
Supplementary material

S1 Proofs of the main results

Consider a reaction network with d species S1, . . . ,Sd and K reaction channels with stoichiometric
vectors ζ1, . . . , ζK . Let N0 be the set of non-negative integers. The state of the system at any time is
given by a vector x = (x1, . . . , xd) ∈ Nd0, where xi is the number of molecules of Si. When the state is x,
the j-th reaction fires at rate λj(x) and changes the state by ζj . We can represent the reaction dynamics
by a Markov process with state space S ⊂ N

d
0, where S satisfies the following property: if x ∈ S and

λk(x) > 0 for some k = 1, . . . ,K, then x + ζk ∈ S. This ensures that if the reaction dynamics starts in
S, then it stays in S forever.

The rate of change of the distribution of a Markov process is given by its generator, which is an
operator that maps functions to functions (see Chapter 4 in Ethier and Kurtz [6]). The generator of the
Markov process corresponding to our reaction network is given by

Af(x) =

K∑
k=1

λk(x)∆ζkf(x), (S1.1)

where f : Nd0 → R and for any vector ζ ∈ Zd

∆ζf(x) = f(x+ ζ)− f(x).

Our proofs will depend on an important relation, called Dynkin’s formula (see Lemma 19.21 in Kallenberg
[9]). Let (Xx0

(t))t≥0 be the Markov process with generator A and initial state x0. If f : Nd0 → R is a
bounded function, then Dynkin’s formula states that

E (f(Xx0
(τ))) = f(x0) + E

(∫ τ

0

Af(Xx0
(s))ds

)
(S1.2)

for any stopping time τ which is finite almost surely. This relation will also hold for a general function
f if there exists a finite set A ⊂ S such that Xx0

(t) ∈ A for all t ≤ τ . In this case we also have

E (g(τ)f(Xx0(τ))) = g(0)f(x0) + E

(∫ τ

0

(
f(Xx0(s))

dg(s)

ds
+ g(s)Af(Xx0(s))

)
ds

)
(S1.3)

for any differentiable function g : (0,∞)→ R and any function f : Nd0 → R.
We recall the main condition of our paper below.

Condition S1.1. (Drift-Diffusivity Condition) For a positive vector v ∈ R
d there exist positive

constants c1, c2, c3, c4 and a nonnegative constant c5 such that for all x ∈ S

K∑
k=1

λk(x)〈v, ζk〉 ≤ c1 − c2〈v, x〉 (S1.4a)

and

K∑
k=1

λk(x)〈v, ζk〉2 ≤ c3 + c4〈v, x〉+ c5〈v, x〉2. (S1.4b)

This drift-diffusivity condition is called Condition DD, from now on. We normalize the vector v in
this condition to satisfy

max{|〈v, ζk〉| : k = 1, . . . ,K} = 1. (S1.5)
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Corresponding to the positive vector v we define the v-norm on R
d by

‖x‖v =

d∑
i=1

vi|xi|. (S1.6)

We now provide some intuition on how Condition DD arises and how it is used. Let f be the function
defined by f(x) = ‖x‖v = 〈v, x〉. Then from (S1.1) we obtain

Af(x) =

K∑
k=1

λk(x)〈v, ζk〉.

For now assume that sup
t≥0

E(‖Xx0(t)‖v) < ∞ and sup
t≥0

E

(∫ t

0

|Af(Xx0(s))| ds
)
< ∞. Since A is the

generator of the Markov process (Xx0(t))t≥0, it follows that the process (m(t))t≥0 defined by

m(t) = ‖Xx0
(t)‖v − ‖x0‖v −

∫ t

0

Af(Xx0
(s))ds,

is a local martingale (see Chapter 4 in [6]). Hence we can write the stochastic equation for the dynamics
of (‖Xx0

(t)‖v)t≥0 as

‖Xx0
(t)‖v = ‖x0‖v +

∫ t

0

Af(Xx0
(s))ds+m(t). (S1.7)

This equation shows that at time t, the process (‖Xx0
(t)‖v)t≥0 experiences a drift given by

Af(Xx0
(t)) =

K∑
k=1

λk(Xx0
(t))〈v, ζk〉.

