S3 General SI Analysis

We now give an example of how the analysis in section S 2 can be used to determine the optimal sampling scheme for maximizing the probability of detecting a vector borne disease that follows SI dynamics. In the following, we use system (1) (presented in the main text) to describe the dynamics of a disease. We consider the case where there is one vector population and one host population. Thus we consider the system

$$
\begin{aligned}
\frac{d}{d t} I_{V}(t) & =\beta_{V, H} \frac{I_{H}(t)}{N_{H}}\left(N_{V}-I_{V}(t)\right) \\
\frac{d}{d t} I_{H}(t) & =\beta_{H, V} \frac{I_{V}(t)}{N_{V}}\left(N_{H}-I_{H}(t)\right)
\end{aligned}
$$

where we denote the number of infected vectors by $I_{V}(t)$, the number of infected hosts by $I_{H}(t)$, the total number of vectors by N_{V}, the total number of hosts by N_{H}, the transmission rate from hosts to vectors by $\beta_{V, H}$, and the transmission rate from vectors to hosts by $\beta_{H, V}$.

For ease of notation, define

$$
V(t)=\frac{I_{V}(t)}{N_{V}} \quad \text { and } \quad H(t)=\frac{I_{H}(t)}{N_{H}}
$$

to be the proportion of the infected vector (host) population. Then rewriting the above system, we have that

$$
\begin{aligned}
\frac{d}{d t} I_{V}(t) & =\beta_{V, H} \frac{I_{H}(t)}{N_{H}} S_{v}(t) \\
& =\beta_{V, H} \frac{I_{H}(t)}{N_{H}}\left(N_{V}-I_{V}(t)\right) \\
\frac{d}{d t} \frac{I_{V}(t)}{N_{V}} & =\beta_{V, H} \frac{I_{H}(t)}{N_{H}}\left(1-\frac{I_{V}(t)}{N_{V}}\right) \\
\frac{d}{d t} V(t) & =\beta_{V, H} H(t)(1-V(t))
\end{aligned}
$$

Then our system becomes

$$
\begin{align*}
& \frac{d}{d t} V(t)=\alpha H(t)(1-V(t)) \tag{S16a}\\
& \frac{d}{d t} H(t)=\gamma V(t)(1-H(t)) \tag{S16b}
\end{align*}
$$

Table 2 in Text S3. SI model parameters and variables.

Parameter or Variable	Definition
I_{H}	Number of infected hosts.
S_{h}	Number of susceptible hosts.
I_{V}	Number of infected vectors.
S_{v}	Number of susceptible vectors.
N_{H}	Total number of hosts.
N_{V}	Total number of vectors.
$H=\frac{I_{H}}{N_{H}}$	Proportion of infected hosts.
$V=\frac{I_{V}}{N_{V}}$	Proportion of infected vectors.
$\beta_{V, H}=\alpha$	Transmission rate from hosts to vectors.
$\beta_{H, V}=\gamma$	Transmission rate from vectors to hosts.

S3.1 Basic analysis of (S16)

It is easy to see that system (S16) has two steady states, $(V, H)=(0,0)$ and $(1,1)$. Examining the vector field of (S16), we see that

$$
\begin{aligned}
V & =0,0<H & <r 1 \Rightarrow & \frac{d V}{d t} & =\alpha H>0, & \frac{d H}{d t}
\end{aligned}=0
$$

Thus, given an initial condition $\left(V_{0}, H_{0}\right)$ such that $V_{0}, H_{0} \in[0,1],\left(V_{0}, H_{0}\right) \notin\{(0,0),(1,1)\}$, the solution $(V(t), H(t))$ approaches $(1,1)$ in infinite time. (Figure S1) Though this is not a realistic scenario, we are only concerned with the early-time behavior of the system and the infinite time dynamics are only of academic interest.

S3.2 First integral

Note that if $V(t)>0$, then $\frac{d H}{d t}>0$ for all $0 \leq H(t)<1$. Similarly, if $H(t)>0$, then $\frac{d V}{d t}>0$ for all $0 \leq V(t)<1$. Note that neither V nor H may become negative so long as $V(0) \geq 0$ and $H(0) \geq 0$. Then we may reparameterize our system (S16) as a function of V or as a function of H. We will choose to reparameterize our system as a function of H. Dividing (S16a) by (S16b), we have the auxiliary equation

$$
\begin{align*}
\frac{d V}{d H} & =\frac{\alpha H(t)(1-V(t))}{\gamma V(t)(1-H(t))} \tag{S17}\\
& =\frac{\frac{\alpha}{V}-\alpha}{\frac{\gamma}{H}-\gamma}
\end{align*}
$$

which we can solve by separation of variables:

$$
\begin{aligned}
d V\left(\frac{V}{\alpha-\alpha V}\right) & =d H\left(\frac{H}{\gamma-\gamma H}\right) \\
\int\left(\frac{V}{\alpha-\alpha V}\right) d V & =\int\left(\frac{H}{\gamma-\gamma H}\right) d H \\
\frac{1}{\alpha}(-V-\ln (1-V)) & =\frac{1}{\gamma}(-H-\ln (1-H))+c
\end{aligned}
$$

