S2 KKT conditions

In this appendix, we will apply the Karush-Kuhn-Tucker optimization conditions to the probability model (10) derived in section S1. The probability of detecting a disease which can infect n populations is given by

$$
P\left(\bigcup_{i=1}^{n} D_{i}(t)\right)=1-e^{-\sum_{i=1}^{n} s_{i} I_{i}(t) / N_{i}}
$$

for all $n \geq 1$ where s_{i} is the number of samples taken from population $i, 1 \leq i \leq n$, and D_{i} is the set of events such that the disease is detected from a sample of size s_{i} from population i.

To maximize the probability of detecting at least one infected individual, we must minimize

$$
\begin{equation*}
f\left(s_{1}, \ldots s_{n}\right):=-\sum_{i=1}^{n} s_{i} \frac{I_{i}(t)}{N_{i}} . \tag{S3}
\end{equation*}
$$

Though completely unrealistic, the above quantity would be minimized if we take s_{i}, the number of sampled individuals, arbitrarily large. To incorporate a modicum of realism, we assume that we must sample under a given cost constraint. We let $C_{\max }$ be the budget for a given sampling scheme $s=\left(s_{1}, \ldots s_{n}\right)$ and let $C\left(s_{1}, \ldots s_{n}\right)$ be the cost of sampling s_{i} individuals from population i. If we assume that we spend our entire budget, we have introduced the cost constraint $C\left(s_{1}, \ldots s_{n}\right)=C_{\text {max }}$. We additionally require that all sample sizes s_{i} are nonnegative.

To minimize the objective function (S3) under the constraints

$$
\begin{array}{r}
h(s):=C\left(s_{1}, \ldots s_{n}\right)-C_{\max }=0 \\
g(s):=\left(\begin{array}{c}
-s_{1} \\
\vdots \\
-s_{n}
\end{array}\right) \leq 0 \tag{S5}
\end{array}
$$

where $s \in \mathbb{R}^{n}$, we apply the Karush-Kuhn-Tucker conditions. If $s^{*} \in \mathbb{R}^{n}$ is a local minimum of the objective function (S3), then there exist constants $\mu_{i}, 1 \leq i \leq n$ and λ such that

$$
\begin{align*}
\nabla f\left(s^{*}\right)+\sum_{i=1}^{n} \mu_{i} \nabla g_{i}\left(s^{*}\right)+\lambda \nabla h\left(s^{*}\right) & =0 \tag{S6}\\
\mu_{i} & \geq 0, \quad 1 \leq i \leq n \tag{S7}\\
\mu_{i} g_{i}\left(s^{*}\right) & =0, \quad 1 \leq i \leq n \tag{S8}
\end{align*}
$$

where f, g and h are defined in (S3), (S4) and (S5).

KKT Conditions for a linear objective function

Since our objective function $f(s)$ and primal feasibility condition (S5) are linear, the stationarity equation (S6) is relatively simple:

$$
\begin{gathered}
\nabla f\left(s^{*}\right)+\sum_{i=1}^{n} \mu_{i} \nabla g_{i}\left(s^{*}\right)+\lambda \nabla h\left(s^{*}\right)=0 \\
\left(\begin{array}{c}
-\frac{I_{1}(t)}{N_{1}} \\
\vdots \\
-\frac{I_{n}(t)}{N_{n}}
\end{array}\right)+\left(\begin{array}{c}
-\mu_{1} \\
\vdots \\
-\mu_{n}
\end{array}\right)+\lambda\left(\begin{array}{c}
C_{s_{1}}\left(s^{*}\right) \\
\vdots \\
C_{s_{n}}\left(s^{*}\right)
\end{array}\right)=0
\end{gathered}
$$

${ }_{1}$ where $C_{s_{i}}\left(s^{*}\right)=\frac{\partial C}{\partial s_{i}}\left(s^{*}\right)$. If we let $P_{i}(t)=\frac{I_{i}(t)}{N_{i}}$ be the proportion of individuals in population i that 2 are infected at time t, the above expression becomes

$$
\left(\begin{array}{c}
-P_{1}(t) \tag{S9}\\
\vdots \\
-P_{n}(t)
\end{array}\right)+\left(\begin{array}{c}
-\mu_{1} \\
\vdots \\
-\mu_{n}
\end{array}\right)+\lambda\left(\begin{array}{c}
C_{s_{1}}\left(s^{*}\right) \\
\vdots \\
C_{s_{n}}\left(s^{*}\right)
\end{array}\right)=0
$$