This drift provides a direction to the dynamics. On the other hand, the martingale term m(t) captures the
diffusive effects at time t, because it causes undiectional perturbations in the dynamics. The predictable
quadratic variation (see Chapter 26 in [9]) of the martingale (m(t))t≥0 is

〈m〉t =

∫ t

0

K∑
k=1

λk(Xx0
(s))〈v, ζk〉2ds, (S1.8)

which shows that at time t, the strength of the diffusive effects in the dynamics of (‖Xx0
(t)‖v)t≥0 is

K∑
k=1

λk(Xx0
(t))〈v, ζk〉2.

Therefore Condition DD provides upper bounds on the drift and diffusion components in the dynamics of
(‖Xx0

(t)‖v)t≥0 when Xx0
(t) = x. Hence we call this condition as the drift-diffusivity condition. Observe

that when the process (‖Xx0(t)‖v)t≥0 goes above c1/c2 then it experiences a negative drift, indicating
that it will move downwards. This fact is crucial for proving our results.

S1.1 Moment Bounds

Let (Xx0(t))t≥0 be the Markov process with generator A and initial state x0 ∈ S. Its distribution at time
t is denoted by px0

(t). Hence for any y ∈ S

px0
(t, y) = E(Xx0

(t) = y).

From now on we suppose that Condition DD is satisfied for some positive vector v scaled according to
(S1.5). For any positive integer r define

mr
x0

(t) = E (‖Xx0
(t)‖rv) =

∑
x∈S
‖x‖rvpx0

(t, x). (S1.9)
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For j = 0, 1, . . . , (r − 1) let

κrj =


(

r

r − j

)
c3 +

(
r

r − j + 1

)
c4 +

(
r

r − j + 2

)
c5 for j = 0, . . . , r − 2

rc1 +

(
r

2

)
c4 +

(
r

3

)
c5 for j = r − 1,

where

(
i

j

)
=

i!

j!(i− j)!
if i ≥ j and 0 otherwise. Define

βr = r

(
c2 −

(
r − 1

2

)
c5

)
(S1.10)

and let

rmax =

 1 +
2c2
c5

if c5 > 0

∞ if c5 = 0.
(S1.11)

Note that for any positive integer r < rmax we have βr > 0. Define

Cr(x0) = max

‖x0‖rv, 1

βr

r−1∑
j=0

κrjCj(x0)

 and Ĉr =
1

βr

r−1∑
j=0

κrj Ĉj ,

where C0(x0) = Ĉ0 = 1. Let U0
x0

(t) = 1 for all t ≥ 0. For any integer r ≥ 1 and t ≥ 0 define

Urx0
(t) = e−βrt‖x0‖rv +

r−1∑
j=0

κrj

∫ t

0

e−βr(t−s)U jx0
(s)ds.

We now present a result that is slightly more general than Theorem 2 in the paper.

Theorem S1.2. Assume that Condition DD holds. For any positive integer r and x0 ∈ S let mr
x0

(t) be
given by (S1.9). If r < rmax then we have the following.

(A) For any t ≥ 0, mr
x0

(t) ≤ Urx0
(t).

(B) For any x0 ∈ S, sup
t≥0

mr
x0

(t) ≤ Cr(x0).

(C) For all x0 ∈ S, lim sup
t→∞

mr
x0

(t) ≤ Ĉr.

Proof. Let f(x) = 〈v, x〉r for some integer r ≥ 1. Then

Af(x) =

K∑
k=1

λk(x) ((〈v, x〉+ 〈v, ζk〉)r − 〈v, x〉r)

=

r∑
i=1

(
r

i

)( K∑
k=1

λk(x)〈v, ζk〉i
)
〈v, x〉r−i

= r

(
K∑
k=1

λk(x)〈v, ζk〉

)
〈v, x〉r−1 +

r∑
i=2

(
r

i

)( K∑
k=1

λk(x)〈v, ζk〉i
)
〈v, x〉r−i.

