-10.77 of Ref. 3.

E.4 Parameter and prior distribution initialization

As with the beta and binomial mixture models, we choose c0k = 0.001 for all k. To avoid biasing any
particular cluster center, we initialize m0

k = 0. The remaining hyperparameters, ν0k, W
0
k, and β0

k are
chosen so that (1) the prior distribution over the precision Λk is broad, (2) the “effective” precision,
β0
kE[Λk], governing the m0

k in the Gaussian distribution gives a characteristic standard deviation over
the m0

k, and (3) the β0
k are near one so that the precision Λk is closely coupled to the effective precision,

β0
kE[Λk], and so are constrained to intermediate values that will be optimal for the distribution over

m0
k. To ensure (1), we choose W0

k to diagonal with “large” (i.e., 104) off-diagonal elements. From
experience, a typical cluster standard deviation is ∼0.03, which implies an effective precision of 103.
Therefore, to ensure (2) we set β0

kE[Λk] = β0
kν

0
kW

0
k = 103I or β0

k = (10ν0k)
−1, with I the identity matrix.

Finally, to satisfy (3) we set ν0k as small as allowed by the constraint that it be greater than S − 1, i.e.,

ν0k = max(1, S − 1 + δ̃) for δ̃ ≡ 10−5.
Also as in the beta and binomial mixture model cases, we initialize the rnk according to the hard

assignments computed by k-means. We then initialize mk to the centers returned by k-means and
initialize c, Wk, νk, and βk to their respective hyperparameter values.

E.5 Posterior predictive density

Substituting Eqns. (S23) and (S29) into Eq. (8) defines the posterior predictive density for the Gaussian
mixture model

p(χ̂|X) ≈

K∑

k=1

ck
ĉ

St(f̂ ;mk,Lk, νk + 1− S) , (S30)

in terms of the S-dimensional Student t-distribution

St(f ;µ,Λ, ν) =
Γ(ν/2 + S/2)

Γ(ν/2)

|Λ|1/2

(νπ)
S/2

[
1 +

(f − µ)
T
Λ (f − µ)

ν

]−ν/2−S/2
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and the precision

Lk =
(νk + 1− S)βk

(1 + βk)
Wk . (S31)

E.6 Error bars on cluster VAFs

The standard deviation of variants in a cluster may be calculated from the posterior predictive density
[Eq. (S30)], a Student t-distribution. Using the standard property that the covariance matrix of a
Student t-distribution St(f ;µ,Λ, ν) is Cov[f ] = ν

ν−2Λ
−1 (for ν > 2), we may take the diagonal elements

of (νk+1−S)
(νk−1−S)L

−1
k as the standard deviation of Eq. (S30).

The standard error of the mean may be calculated from

q(µk) =

∫
q(µk,Λk)dΛk =

∫
N (µk;mk, βkΛk)W(Λk;Wk, νk)dΛk .

This integral may be analytically evaluated [9] as a Student t-distribution,

q(µk) = St(µk;mk, (νk + 1− S)βkWk, νk + 1− S) .

Similar to the above, we make take the diagonal elements of the resulting covariance matrix, Cov[µk] =

[βk (νk − S − 1)]
−1

W−1
k , as the standard error of the mean.
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