${ }_{1}$ where c is some constant. Then solutions of (S16) lie within the level sets of the function

$$
I(V, H)=\frac{1}{\alpha}(-V-\ln (1-V))+\frac{1}{\gamma}(H+\ln (1-H)) .
$$

In particular, given an initial condition $\left(V_{0}, H_{0}\right)$, the solution (V, H) of the initial value problem (S16), $V(0)=V_{0}, H(0)=H_{0}$ satisfies

$$
\begin{aligned}
I(V, H) & =I\left(V_{0}, H_{0}\right) \\
\frac{1}{\alpha}(-V-\ln (1-V))+\frac{1}{\gamma}(H+\ln (1-H)) & =\frac{1}{\alpha}\left(-V_{0}-\ln \left(1-V_{0}\right)\right)+\frac{1}{\gamma}\left(H_{0}+\ln \left(1-H_{0}\right)\right)
\end{aligned}
$$

4 that is, the solution (V, H) lies in the level set

$$
\left\{(V, H) \mid I(V, H)=I\left(V_{0}, H_{0}\right)\right\}
$$

S3.3 Optimal sampling

Suppose that $C\left(s_{V}, s_{H}\right)$ is a strictly increasing cost function where s_{V} denotes the number of vectors sampled and s_{H} denotes the number of hosts sampled. Our goal is to find possible optimal sampling schemes $s^{*}=\left(s_{V}^{*}, s_{H}^{*}\right)$ that maximize the probability of detecting a disease in a single sampling trial at a fixed time t, assuming that the vector and host population dynamics are known. With reference to Table 1 in Text S2, we see that there are three possible sampling schemes. First (Case 2 in Table 1 in Text S2), if there exists some s^{*} such that $s_{V}^{*} \geq 0$ and $s_{H}^{*} \geq 0$ and

$$
\begin{aligned}
\frac{V(t)}{C_{s_{V}}\left(s^{*}\right)} & =\frac{H(t)}{C_{s_{H}}\left(s^{*}\right)} \\
\Longleftrightarrow \quad \frac{V(t)}{H(t)} & =\frac{C_{s_{V}}\left(s^{*}\right)}{C_{s_{H}}\left(s^{*}\right)}
\end{aligned}
$$

then we may choose to sample both the vector and the host populations. Second (Case 4 in Table 1 in Text S2), if there exists some s^{*} such that $s_{V}^{*} \geq 0$ and $s_{H}^{*}=0$ and

$$
\begin{aligned}
\frac{V(t)}{C_{s_{V}}\left(s^{*}\right)} & >\frac{H(t)}{C_{s_{H}}\left(s^{*}\right)} \\
\Longleftrightarrow \quad \frac{V(t)}{H(t)} & >\frac{C_{s_{V}}\left(s^{*}\right)}{C_{s_{H}}\left(s^{*}\right)}
\end{aligned}
$$

then we may choose to sample only the vector population. Third (Case 4 in Table 1 in Text S2), if there exists some s^{*} such that $s_{V}^{*}=0$ and $s_{H}^{*} \geq 0$ and

$$
\begin{aligned}
\frac{V(t)}{C_{s_{V}}\left(s^{*}\right)} & <\frac{H(t)}{C_{s_{H}}\left(s^{*}\right)} \\
\Longleftrightarrow \quad \frac{V(t)}{H(t)} & <\frac{C_{s_{V}}\left(s^{*}\right)}{C_{s_{H}}\left(s^{*}\right)}
\end{aligned}
$$

then we may choose to sample only the host population. Since each of these cases depends on the ratio $\frac{V}{H}$, we now characterize this curve. We will first restate two useful equations and make some easy observations. Then, we will give two lemmas that elucidate some properties of the curve $\frac{V(H)}{H}$.