Due to (S1.5) and (S1.4b) we get that for i ≥ 2(
K∑
k=1

λk(x)〈v, ζk〉i
)
≤

(
K∑
k=1

λk(x)〈v, ζk〉2
)
≤ c3 + c4〈v, x〉+ c5〈v, x〉2
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and hence using (S1.4a) we obtain

Af(x) ≤ c1r〈v, x〉r−1 − βr〈v, x〉r +

r∑
i=2

(
r

i

)
〈v, x〉r−i

(
c3 + c4〈v, x〉+ c5〈v, x〉2

)
=

r−1∑
j=0

κrj〈v, x〉j − βr〈v, x〉r

= −βrHr(〈v, x〉), (S1.12)

where Hr is the polynomial given by

Hr(y) = yr − 1

βr

r−1∑
j=0

κrjy
j . (S1.13)

Let g(t) = eβrt and f(x) = 〈v, x〉r. Then using (S1.12) we get

dg(t)

dt
f(x) + g(t)Af(x) ≤ βreβrt〈v, x〉r − βreβrtHr(〈v, x〉)

= eβrt
r−1∑
j=0

κrj〈v, x〉j .

Let (Xx0
(t))t≥0 be the Markov process with generator A and initial state x0. Pick a M > 0 and let τM

be the stopping time given by

τM = inf{t ≥ 0 : 〈v,Xx0
(t)〉 ≥M}.

Then (S1.3) implies that

E

(
eβr(t∧τM )〈v,Xx0(t ∧ τM )〉r

)
≤ 〈v, x0〉r + E

∫ t∧τM

0

eβrs
r−1∑
j=0

κrj〈v,Xx0(s)〉jds

 (S1.14)

for any t ≥ 0. We will prove all parts of this theorem by induction. Part (A) is trivially true for r = 0.
Assume that it holds for all integers less than n < (rmax − 1). Also suppose that τM → ∞ a.s. as
M →∞. Letting M →∞ in (S1.14) and using the dominated convergence theorem along with Fatou’s
lemma yields

E
(
eβnt〈v,Xx0

(t)〉n
)

= E

(
lim
M→∞

eβn(t∧τM )〈v,Xx0
(t ∧ τM )〉n

)
≤ 〈v, x0〉n + lim

M→∞
E

∫ t∧τM

0

eβns
n−1∑
j=0

κnj 〈v,Xx0
(s)〉jds


≤ 〈v, x0〉n +

n−1∑
j=0

κnj

∫ t

0

eβnsE
(
〈v,Xx0

(s)〉j
)
ds

= 〈v, x0〉n +

n−1∑
j=0

κnj

∫ t

0

eβnsmj
x0

(s)ds

≤ 〈v, x0〉n +

n−1∑
j=0

κnj

∫ t

0

eβnsU jx0
(s)ds.

Multiplying both sides by e−βnt gives us

mn
x0

(t) = E (〈v,Xx0(t)〉n) ≤ Unx0
(t) = e−βnt〈v, x0〉n +

n−1∑
j=0

κnj

∫ t

0

e−βn(t−s)U jx0
(s)ds.
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This proves part (A), provided we can show that τM → ∞ a.s. as M → ∞. For this note that (S1.14)
for r = 1 yields

E

(
ec2(t∧τM )〈v,Xx0

(t ∧ τM )〉
)
≤ 〈v, x0〉+ c1E

(∫ t∧τM

0

ec2sds

)
= 〈v, x0〉+

c1
c2
E

(
ec2(t∧τM ) − 1

)
≤ 〈v, x0〉+

c1
c2

(
ec2t − 1

)
.

Markov’s inequality implies that

P (τM < t) = P (〈v,Xx0
(t ∧ τM )〉 ≥M)

≤ E(〈v,Xx0
(t ∧ τM )〉)
M

≤
E
(
ec2(t∧τM )〈v,Xx0

(t ∧ τM )〉
)

M

≤
〈v, x0〉+ c1

c2
(ec2t − 1)

M
.

