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S2 KKT conditions1

In this appendix, we will apply the Karush-Kuhn-Tucker optimization conditions to the probabil-2

ity model (10) derived in section S1. The probability of detecting a disease which can infect n3

populations is given by4

P

(
n⋃
i=1

Di(t)

)
= 1− e−

∑n
i=1 siIi(t)/Ni

for all n ≥ 1 where si is the number of samples taken from population i, 1 ≤ i ≤ n, and Di is the5

set of events such that the disease is detected from a sample of size si from population i.6

To maximize the probability of detecting at least one infected individual, we must minimize7

f(s1, . . . sn) := −
n∑
i=1

si
Ii(t)

Ni
. (S3)

Though completely unrealistic, the above quantity would be minimized if we take si, the number8

of sampled individuals, arbitrarily large. To incorporate a modicum of realism, we assume that we9

must sample under a given cost constraint. We let Cmax be the budget for a given sampling scheme10

s = (s1, . . . sn) and let C(s1, . . . sn) be the cost of sampling si individuals from population i. If we11

assume that we spend our entire budget, we have introduced the cost constraint C(s1, . . . sn) = Cmax.12

We additionally require that all sample sizes si are nonnegative.13

To minimize the objective function (S3) under the constraints14

h(s) := C(s1, . . . sn)− Cmax = 0 (S4)

g(s) :=

−s1

...
−sn

 ≤ 0 (S5)

where s ∈ Rn, we apply the Karush-Kuhn-Tucker conditions. If s∗ ∈ Rn is a local minimum of the15

objective function (S3), then there exist constants µi, 1 ≤ i ≤ n and λ such that16

∇f(s∗) +

n∑
i=1

µi∇gi(s∗) + λ∇h(s∗) = 0 (S6)

µi ≥ 0, 1 ≤ i ≤ n (S7)

µigi(s
∗) = 0, 1 ≤ i ≤ n (S8)

where f, g and h are defined in (S3), (S4) and (S5).17

KKT Conditions for a linear objective function18

Since our objective function f(s) and primal feasibility condition (S5) are linear, the stationarity19

equation (S6) is relatively simple:20

∇f(s∗) +

n∑
i=1

µi∇gi(s∗) + λ∇h(s∗) = 0
− I1(t)

N1

...

− In(t)
Nn

+

−µ1

...
−µn

+ λ

Cs1(s∗)
...

Csn(s∗)

 = 0
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where Csi(s
∗) = ∂C

∂si
(s∗). If we let Pi(t) = Ii(t)

Ni
be the proportion of individuals in population i that1

are infected at time t, the above expression becomes2

−P1(t)
...

−Pn(t)

+

−µ1

...
−µn

+ λ

Cs1(s∗)
...

Csn(s∗)

 = 0. (S9)

The dual feasibility (S7) and complementary slackness (S8) conditions become3

µi ≥ 0, 1 ≤ i ≤ n (S10)

µis
∗
i = 0, 1 ≤ i ≤ n. (S11)

In the following analysis, we assume that Csi(s) > 0 for each i and all nonnegative s, that is, we4

assume that increasing the number of samples increases the cost of sampling. To find candidates for5

the local minimizer s∗, we solve (S9) in four cases. A summary of these four cases is given in Table6

1 in Text S2.7

Table 1 in Text S2. Summary of Section S2 with all possible cases listed.

λ µi Pi(t) s∗

Case 1 λ = 0 µi = 0, 1 ≤ i ≤ n Pi(t) = 0, 1 ≤ i ≤ n s∗ ∈ Rn+
Case 2 λ 6= 0 µi = 0, 1 ≤ i ≤ n Pi(t) > 0, 1 ≤ i ≤ n s∗ ∈ Rn+

Pi(t)
Csi

(s∗) = λ

1 ≤ i ≤ n
Case 3 λ 6= 0 µi 6= 0, 1 ≤ i ≤ n Pi(t) ≥ 0, 1 ≤ i ≤ n s∗ = ~0
Case 4 λ 6= 0 µi = 0, 1 ≤ i ≤ k Pi(t) > 0, 1 ≤ i ≤ k s∗i ≥ 0, 1 ≤ i ≤ k

Pi(t)
Csi

(s∗) = λ µj 6= 0, k + 1 ≤ j ≤ n Pi(t)
Csi

(s∗) >
Pj(t)
Csj

(s∗) s∗j = 0, k + 1 ≤ j ≤ n
1 ≤ i ≤ k k + 1 ≤ j ≤ n

Case 1: λ = 0.8

If λ = 0, then (S9) becomes9

−P1(t)
...