The dual feasibility (S7) and complementary slackness (S8) conditions become

$$
\begin{align*}
& \mu_{i} \geq 0, \quad 1 \leq i \leq n \tag{S10}\\
& \mu_{i} s_{i}^{*}=0, \quad 1 \leq i \leq n \tag{S11}
\end{align*}
$$

In the following analysis, we assume that $C_{s_{i}}(s)>0$ for each i and all nonnegative s, that is, we assume that increasing the number of samples increases the cost of sampling. To find candidates for the local minimizer s^{*}, we solve (S9) in four cases. A summary of these four cases is given in Table 1 in Text S2.

Table 1 in Text S2. Summary of Section S2 with all possible cases listed.

	λ	μ_{i}	$P_{i}(t)$	s^{*}
Case 1	$\lambda=0$	$\mu_{i}=0,1 \leq i \leq n$	$P_{i}(t)=0,1 \leq i \leq n$	$s^{*} \in \mathbb{R}_{+}^{n}$
Case 2	$\lambda \neq 0$	$\mu_{i}=0,1 \leq i \leq n$	$P_{i}(t)>0,1 \leq i \leq n$	$s^{*} \in \mathbb{R}_{+}^{n}$
	$\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}=\lambda$			
	$1 \leq i \leq n$			
Case 3	$\lambda \neq 0$	$\mu_{i} \neq 0,1 \leq i \leq n$	$P_{i}(t) \geq 0,1 \leq i \leq n$	$s^{*}=\overrightarrow{0}$
Case 4	$\lambda \neq 0$	$\mu_{i}=0,1 \leq i \leq k$	$P_{i}(t)>0,1 \leq i \leq k$	$s_{i}^{*} \geq 0,1 \leq i \leq k$
	$\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}=\lambda$	$\mu_{j} \neq 0, k+1 \leq j \leq n$	$\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}>\frac{P_{j}(t)}{C_{s_{j}}\left(s^{*}\right)}$	$s_{j}^{*}=0, k+1 \leq j \leq n$
	$1 \leq i \leq k$		$k+1 \leq j \leq n$	

Case 1: $\lambda=0$.
If $\lambda=0$, then (S9) becomes

$$
\begin{aligned}
\left(\begin{array}{c}
-P_{1}(t) \\
\vdots \\
-P_{n}(t)
\end{array}\right)+\left(\begin{array}{c}
-\mu_{1} \\
\vdots \\
-\mu_{n}
\end{array}\right) & =0 \\
\left(\begin{array}{c}
-P_{1}(t) \\
\vdots \\
-P_{n}(t)
\end{array}\right) & =\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right)
\end{aligned}
$$

By (S10) and since $P_{i}(t) \geq 0$, we have that $\lambda=0$ if and only if $P_{i}(t)=0$ for all $1 \leq i \leq n$. (Indeed, suppose that $P_{i}(t)>0$ for some $1 \leq i \leq n$. Then $\mu_{i}=-P_{i}(t)<0$, a contradiction to (S10).) Then it must also be true that $\mu_{i}=0$ for all $1 \leq i \leq n$. Then (S11) is satisfied for any choice of s_{i}^{*}. This implies that if the disease is not present, any sampling scheme will give the same (zero) probability of detection.
Case 2: $\lambda \neq 0, \mu_{i}=0,1 \leq i \leq n$.
If $\mu_{i}=0,1 \leq i \leq n$, then (S9) becomes

$$
\lambda\left(\begin{array}{c}
C_{s_{1}}\left(s^{*}\right) \\
\vdots \\
C_{s_{n}}\left(s^{*}\right)
\end{array}\right)=\left(\begin{array}{c}
P_{1}(t) \\
\vdots \\
P_{n}(t)
\end{array}\right)
$$