Hence for any t ≥ 0

lim
M→∞

P (τM < t) = 0.

This shows that τM →∞ a.s. as M →∞ and completes the proof of part (A).
The following inequality certainly holds for r = 0.

sup
t≥0

Urx0
(t) ≤ Cr(x0).

Assume that it holds for all integers r less than n < (rmax − 1). Then

Unx0
(t) = e−βnt〈v, x0〉n +

n−1∑
j=0

κnj

∫ t

0

e−βn(t−s)U jx0
(s)ds

≤ e−βnt〈v, x0〉n +

n−1∑
j=0

κnjCj(x0)

∫ t

0

e−βn(t−s)ds

= e−βnt〈v, x0〉n + (1− e−βnt)
∑n−1
j=0 κ

n
jCj(x0)

βn
.

The right hand side is a convex combination of two positive numbers. Hence we get

Unx0
(t) ≤ max

〈v, x0〉n, 1

βn

n−1∑
j=0

κnjCj(x0)

 = Cn(x0).

Taking supremum over t ≥ 0 proves
sup
t≥0

Unx0
(t) ≤ Cn(x0).

Then part (B) follows from part (A).
We now prove part (C). Fix a T > 0 and a positive integer n < (rmax − 1). Then for any j =

0, 1, . . . , (n− 1) we have

lim
t→∞

∫ T

0

e−βn(t−s)U jx0
(s)ds ≤ Cj(x0) lim

t→∞

∫ T

0

e−βn(t−s)ds = 0
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and hence

lim
t→∞

∫ t

0

e−βn(t−s)U jx0
(s)ds = lim

t→∞

∫ t

T

e−βn(t−s)U jx0
(s)ds. (S1.15)

The following relation certainly holds for r = 0

lim
t→∞

Urx0
(t) = Ĉr.

Assume that it holds for all integers r less than n. Then for any j = 0, 1, . . . , (n− 1)

inft∈[T,∞) U
j
x0

(t)

βn
≤ lim
t→∞

∫ t

T

e−βn(t−s)U jx0
(s)ds ≤

supt∈[T,∞) U
j
x0

(t)

βn
.

Since lim
t→∞

U jx0
(t) = Ĉj , using (S1.15) and letting T →∞ in the above relation shows that

lim
t→∞

∫ t

0

e−βn(t−s)U jx0
(s)ds =

Ĉj
βn
.

Therefore we can conclude that

lim
t→∞

Unx0
(t) = lim

t→∞

e−βnt〈v, x0〉n +

n−1∑
j=0

κnj

∫ t

0

e−βn(t−s)U jx0
(s)ds


=

n−1∑
j=0

κnj lim
t→∞

∫ t

0

e−βn(t−s)U jx0
(s)ds

=

∑n−1
j=0 κ

n
j Ĉj

βn

= Ĉn.

Now part (C) follows from part (A).

From the above theorem we can obtain uniform and asymptotic moment bounds for the process
(Xx0(t))t≥0. For any positive integer r, let Ψr(x0, t) denote the r-th moment of Xx0(t). Then Ψr(x0, t)
is a tensor of rank r whose entry at index (i1, . . . , ir) ∈ {1, . . . , d}r is given by

Ψr
i1...ir (x0, t) =

∑
y∈S

yi1 . . . yirpx0(t, y) (S1.16)

where y = (y1, . . . , yd) and px0(t) is the distribution of Xx0(t). Then we have the following result on
moment bounds.

Proposition S1.3. (Moment Bounds) Assume that Condition DD holds. Pick a positive integer
r < rmax and let Cr(x0) and Ĉr be the positive constants obtained in Theorem S1.2. Then for any index
(i1, . . . , ir) ∈ {1, 2, . . . , d}r we have

sup
t≥0

Ψr
i1...ir (x0, t) ≤

Cr(x0)∏r
j=1 vij

and lim sup
t→∞

Ψr
i1...ir (x0, t) ≤

Ĉr∏r
j=1 vij

for all x0 ∈ S.