First, by (S17),

$$
\begin{equation*}
\frac{d V}{d H}=\frac{\alpha H(1-V)}{\gamma V(1-H)} \tag{S18}
\end{equation*}
$$

Then $\frac{d V}{d H}>0$ for all $(V, H) \in[0,1] \times[0,1] \backslash\{(0,0),(1,1)\}$. Since $V(H)$ is increasing and $V(H) \leq 1$ for $H \in(0,1), \lim _{H \rightarrow 1} V(H)$ exists. We claim that for $\left(V_{0}, H_{0}\right) \in[0,1) \times[0,1) \backslash\{(0,0)\}, \lim _{H \rightarrow 1} V(H)=$ 1. If not, then there exists some $0<M<1$ such that $\lim _{H \rightarrow 1} V(H)=M$. Then by the analysis in Section S3.1, it is easy to see that $H_{0}=1$, a contradiction to the uniqueness of solutions.

Suppose that the initial condition $\left(V_{0}, H_{0}\right)$ is given, suppose that only one of V_{0} or H_{0} is positive, and let (V, H) be the solution to this initial value problem. Let $I\left(V_{0}, H_{0}\right)=c$. Then recall that (V, H) solves

$$
\begin{equation*}
\frac{1}{\alpha}(-V-\ln (1-V))+\frac{1}{\gamma}(H+\ln (1-H))=c . \tag{S19}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& V_{0}=0, H_{0}>0 \Rightarrow I\left(V_{0}, H_{0}\right)<0 \\
& V_{0}=0, H_{0}=0 \Rightarrow I\left(V_{0}, H_{0}\right)=0 \\
& V_{0}>0, H_{0}=0 \Rightarrow I\left(V_{0}, H_{0}\right)>0
\end{aligned}
$$

by (S19). Then, since at most one of V_{0} or H_{0} is positive, any initial condition (V_{0}, H_{0}) must satisfy exactly one of the above conditions. Since the sign of $I\left(V_{0}, H_{0}\right)$ implied in the above relations is unique for each class of initial condition $\left(V_{0}, H_{0}\right)$, we have that

$$
\begin{aligned}
& V_{0}=0, H_{0}>0 \Leftarrow I\left(V_{0}, H_{0}\right)<0 \\
& V_{0}=0, H_{0}=0 \Leftarrow I\left(V_{0}, H_{0}\right)=0 \\
& V_{0}>0, H_{0}=0 \Leftarrow I\left(V_{0}, H_{0}\right)>0 .
\end{aligned}
$$

We now prove two lemmas that are useful in characterizing the curve $\frac{V(H)}{H}$.
Lemma 1. Under the following conditions, there exists some unique $H^{*} \in\left(H_{0}, 1\right)$ that solves $V(H)=H:$

1. $\alpha<\gamma$ and $I\left(V_{0}, H_{0}\right)=c>0$ or
2. $\alpha>\gamma$ and $I\left(V_{0}, H_{0}\right)=c<0$.

Otherwise, there exists no such H^{*}.
Proof. Suppose that

$$
\begin{equation*}
\left(\frac{1}{\alpha}-\frac{1}{\gamma}\right)\left(-H^{*}-\ln \left(1-H^{*}\right)\right)=c \tag{S20}
\end{equation*}
$$

Then by (S19),

$$
-H^{*}-\ln \left(1-H^{*}\right)=-V\left(H^{*}\right)-\ln \left(1-V\left(H^{*}\right)\right)
$$

Since the function $F(x)=-x-\ln (1-x)$ is strictly increasing for $x \in(0,1)$, the above equation implies that $V\left(H^{*}\right)=H^{*}$. We now show that there exists some $H^{*} \in(0,1)$ that solves (S20).

Note that the function $F(x)=-x-\ln (1-x)$ is positive and strictly increasing for $x \in(0,1)$. In addition, $F(0)=0$ and $\lim _{H \rightarrow 1} F(H)=\infty$. Then, since c, α and γ are constants, there exists
some unique $H^{*} \in(0,1)$ that solves (S20) if and only if $c \neq 0$ and the sign of c is the same as the sign of $\left(\frac{1}{\alpha}-\frac{1}{\gamma}\right)$. It remains only to be shown that $H^{*} \in\left(H_{0}, 1\right)$.

