² In this appendix, we will apply the Karush-Kuhn-Tucker optimization conditions to the probabil-

ity model (10) derived in section S1. The probability of detecting a disease which can infect npopulations is given by

$$P\left(\bigcup_{i=1}^{n} D_i(t)\right) = 1 - e^{-\sum_{i=1}^{n} s_i I_i(t)/N_i}$$

for all $n \ge 1$ where s_i is the number of samples taken from population $i, 1 \le i \le n$, and D_i is the set of events such that the disease is detected from a sample of size s_i from population i.

To maximize the probability of detecting at least one infected individual, we must minimize

$$f(s_1, \dots s_n) := -\sum_{i=1}^n s_i \frac{I_i(t)}{N_i}.$$
(S3)

⁸ Though completely unrealistic, the above quantity would be minimized if we take s_i , the number ⁹ of sampled individuals, arbitrarily large. To incorporate a modicum of realism, we assume that we ¹⁰ must sample under a given cost constraint. We let C_{\max} be the budget for a given sampling scheme ¹¹ $s = (s_1, \ldots s_n)$ and let $C(s_1, \ldots s_n)$ be the cost of sampling s_i individuals from population *i*. If we ¹² assume that we spend our entire budget, we have introduced the cost constraint $C(s_1, \ldots s_n) = C_{\max}$. ¹³ We additionally require that all sample sizes s_i are nonnegative. ¹⁴ To minimize the objective function (S2) under the constraints

¹⁴ To minimize the objective function (S3) under the constraints

$$h(s) := C(s_1, \dots s_n) - C_{\max} = 0$$
 (S4)

$$g(s) := \begin{pmatrix} -s_1 \\ \vdots \\ -s_n \end{pmatrix} \le 0 \tag{S5}$$

where $s \in \mathbb{R}^n$, we apply the Karush-Kuhn-Tucker conditions. If $s^* \in \mathbb{R}^n$ is a local minimum of the objective function (S3) then there exist constants μ_i , $1 \le i \le n$ and λ such that

b) objective function (55), then there exist constants
$$\mu_i$$
, $1 \leq i \leq n$ and λ such that

$$\nabla f(s^*) + \sum_{i=1}^n \mu_i \nabla g_i(s^*) + \lambda \nabla h(s^*) = 0$$
(S6)

 $\mu_i \ge 0, \ 1 \le i \le n \tag{S7}$

$$\mu_i g_i(s^*) = 0, \quad 1 \le i \le n \tag{S8}$$

where f, g and h are defined in (S3), (S4) and (S5).

¹⁸ KKT Conditions for a linear objective function

¹⁹ Since our objective function f(s) and primal feasibility condition (S5) are linear, the stationarity

²⁰ equation (S6) is relatively simple:

$$\nabla f(s^*) + \sum_{i=1}^n \mu_i \nabla g_i(s^*) + \lambda \nabla h(s^*) = 0$$

$$\begin{pmatrix} -\frac{I_1(t)}{N_1} \\ \vdots \\ -\frac{I_n(t)}{N_n} \end{pmatrix} + \begin{pmatrix} -\mu_1 \\ \vdots \\ -\mu_n \end{pmatrix} + \lambda \begin{pmatrix} C_{s_1}(s^*) \\ \vdots \\ C_{s_n}(s^*) \end{pmatrix} = 0$$

$$\begin{pmatrix} -P_1(t) \\ \vdots \\ -P_n(t) \end{pmatrix} + \begin{pmatrix} -\mu_1 \\ \vdots \\ -\mu_n \end{pmatrix} + \lambda \begin{pmatrix} C_{s_1}(s^*) \\ \vdots \\ C_{s_n}(s^*) \end{pmatrix} = 0.$$
(S9)

³ The dual feasibility (S7) and complementary slackness (S8) conditions become

$$\mu_i \ge 0, \ 1 \le i \le n \tag{S10}$$

$$\mu_i s_i^* = 0, \ 1 \le i \le n.$$
(S11)

⁴ In the following analysis, we assume that $C_{s_i}(s) > 0$ for each i and all nonnegative s, that is, we

⁵ assume that increasing the number of samples increases the cost of sampling. To find candidates for

 $_{6}$ the local minimizer s^{*} , we solve (S9) in four cases. A summary of these four cases is given in Table

 $_{7}$ 1 in Text S2.

Table 1 in Text S2. Summary of Section S2 with all possible cases listed.

	λ	μ_i	$P_i(t)$	s^*
Case 1	$\lambda = 0$	$\mu_i = 0, \ 1 \le i \le n$	$P_i(t) = 0, \ 1 \le i \le n$	$s^* \in \mathbb{R}^n_+$
Case 2	$\lambda \neq 0$	$\mu_i = 0, \ 1 \le i \le n$	$P_i(t) > 0, \ 1 \le i \le n$	$s^* \in \mathbb{R}^n_+$
	$\frac{P_i(t)}{C_{s_i}(s^*)} = \lambda$			
	$1 \le i \le n$			
Case 3	$\lambda \neq 0$	$\mu_i \neq 0, 1 \le i \le n$	$P_i(t) \ge 0, \ 1 \le i \le n$	$s^* = \vec{0}$
Case 4	$\lambda \neq 0$	$\mu_i = 0, 1 \le i \le k$	$P_i(t) > 0, \ 1 \le i \le k$	$s_i^* \ge 0, \ 1 \le i \le k$
	$\frac{P_i(t)}{C_{s_i}(s^*)} = \lambda$	$\mu_j \neq 0, k+1 \le j \le n$	$\frac{P_i(t)}{C_{s_i}(s^*)} > \frac{P_j(t)}{C_{s_j}(s^*)}$	$s_j^* = 0, k+1 \le j \le n$
	$1 \le i \le k$		$k+1 \leq j \leq n$	

* Case 1: $\lambda = 0$.