Proof. Note that if v = (v1, . . . , vd) and y = (y1, . . . , yd) ∈ S, then yi ≤ ‖y‖v/vi for each i. Hence for
any (i1, . . . , ir) ∈ {1, . . . , d}r

Ψr
i1...ir (x0, t) =

∑
y∈S

yi1 . . . yirpx0
(t, y)

≤
∑
y∈S ‖y‖rvpx0

(t, y)∏r
j=1 vij

=
mr
x0

(t)∏r
j=1 vij

.
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The result is now immediate from Theorem S1.2.

The next lemma will be useful later.

Lemma S1.4. Assume that Condition DD holds and let Cr(x0) and Ĉr be defined as above. If c5 = 0
in (S1.4b) then there exist positive constants C(x0) and C such that for all positive integers r we have
Cr(x0) ≤ r!(C(x0))r and Ĉr ≤ r!Cr.

Proof. Let c = max{c1, c3, c4}. Pick a C > 0 satisfying

C ≥ 1

log
(
1 + c2

c

) . (S1.17)

Observe that since c5 = 0 we have βn = nc2 for each n. If n ≥ 2 then

1

βn

n−1∑
j=0

κnj j!C
j =

1

βn

c3 n−2∑
j=0

n!

(n− j)!
Cj + c4

n−2∑
j=0

jn!

(n− j + 1)!
Cj

+ n!c1C
n−1 +

(
n!(n− 1)

2

)
c4C

n−1
]

≤ c

βn

n−1∑
j=0

n!

(n− j)!
Cj +

n−1∑
j=0

jn!

(n− j + 1)!
Cj


≤ c

βn

n−1∑
j=0

n!

(n− j)!

(
1 +

j + 1

n− j + 1

)
Cj


=

c

βn

n−1∑
j=0

n!

(n− j)!

(
n+ 2

n− j + 1

)
Cj


≤
(
c(n+ 2)

2βn

)
n!

n−1∑
j=0

Cj

(n− j)!


=

(
c(n+ 2)

2βn

)
n!Cn

[
n∑
r=1

1

r!Cr

]

≤
(
c

c2

)
n!Cn

(
e

1
C − 1

)
.

Therefore using (S1.17) we obtain

1

βn

n−1∑
j=0

κnj j!C
j ≤ n!Cn

(
c

c2

)(
elog(1+

c2
c ) − 1

)
= n!Cn. (S1.18)

We will prove this lemma by induction. Since log(1 + x) ≤ x for any x ≥ 0 and C satisfies (S1.17),
it must also satisfy

C ≥ 1

log
(
1 + c2

c

) ≥ c

c2
≥ c1
c2

=
κ10
c2
.

Hence

Ĉr ≤ r!Cr (S1.19)

holds for r = 1. Assume that it holds for all r = 1, 2, . . . , (n − 1) for some integer n ≥ 2. Then from
(S1.18) we get

Ĉn =
1

βn

n−1∑
j=0

κnj Ĉj ≤
1

βn

n−1∑
j=0

κnj j!C
j ≤ n!Cn.

7



This shows that (S1.19) holds for r = n. Hence we can conclude that (S1.19) is satisfied for all positive
integers r. Defining C(x0) = max{〈v, x0〉, C}, one can verify in a similar way that

Cr(x0) ≤ (C(x0))r

for each positive integer r. This completes the proof of the lemma.

Using Lemma S1.4 we obtain the following result.

Theorem S1.5. (Uniform Light-Tailedness) Let (Xx0
(t))t≥0 be the Markov process with generator

A and initial state x0 ∈ S. Suppose that Condition DD holds with c5 = 0. Then there exists a γ > 0
such that

sup
t≥0

E

(
eγ‖Xx0 (t)‖v

)
= sup

t≥0

∑
y∈S

eγ‖y‖vpx0
(t, y) <∞.