−Pn(t)

+

−µ1

...
−µn

 = 0

−P1(t)
...

−Pn(t)

 =

µ1

...
µn


By (S10) and since Pi(t) ≥ 0, we have that λ = 0 if and only if Pi(t) = 0 for all 1 ≤ i ≤ n. (Indeed,10

suppose that Pi(t) > 0 for some 1 ≤ i ≤ n. Then µi = −Pi(t) < 0, a contradiction to (S10).) Then11

it must also be true that µi = 0 for all 1 ≤ i ≤ n. Then (S11) is satisfied for any choice of s∗i . This12

implies that if the disease is not present, any sampling scheme will give the same (zero) probability13

of detection.14

Case 2: λ 6= 0, µi = 0, 1 ≤ i ≤ n.15

If µi = 0, 1 ≤ i ≤ n, then (S9) becomes16
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λ

Cs1(s∗)
...

Csn(s∗)

 =

P1(t)
...

Pn(t)

 .

Since Csi(s) > 0 for all nonnegative s and all i,1

λ =
Pi(t)

Csi(s
∗)

for all i. Then2

Pi(t)

Csi(s
∗)

= λ =
Pj(t)

Csj (s∗)
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. (S12)

Since µi = 0, 1 ≤ i ≤ n, (S11) holds for any choice of s∗i , 1 ≤ i ≤ n. Note that λ 6= 0 then implies3

that Pi(t) > 0 for all i. Thus, the above analysis implies that it is possible that the optimal sampling4

scheme is to sample all of the populations if and only if Pi > 0 for all 1 ≤ i ≤ n. Indeed, otherwise5

(S12) implies that 0 = λ = Pi for all 1 ≤ i ≤ n.6

Case 3: λ 6= 0, µi 6= 0, 1 ≤ i ≤ n.7

By (S11), if µi 6= 0, then s∗i = 0. Since µi 6= 0 for all 1 ≤ i ≤ n, this implies that s∗ = ~0. Since8

s∗ must satisfy (S4), this corresponds to the case where the total overhead cost equals the budget:9

C(0) = Cmax.10

Case 4: λ 6= 0, µi = 0, 1 ≤ i ≤ k, µj 6= 0, k + 1 ≤ i ≤ n for some integer k ∈ (1, n).
Fix some integer k ∈ (1, n). Suppose that µi = 0 for all 1 ≤ i ≤ k and µj 6= 0 for all k + 1 ≤ i ≤ n.
Then, as in Case 3, (S11) implies that s∗j = 0 for k + 1 ≤ j ≤ n and (S9) becomes

−P1(t)
...

−Pk(t)
−Pk+1(t)

...
−Pn(t)


+



0
...
0

−µk+1

...
−µn


+ λ



Cs1(s∗)
...

Csk(s∗)
Csk+1

(s∗)
...

Csn(s∗)


= 0. (S13)

As in Case 2, the first k equations above imply that11

Pi(t)

Csi(s
∗)

= λ =
Pj(t)

Csj (s∗)
for all 1 ≤ i ≤ k, 1 ≤ j ≤ k (S14)

since Csi(s) > 0 for all nonnegative s. Then, since λ > 0,12

Pi(t) > 0 for all 1 ≤ i ≤ k.

Furthermore, the last n− k equations of (S13) together with (S14) imply that13

−Pj(t)− µj + λCsj (s∗) = 0, k + 1 ≤ j ≤ n

−Pj(t)− µj +
Pi(t)

Csi(s
∗)
Csj (s∗) = 0, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n

−Pj(t) +
Pi(t)

Csi(s
∗)
Csj (s∗) = µj > 0, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n

⇐⇒ Pi(t)

Csi(s
∗)
>

Pj(t)

Csj (s∗)
, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n (S15)
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by (S10) since µj 6= 0 for k + 1 ≤ j ≤ n. Thus, the optimal sampling scheme may be to sample the1

first k populations if and only if (S15) holds.2