If Condition (1) in Lemma 1 holds, then $H_{0}=0$ and $H^{*} \in\left(H_{0}, 1\right)=(0,1)$ trivially. If Condition (2) in Lemma 1 holds, then $H_{0}>0, V_{0}=0$,

$$
0>\left(\frac{1}{\alpha}-\frac{1}{\gamma}\right)\left(-H_{0}-\ln \left(1-H_{0}\right)\right)>-\frac{1}{\gamma}\left(-H_{0}-\ln \left(1-H_{0}\right)\right)=c
$$

by (S19) and

$$
\lim _{H \rightarrow 1}\left(\frac{1}{\alpha}-\frac{1}{\gamma}\right)(-H-\ln (1-H))=-\infty
$$

Then there exists some $H^{*} \in\left(H_{0}, 1\right)$ which solves (S20).
Lemma 1 gives conditions under which the curve $\frac{V(H)}{H}$ intersects the horizontal line at 1. Note that if there exists some $H^{*} \in\left(H_{0}, 1\right)$ such that $V\left(H^{*}\right)=H^{*}$, then $\frac{V\left(H^{*}\right)}{H^{*}}=1$. If no such H^{*} exists, then the curve $\frac{V(H)}{H}$ must remain above or below the horizontal line at 1 for all $H \in\left(H_{0}, 1\right)$.
Lemma 2. Suppose that $H<V(H)$ for all $H \in\left(H_{1}, H_{2}\right) \subseteq\left(H_{0}, 1\right), \alpha>\gamma>0$. Then there exists at most one $\bar{H} \in\left(H_{1}, H_{2}\right)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=\bar{H}}=0$.
Proof. Note that

$$
\begin{align*}
\frac{d}{d H} \frac{V(H)}{H} & =\frac{H \frac{d V}{d H}-V}{H^{2}} \\
& =\frac{\alpha H\left(\frac{1}{V}-1\right)-\gamma V\left(\frac{1}{H}-1\right)}{\gamma H(1-H)} \tag{S21}
\end{align*}
$$

and suppose $\bar{H} \in\left(H_{1}, H_{2}\right)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=\bar{H}}=0$. Since the denominator of (S21) is strictly positive, it must be true that

$$
\begin{align*}
\alpha \bar{H}\left(\frac{1}{V(\bar{H})}-1\right) & =\gamma V(\bar{H})\left(\frac{1}{\bar{H}}-1\right) \\
\alpha\left(\frac{1-V(\bar{H})}{V^{2}(\bar{H})}\right) & =\gamma\left(\frac{1-\bar{H}}{\bar{H}^{2}}\right) \tag{S22}
\end{align*}
$$

Now,

$$
\begin{aligned}
\frac{d}{d H} \frac{1-V(\bar{H})}{V^{2}(\bar{H})} & =\frac{1}{V^{4}}\left[-V^{2} \frac{d V}{d H}-2 V(1-V) \frac{d V}{d H}\right] \\
& =\frac{\alpha(V-2) H(1-V)}{\gamma V^{4}(1-H)}
\end{aligned}
$$

by (S18) and

$$
\frac{d}{d H} \frac{1-H}{H^{2}}=\frac{H-2}{H^{3}}
$$

We claim that

$$
\begin{equation*}
\frac{d}{d H} \frac{1-V(\bar{H})}{V^{2}(\bar{H})}>\frac{d}{d H} \frac{1-H}{H^{2}} \tag{S23}
\end{equation*}
$$

for $H \in\left(H_{1}, H_{2}\right)$. (S23) holds if and only if

$$
\begin{aligned}
\frac{\alpha(V-2) H(1-V)}{\gamma V^{4}(1-H)} & >\frac{H-2}{H^{3}} \\
\frac{\alpha(V-2)(1-V)}{V^{4}} & >\frac{\gamma(H-2)(1-H)}{H^{4}} .
\end{aligned}
$$

Since $\frac{(x-2)(1-x)}{x^{4}}$ is an increasing function for $x \in[0,1]$ and since $H<V$ we have that

$$
\begin{gathered}
\frac{(V-2)(1-V)}{V^{4}}>\frac{(H-2)(1-H)}{H^{4}} \\
\frac{\alpha(V-2)(1-V)}{V^{4}}>\frac{\gamma(H-2)(1-H)}{H^{4}}
\end{gathered}
$$

since $\alpha>\gamma$. Thus (S23) holds. Since $\alpha>\gamma>0$,

$$
\frac{d}{d H} \alpha\left(\frac{1-V(\bar{H})}{V^{2}(\bar{H})}\right)>\frac{d}{d H} \gamma\left(\frac{1-H}{H^{2}}\right)
$$

for all $H \in\left(H_{1}, H_{2}\right)$. Then if there exists some $\bar{H} \in\left(H_{1}, H_{2}\right) \subseteq(0,1)$ such that (S22) holds, it is unique.