Proof. For any integer r ≥ 1 let Cr(x0) be as in Theorem S1.2. Let C(x0) be a positive constant such
that Cr(x0) ≤ r!(C(x0))r for every integer r ≥ 1. Such a constant exists due to Lemma S1.4. From part
(B) of Theorem S1.2 we have

sup
t≥0

E (‖Xx0
(t)‖rv) ≤ Cr(x0) ≤ r!C(x0).

Observe that

sup
t≥0

E

(
eγ‖Xx0 (t)‖v

)
≤ 1 +

∞∑
r=1

γr
supt≥0 E (‖Xx0

(t)‖rv)
r!

≤ 1 +

∞∑
r=1

γr
Cr(x0)

r!

≤ 1 +

∞∑
r=1

(γC(x0))r.

If we let γ = 1/(2C(x0)) then

sup
t≥0

E

(
eγ‖Xx0 (t)‖v

)
≤ 1 +

∞∑
r=1

1

2r
<∞.

This proves the theorem.

S2 Ergodicity and Moment Convergence

Consider a Markov process (Xx0(t))t≥0 with state space S and initial state x0 ∈ S. Let px0(t) ∈ P(S)
be the distribution of Xx0(t), where P(S) is the space of all probability measures over S. Such a Markov
process is called ergodic if there exists a π ∈ P(S) such that

lim
t→∞

‖px0(t)− π‖TV = 0 for all x0 ∈ S. (S2.1)

Here π is the unique stationary distribution for the dynamics and ‖ · ‖TV denotes the total-variation
norm over P(S) given by

‖µ‖TV = sup
A⊂S

µ(A).

If the convergence in (S2.1) is exponentially fast, then the process is called exponentially ergodic.
Meyn and Tweedie [11] have given a criterion for proving ergodicity for continuous time Markov

processes. Their criterion involves checking certain drift conditions (called Foster-Lyapunov inequalities)
based on the generator of the Markov process. In particular, if the state space S is countable and
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irreducible for the Markov process (Xx0
(t))t≥0 with generator A, then the ergodicity of this process can

be verified by finding a positive norm-like1 function V : S → R such that for some c1, c2 > 0 we have

AV (x) ≤ c1 − c2V (x) for all x ∈ S. (S2.2)

In fact, the existence of such a function V shows that the process is exponentially ergodic. If Condition
DD is satisfied for a positive vector v then the function V defined by V (x) = 〈v, x〉 satisfies (S2.2) due
to condition (S1.4a). This gives our next result which is essentially a reformulation of Theorem 7.1 in
[11].

Proposition S2.1. (Ergodicity) Let (Xx0
(t))t≥0 be the Markov process with generator A and initial

state x0. Assume that the state space S is irreducible and Condition (S1.4a) holds. Then this process is
exponentially ergodic in the sense that there exists a unique stationary distribution π ∈ P(S) along with
constants B, c > 0 such that for any x0 ∈ S

sup
A⊂S
|px0(t, A)− π(A)| ≤ Be−ct for all t ≥ 0.

From now on we assume that the process (Xx0(t))t≥0 is ergodic with stationary distribution π. The
next result is a simple consequence of ergodicity.

Proposition S2.2. Assume that Condition DD holds. Let f : S → R be a function such that for some
positive integer r < (rmax − 1) there exists a C > 0 satisfying

|f(x)| ≤ C(1 + ‖x‖rv) for all x ∈ S. (S2.3)

Then
∑
y∈S
|f(y)|π(y) <∞ and for any x0 ∈ S

lim
t→∞

E(f(Xx0
(t))) =

∑
y∈S

f(y)π(y). (S2.4)

Furthermore for any x0 ∈ S, the following relation is satisfied with probability 1

lim
t→∞

1

t

∫ t

0

f(Xx0
(s))ds =

∑
y∈S

f(y)π(y). (S2.5)