9 If $\lambda = 0$, then (S9) becomes

$$\begin{pmatrix} -P_1(t) \\ \vdots \\ -P_n(t) \end{pmatrix} + \begin{pmatrix} -\mu_1 \\ \vdots \\ -\mu_n \end{pmatrix} = 0$$
$$\begin{pmatrix} -P_1(t) \\ \vdots \\ -P_n(t) \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$$

¹⁰ By (S10) and since $P_i(t) \ge 0$, we have that $\lambda = 0$ if and only if $P_i(t) = 0$ for all $1 \le i \le n$. (Indeed,

suppose that $P_i(t) > 0$ for some $1 \le i \le n$. Then $\mu_i = -P_i(t) < 0$, a contradiction to (S10).) Then

it must also be true that $\mu_i = 0$ for all $1 \le i \le n$. Then (S11) is satisfied for any choice of s_i^* . This

¹³ implies that if the disease is not present, any sampling scheme will give the same (zero) probability

14 of detection.

15 Case 2: $\lambda \neq 0, \, \mu_i = 0, \, 1 \leq i \leq n.$

¹⁶ If $\mu_i = 0, 1 \le i \le n$, then (S9) becomes

$$\lambda \begin{pmatrix} C_{s_1}(s^*) \\ \vdots \\ C_{s_n}(s^*) \end{pmatrix} = \begin{pmatrix} P_1(t) \\ \vdots \\ P_n(t) \end{pmatrix}.$$

¹ Since $C_{s_i}(s) > 0$ for all nonnegative s and all i,

$$\lambda = \frac{P_i(t)}{C_{s_i}(s^*)}$$

 $_{2}$ for all *i*. Then

$$\frac{P_i(t)}{C_{s_i}(s^*)} = \lambda = \frac{P_j(t)}{C_{s_j}(s^*)} \quad \text{for all } 1 \le i \le n, 1 \le j \le n.$$
(S12)

- Since $\mu_i = 0, 1 \le i \le n$, (S11) holds for any choice of $s_i^*, 1 \le i \le n$. Note that $\lambda \ne 0$ then implies
- that $P_i(t) > 0$ for all *i*. Thus, the above analysis implies that it is possible that the optimal sampling
- scheme is to sample all of the populations if and only if $P_i > 0$ for all $1 \le i \le n$. Indeed, otherwise
- 6 (S12) implies that $0 = \lambda = P_i$ for all $1 \le i \le n$.
- ⁷ Case 3: $\lambda \neq 0, \ \mu_i \neq 0, \ 1 \leq i \leq n$.
- ⁸ By (S11), if $\mu_i \neq 0$, then $s_i^* = 0$. Since $\mu_i \neq 0$ for all $1 \leq i \leq n$, this implies that $s^* = \vec{0}$. Since
- ⁹ s^* must satisfy (S4), this corresponds to the case where the total overhead cost equals the budget:
- 10 $C(0) = C_{max}$.
 - Case 4: $\lambda \neq 0$, $\mu_i = 0, 1 \leq i \leq k, \mu_j \neq 0, k+1 \leq i \leq n$ for some integer $k \in (1, n)$.

Fix some integer $k \in (1, n)$. Suppose that $\mu_i = 0$ for all $1 \le i \le k$ and $\mu_j \ne 0$ for all $k + 1 \le i \le n$. Then, as in Case 3, (S11) implies that $s_j^* = 0$ for $k + 1 \le j \le n$ and (S9) becomes

$$\begin{pmatrix} -P_{1}(t) \\ \vdots \\ -P_{k}(t) \\ -P_{k+1}(t) \\ \vdots \\ -P_{n}(t) \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ -\mu_{k+1} \\ \vdots \\ -\mu_{n} \end{pmatrix} + \lambda \begin{pmatrix} C_{s_{1}}(s^{*}) \\ \vdots \\ C_{s_{k}}(s^{*}) \\ C_{s_{k+1}}(s^{*}) \\ \vdots \\ C_{s_{n}}(s^{*}) \end{pmatrix} = 0.$$
 (S13)

¹¹ As in Case 2, the first k equations above imply that

$$\frac{P_i(t)}{C_{s_i}(s^*)} = \lambda = \frac{P_j(t)}{C_{s_j}(s^*)} \quad \text{for all } 1 \le i \le k, 1 \le j \le k$$
(S14)

¹² since $C_{s_i}(s) > 0$ for all nonnegative s. Then, since $\lambda > 0$,

$$P_i(t) > 0$$
 for all $1 \le i \le k$

Furthermore, the last n - k equations of (S13) together with (S14) imply that

$$-P_{j}(t) - \mu_{j} + \lambda C_{s_{j}}(s^{*}) = 0, \quad k+1 \leq j \leq n$$

$$-P_{j}(t) - \mu_{j} + \frac{P_{i}(t)}{C_{s_{i}}(s^{*})} C_{s_{j}}(s^{*}) = 0, \quad 1 \leq i \leq k, k+1 \leq j \leq n$$

$$-P_{j}(t) + \frac{P_{i}(t)}{C_{s_{i}}(s^{*})} C_{s_{j}}(s^{*}) = \mu_{j} > 0, \quad 1 \leq i \leq k, k+1 \leq j \leq n$$

$$\iff \frac{P_{i}(t)}{C_{s_{i}}(s^{*})} > \frac{P_{j}(t)}{C_{s_{j}}(s^{*})}, \quad 1 \leq i \leq k, k+1 \leq j \leq n$$
(S15)

- ¹ by (S10) since $\mu_j \neq 0$ for $k + 1 \leq j \leq n$. Thus, the optimal sampling scheme may be to sample the ² first k populations if and only if (S15) holds.