Assuming that the disease starts in either the vector population or the host population (not both), there are six possible characterizations of $\frac{V(H)}{H}$:

Case 1: $\alpha>\gamma, V_{0}>0, H_{0}=0$. Since $V_{0}>0$ and $H_{0}=0$, we have that $c>0$. Note that $\frac{V\left(H_{0}\right)}{H_{0}}=\frac{V_{0}}{H_{0}}=\infty$. Then since $\alpha>\gamma, \frac{V(H)}{H}>1$ for all $H \in\left(H_{0}, 1\right)$ by Lemma 1 .

We claim that $\frac{d}{d H} \frac{V(H)}{H} \leq 0$ for all $H \in\left(H_{0}, 1\right)$. Indeed, if not, then there exists some $\tilde{H} \in\left(H_{0}, 1\right)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=\tilde{H}}>0$. Note that since $V_{0}>0$ and $H_{0}=0,\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=H_{0}}=-\infty$. Then there must exist some $\bar{H} \in\left(H_{0}, \tilde{H}\right)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=\bar{H}}=0$. Since $\frac{V(H)}{H}>1$ for all $H \in\left(H_{0}, 1\right)$ by the above argument and since $\tilde{H} \in\left(H_{0}, 1\right)$, we have that $\frac{V(\tilde{H})}{\tilde{H}}>1$. Since $\lim _{H \rightarrow 1} \frac{V(H)}{H}=1$, it must be true that $\frac{V(H)}{H}$ is decreasing for some $H>\tilde{H}$ and therefore that there exists some $\bar{H}_{2} \in(\tilde{H}, 1)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=\bar{H}_{2}}=0$. This contradicts the uniqueness of \bar{H} by Lemma 2. Thus, the claim holds.

Case 2: $\alpha>\gamma, V_{0}=0, H_{0}>0$. Since $V_{0}=0$ and $H_{0}>0$, we have that $c<0$. Note that $\frac{V\left(H_{0}\right)}{H_{0}}=\frac{V_{0}}{H_{0}}=0$. By Lemma 1 there exists some unique $H^{*} \in\left(H_{0}, 1\right)$ such that $\frac{V\left(H^{*}\right)}{H^{*}}=1$. Then $\frac{V(H)}{H}<1$ for $H \in\left(H_{0}, H^{*}\right)$. We claim that $\frac{V(H)}{H}>1$ for $H \in\left(H^{*}, 1\right)$. If not, then $V(H) \leq H$ for all $H \in\left(H_{0}, 1\right)$ and by (S21)

$$
\begin{align*}
\frac{d}{d H} \frac{V(H)}{H} & =\frac{\alpha H\left(\frac{1}{V}-1\right)-\gamma V\left(\frac{1}{H}-1\right)}{\gamma H(1-H)} \\
& \geq \frac{\alpha H\left(\frac{1}{H}-1\right)-\gamma H\left(\frac{1}{H}-1\right)}{\gamma H(1-H)}=\frac{\alpha-\gamma}{\gamma H}>0 \tag{S24}
\end{align*}
$$

since $\alpha>\gamma>0$. Then since $\frac{V\left(H^{*}\right)}{H^{*}}=1$, there must exist some $\tilde{H} \in\left(H^{*}, 1\right)$ such that $\frac{V(\tilde{H})}{\tilde{H}}>1$, a contradiction to that $V(H) \leq H$ for all $H \in\left(H_{0}, 1\right)$. Thus the claim holds.

Now we examine the sign of $\frac{d}{d H} \frac{V(H)}{H}$. First, we claim that $\frac{d}{d H} \frac{V(H)}{H}>0$ for all $H \in\left(H_{0}, H^{*}\right]$. Note that for $H \in\left(H_{0}, H^{*}\right], H \geq V(H)$. Then the claim holds by (S24).

Next we claim that there exists some $\bar{H} \in\left(H^{*}, 1\right)$ such that $\frac{d}{d H} \frac{V(H)}{H}>0$ for all $H \in\left(H_{0}, \bar{H}\right)$ and $\frac{d}{d H} \frac{V(H)}{H}<0$ for all $H \in(\bar{H}, 1)$. Indeed, by the above argument, $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=H^{*}}>0$. Recall that $\frac{V\left(H^{*}\right)}{H^{*}}=1$. Then there exists some $H_{1} \in\left(H^{*}, 1\right)$ such that $\frac{V\left(H_{1}\right)}{H_{1}}>1$. Then since $\lim _{H \rightarrow 1} \frac{V(H)}{H}=1$
there must exist some $H_{2} \in\left(H_{1}, 1\right)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=H_{2}}<0$. Then by the continuity of $\frac{d}{d H} \frac{V(H)}{H}$ there exists some $\bar{H} \in\left(H^{*}, H_{2}\right) \subset\left(H^{*}, 1\right)$ such that $\left.\frac{d}{d H} \frac{V(H)}{H}\right|_{H=\bar{H}}=0$. By Lemma 2 this \bar{H} is unique. Thus the claim holds.