${ }_{1}$ Since $C_{s_{i}}(s)>0$ for all nonnegative s and all i,

$$
\lambda=\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}
$$

for all i. Then

$$
\begin{equation*}
\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}=\lambda=\frac{P_{j}(t)}{C_{s_{j}}\left(s^{*}\right)} \quad \text { for all } 1 \leq i \leq n, 1 \leq j \leq n \tag{S12}
\end{equation*}
$$

${ }_{3}$ Since $\mu_{i}=0,1 \leq i \leq n$, (S11) holds for any choice of $s_{i}^{*}, 1 \leq i \leq n$. Note that $\lambda \neq 0$ then implies 4 that $P_{i}(t)>0$ for all i. Thus, the above analysis implies that it is possible that the optimal sampling scheme is to sample all of the populations if and only if $P_{i}>0$ for all $1 \leq i \leq n$. Indeed, otherwise (S12) implies that $0=\lambda=P_{i}$ for all $1 \leq i \leq n$.
Case 3: $\lambda \neq 0, \mu_{i} \neq 0,1 \leq i \leq n$.
 s^{*} must satisfy (S4), this corresponds to the case where the total overhead cost equals the budget: $C(0)=C_{\text {max }}$.
Case 4: $\lambda \neq 0, \mu_{i}=0,1 \leq i \leq k, \mu_{j} \neq 0, k+1 \leq i \leq n$ for some integer $k \in(1, n)$.
Fix some integer $k \in(1, n)$. Suppose that $\mu_{i}=0$ for all $1 \leq i \leq k$ and $\mu_{j} \neq 0$ for all $k+1 \leq i \leq n$. Then, as in Case 3, (S11) implies that $s_{j}^{*}=0$ for $k+1 \leq j \leq n$ and (S9) becomes

$$
\left(\begin{array}{c}
-P_{1}(t) \tag{S13}\\
\vdots \\
-P_{k}(t) \\
-P_{k+1}(t) \\
\vdots \\
-P_{n}(t)
\end{array}\right)+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
-\mu_{k+1} \\
\vdots \\
-\mu_{n}
\end{array}\right)+\lambda\left(\begin{array}{c}
C_{s_{1}}\left(s^{*}\right) \\
\vdots \\
C_{s_{k}}\left(s^{*}\right) \\
C_{s_{k+1}}\left(s^{*}\right) \\
\vdots \\
C_{s_{n}}\left(s^{*}\right)
\end{array}\right)=0
$$

As in Case 2, the first k equations above imply that

$$
\begin{equation*}
\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}=\lambda=\frac{P_{j}(t)}{C_{s_{j}}\left(s^{*}\right)} \quad \text { for all } 1 \leq i \leq k, 1 \leq j \leq k \tag{S14}
\end{equation*}
$$

12
since $C_{s_{i}}(s)>0$ for all nonnegative s. Then, since $\lambda>0$,

$$
P_{i}(t)>0 \text { for all } 1 \leq i \leq k
$$

13 Furthermore, the last $n-k$ equations of (S13) together with (S14) imply that

$$
\begin{align*}
& -P_{j}(t)-\mu_{j}+\lambda C_{s_{j}}\left(s^{*}\right)=0, \quad k+1 \leq j \leq n \\
& -P_{j}(t)-\mu_{j}+\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)} C_{s_{j}}\left(s^{*}\right)=0, \quad 1 \leq i \leq k, k+1 \leq j \leq n \\
& -P_{j}(t)+\frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)} C_{s_{j}}\left(s^{*}\right)=\mu_{j}>0, \quad 1 \leq i \leq k, k+1 \leq j \leq n \\
& \Longleftrightarrow \quad \frac{P_{i}(t)}{C_{s_{i}}\left(s^{*}\right)}>\frac{P_{j}(t)}{C_{s_{j}}\left(s^{*}\right)}, 1 \leq i \leq k, k+1 \leq j \leq n \tag{S15}
\end{align*}
$$

${ }_{1}$ by (S10) since $\mu_{j} \neq 0$ for $k+1 \leq j \leq n$. Thus, the optimal sampling scheme may be to sample the 2 first k populations if and only if (S15) holds.