Case 3: $\alpha=\gamma, V_{0}>0, H_{0}=0$. Since $V_{0}>0$ and $H_{0}=0$, we have that $c>0$. Note that $\frac{V\left(H_{0}\right)}{H_{0}}=\frac{V_{0}}{H_{0}}=\infty$. Then since $\alpha=\gamma, \frac{V(H)}{H}>1$ for all $H \in\left(H_{0}, 1\right)$ by Lemma 1.

We claim that $\frac{d}{d H} \frac{V(H)}{H}<0$ for all $H \in\left(H_{0}, 1\right)$. Since $V(H)>H$ for all $H \in\left(H_{0}, 1\right)$,

$$
\alpha H\left(\frac{1}{V}-1\right)-\gamma V\left(\frac{1}{H}-1\right)<\alpha H\left(\frac{1}{H}-1\right)-\gamma H\left(\frac{1}{H}-1\right)=\alpha-\gamma=0 .
$$

then the claim holds by (S21).
$V\left(H_{0}\right)$ Case 4: $\alpha=\gamma, V_{0}=0, H_{0}<0$. Since $V_{0}=0$ and $H_{0}>0$, we have that $c<0$. Note that $\frac{V\left(H_{0}\right)}{H_{0}}=\frac{V_{0}}{H_{0}}=0$. Then since $\alpha=\gamma, \frac{V(H)}{H}<1$ for all $H \in\left(H_{0}, 1\right)$ by Lemma 1. By an argument similar to that in Case $3, \frac{d}{d H} \frac{V(H)}{H}>0$ for all $H \in\left(H_{0}, 1\right)$.

Case 5: $\alpha<\gamma, V_{0}>0, H_{0}=0$. Since $V_{0}>0$ and $H_{0}=0$, we have that $c>0$. Note that $\frac{V\left(H_{0}\right)}{H_{0}}=\frac{V_{0}}{H_{0}}=\infty$. By Lemma 1 there exists some unique $H^{*} \in\left(H_{0}, 1\right)$ such that $\frac{V\left(H^{*}\right)}{H^{*}}=1$. By an argument similar to that in Case 2, we have that $\frac{V(H)}{H}<1$ for $H \in\left(H^{*}, 1\right)$ and that there exists some $\bar{H} \in\left(H^{*}, 1\right)$ such that $\frac{d}{d H} \frac{V(H)}{H}<0$ for all $H \in\left(H_{0}, \bar{H}\right)$ and $\frac{d}{d H} \frac{V(H)}{H}>0$ for all $H \in(\bar{H}, 1)$.

Case 6: $\alpha<\gamma, V_{0}=0, H_{0}>0$. Since $V_{0}=0$ and $H_{0}>0$, we have that $c<0$. Note that $\frac{V\left(H_{0}\right)}{H_{0}}=\frac{V_{0}}{H_{0}}=0$. Then since $\alpha<\gamma, \frac{V}{H}(H)<1$ for all $H \in\left(H_{0}, 1\right)$ by Lemma 1. By an argument similar to that in Case $1, \frac{d}{d H} \frac{V(H)}{H} \geq 0$ for all $H \in\left(H_{0}, 1\right)$.

We summarize the above cases in Table 3 in Text S3 and illustrate them in Figures S2 and 1.

Table 3 in Text S3. Summary of possible characterizations of $\frac{V(H)}{H}$ with all possible cases listed.

	α, γ	Initial Conditions	$\frac{V(H)}{H}$	$\frac{d}{d H} \frac{V(H)}{H}$
Case 1	$\alpha>\gamma$	$\begin{gathered} V_{0}>0, H_{0}=0 \\ \lim _{V \rightarrow V_{0}, H \rightarrow H_{0}} \frac{V(H)}{H}=\infty \end{gathered}$	$\frac{V(H)}{H}>1 \forall H \in\left(H_{0}, 1\right)$	$\frac{d}{d H} \frac{V(H)}{H} \leq 0 \forall H \in\left(H_{0}, 1\right)$
Case 2	$\alpha>\gamma$	$\begin{gathered} V_{0}=0, H_{0}>0, \\ \frac{V_{0}}{H_{0}}=0 \end{gathered}$	$\begin{gathered} \exists!H^{*} \in\left(H_{0}, 1\right) \text { s.t. } \\ \begin{cases}\frac{V(H)}{H} & <1 \forall H \in\left(H_{0}, H^{*}\right) \\ \frac{V\left(H^{*}\right)}{H^{*}} & =1 \\ \frac{V(H)}{H} & >1 \forall H \in\left(H^{*}, 1\right)\end{cases} \end{gathered}$	$\begin{aligned} & \exists!\bar{H} \in\left(H^{*}, 1\right) \text { s.t. } \\ & \begin{cases}\frac{d}{d H} \frac{V(H)}{H} & >0 \forall H \in\left(H_{0}, \bar{H}\right) \\ \frac{d}{d H} \frac{V(\bar{H})}{H} & =0 \\ \frac{d}{d H} \frac{V(H)}{H} & <0 \forall H \in(\bar{H}, 1)\end{cases} \end{aligned}$
Case 3	$\alpha=\gamma$	$\begin{gathered} V_{0}>0, H_{0}=0 \\ \lim _{V \rightarrow V_{0}, H \rightarrow H_{0}} \frac{V(H)}{H}=\infty \end{gathered}$	$\frac{V(H)}{H}>1 \forall H \in\left(H_{0}, 1\right)$	$\frac{d}{d H} \frac{V(H)}{H}<0 \forall H \in\left(H_{0}, 1\right)$
Case 4	$\alpha=\gamma$	$\begin{gathered} V_{0}=0, H_{0}>0, \\ \frac{V_{0}}{H_{0}}=0 \end{gathered}$	$\frac{V(H)}{H}<1 \forall H \in\left(H_{0}, 1\right)$	$\frac{d}{d H} \frac{V(H)}{H}>0 \forall H \in\left(H_{0}, 1\right)$
Case 5	$\alpha<\gamma$	$\begin{gathered} V_{0}>0, H_{0}=0 \\ \lim _{V \rightarrow V_{0}, H \rightarrow H_{0}} \frac{V(H)}{H}=\infty \end{gathered}$	$\begin{gathered} \exists!H^{*} \in\left(H_{0}, 1\right) \text { s.t. } \\ \begin{cases}\frac{V(H)}{H} & >1 \forall H \in\left(H_{0}, H^{*}\right) \\ \frac{V\left(H^{*}\right)}{H^{*}} & =1 \\ \frac{V(H)}{H} & <1 \forall H \in\left(H^{*}, 1\right)\end{cases} \end{gathered}$	$\begin{gathered} \exists!\bar{H} \in\left(H^{*}, 1\right) \text { s.t. } \\ \begin{cases}\frac{d}{d H} \frac{V(H)}{H} & <0 \forall H \in\left(H_{0}, \bar{H}\right) \\ \frac{d}{d H} \frac{V(\bar{H})}{H} & =0 \\ \frac{d}{d H} \frac{V(H)}{H} & >0 \forall H \in(\bar{H}, 1)\end{cases} \end{gathered}$
Case 6	$\alpha<\gamma$	$\begin{gathered} V_{0}=0, H_{0}>0 \\ \frac{V_{0}}{H_{0}}=0 \end{gathered}$	$\frac{V(H)}{H}<1 \forall H \in\left(H_{0}, 1\right)$	$\frac{d}{d H} \frac{V(H)}{H} \geq 0 \forall H \in\left(H_{0}, 1\right)$

S3.3.1 Linear cost function

Now we assume that our cost function is linear:

$$
C\left(s_{V}, s_{H}\right)=a_{V}+b_{V} s_{V}+a_{H}+b_{H} s_{H}
$$

Then

$$
C_{s_{V}}=b_{V} \quad \text { and } \quad C_{s_{H}}=b_{H}
$$

By the analysis in Section S3.3, it is clear that the optimal sampling design is determined by the relative magnitudes of $\frac{V(H)}{H}$ and the constant $\frac{b_{V}}{b_{H}}$. We consider only cases 1 and 2 above. The other cases follow similarly.

Case 1: $\alpha>\gamma, V_{0}>0, H_{0}=0$. By the above analysis, $\frac{V(H)}{H}>1$ and $\frac{d}{d H} \frac{V(H)}{H} \leq 0$ for all $H \in\left(H_{0}, 1\right)$. If $\frac{b_{V}}{b_{H}} \leq 1$, then

$$
\frac{V(H)}{H}>1 \geq \frac{b_{V}}{b_{H}}=\frac{C_{s_{V}}}{C_{s_{H}}}
$$

for all $H \in\left(H_{0}, 1\right)$, so by the analysis of Section S3.3, we choose to sample only the vector population. If $\frac{b_{V}}{b_{H}}>1$, then since $\lim _{V \rightarrow V_{0}, H \rightarrow H_{0}} \frac{V(H)}{H}=\infty$, there exists some \hat{H} such that

$$
\begin{cases}\frac{V(H)}{H} & >\frac{b_{V}}{b_{H}} \\ \frac{V(\hat{H})}{\hat{H}} & =\frac{b_{V}}{b_{H}} \\ \frac{V(H)}{H} & >\frac{b_{V}}{b_{H}} \quad \forall H \in\left(H_{0}, \hat{H}\right) \\ \frac{H, 1)}{}\end{cases}
$$

Note that \hat{H} is unique by Lemma 2. Then by the analysis of Section S3.3, at early times in the epidemic (when $H \in\left(H_{0}, \hat{H}\right)$), we should sample only the vector population and at late times (when $H \in(\hat{H}, 1))$ we should sample only the host population. Additionally, there exists some intermediate instant (when $H=\hat{H}$) at which we should sample both the vector and host populations.

Case 2: $\alpha>\gamma, V_{0}=0, H_{0}>0$. By the above analysis, there exists some unique $H^{*} \in\left(H_{0}, 1\right)$ such that

$$
\begin{cases}\frac{V(H)}{H} & <1 \forall H \in\left(H_{0}, H^{*}\right) \\ \frac{V\left(H^{*}\right)}{H^{*}} & =1 \\ \frac{V(H)}{H} & >1 \forall H \in\left(H^{*}, 1\right)\end{cases}
$$

and there exists some unique $\bar{H} \in\left(H^{*}, 1\right)$ such that

$$
\begin{cases}\frac{d}{d H} \frac{V(H)}{H} & >0 \forall H \in\left(H_{0}, \bar{H}\right) \\ \frac{d}{d H} \frac{V(\bar{H})}{H} & =0 \\ \frac{d}{d H} \frac{V(H)}{H} & <0 \forall H \in(\bar{H}, 1)\end{cases}
$$

Then $\frac{V(H)}{H}$ achieves a unique maximum at $\bar{H} \in\left(H_{0}, 1\right)$. If

$$
\frac{V(\bar{H})}{\bar{H}}<\frac{b_{V}}{b_{H}}
$$

then

$$
\frac{V(H)}{H}<\frac{b_{V}}{b_{H}}=\frac{C_{s_{V}}}{C_{s_{H}}}
$$

for all $H \in\left(H_{0}, 1\right)$. By the analysis in Section $S 3.3$, we choose to sample only the host population. If

$$
\frac{V(\bar{H})}{\bar{H}}>\frac{b_{V}}{b_{H}}
$$

then there exist some $H_{1}, H_{2} \in\left(H_{0}, 1\right), H_{1}<H_{2}$ such that

$$
\begin{cases}\frac{V(H)}{H} & <\frac{b_{V}}{b_{H}} \forall H \in\left(H_{0}, H_{1}\right) \\ \frac{V\left(H_{1}\right)}{H_{1}} & =\frac{b_{V}}{b_{H}} \\ \frac{V(H)}{H} & >b_{V}^{b_{H}} \\ \frac{V\left(H_{2}\right)}{b_{V}} & =H \in\left(H_{1}, H_{2}\right) \\ \frac{V\left(H_{V}\right.}{b_{H}} \\ \frac{V(H)}{H} & <\frac{b_{V}}{b_{H}} \forall H \in\left(H_{2}, 1\right)\end{cases}
$$

1 Then at early stages of the epidemic (while $H \in\left(H_{0}, H_{1}\right)$), we should sample only the host population, at intermediate times (while $H \in\left(H_{1}, H_{2}\right)$) we sample only the vector population, and at late times in the epidemic (while $H \in\left(H_{2}, 1\right)$) we return to sampling only host population. As in Case 1, if $H=H_{1}$ or $H=H_{2}$, then we should sample both the vector and host populations.

As in the main text, we find that there is a critical time at which we should switch our sampling scheme. We can solve for this critical time numerically.