Proof. Suppose that f is a positive function. It suffices to prove the proposition in this case. We have
assumed that for some positive integer r < (rmax − 1) there exists a C > 0 such that (S2.3) is satisfied.
Let q be an integer satisfying r < q < rmax and let ρ = q/r. Note that ρ > 1. For all x ∈ S we have

(f(x))ρ ≤ Cρ(1 + ‖x‖rv)ρ ≤ Cρ2ρ(1 + ‖x‖rρv ) = Cρ2ρ(1 + ‖x‖qv). (S2.6)

Since q < rmax, Theorem S1.2 shows that there exists a positive constant Ĉq such that

lim sup
t→∞

E (‖Xx0(t)‖qv) ≤ Ĉq.

From (S2.6) we obtain that

lim sup
t→∞

E ((f (Xx0
(t)))ρ) ≤ Cρ2ρ(1 + Ĉq). (S2.7)

Note that ergodicity of the process (Xx0
(t))t≥0 implies that for any set A ⊂ S if sup

x∈A
f(x) <∞ then

we have

lim
t→∞

∑
y∈A

f(y)px0
(t, y) =

∑
y∈A

f(y)π(y). (S2.8)

1A postive function V : S → R is called norm-like if the set {x ∈ S : V (x) ≤ c} is compact for any c > 0.
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Suppose that
∑
y∈S

f(y)π(y) = ∞. Then for any M > 0, there exists a finite set AM ⊂ S such that∑
y∈AM

f(y)π(y) > M . Therefore from (S2.8) we obtain

M <
∑
y∈AM

f(y)π(y) = lim
t→∞

∑
y∈AM

f(y)px0
(t, y) ≤ lim sup

t→∞
E (f(Xx0

(t))) .

Let M0 = lim sup
t→∞

E (f(Xx0
(t))). Then M0 is finite due to (S2.7). If we take M to be greater than M0

then we have a contradiction. Hence
∑
y∈S

f(y)π(y) <∞.

For n = 1, 2, . . . define a finite set

An = {x ∈ S : f(x) < nM0}

and let Acn denote the complement of An. Note A1 ⊂ A2 ⊂ A3 ⊂ . . . and ∪∞n=1An = S. Using the
monotone convergence theorem we obtain

lim
n→∞

∑
y∈An

f(y)π(y) =
∑
y∈S

f(y)π(y). (S2.9)

From Markov’s inequality we get

lim sup
t→∞

P (f(Xx0
(t)) /∈ An) ≤ lim sup

t→∞
P (f(Xx0

(t)) ≥ nM0)

≤ lim supt→∞ E (f(Xx0
(t)))

nM0

≤ 1

n
.

Let 1lAcn(·) denote the indicator function of the set Acn. Let ρ′ be the positive number satisfying (1/ρ) +
(1/ρ′) = 1. Using the Holder’s inequality along with (S2.7) gives us

lim sup
t→∞

∑
y∈Acn

f(y)px0
(t, y) = lim sup

t→∞
E
(
f(Xx0

(t))1lAcn(Xx0
(t))
)

≤ lim sup
t→∞

(E (f(Xx0
(t))ρ))

1
ρ
(
E
(
1lAcn(Xx0(t))

)) 1
ρ′

≤ lim sup
t→∞

(E (f(Xx0(t))ρ))
1
ρ (P (Xx0(t) /∈ An))

1
ρ′

≤ 2C(1 + Ĉq)
1
ρ

n
1
ρ′

.

Using this inequality along with (S2.8) we obtain

lim sup
t→∞

E (f(Xx0
(t))) = lim sup

t→∞

∑
y∈S

f(y)px0
(t, y)

= lim sup
t→∞

∑
y∈An

f(y)px0(t, y) +
∑
y∈Acn

f(y)px0(t, y)


≤ lim sup

t→∞

∑
y∈An

f(y)px0
(t, y) + lim sup

t→∞

∑
y∈Acn

f(y)px0
(t, y)

≤
∑
y∈An

f(y)π(y) +
2C(1 + Ĉq)

1
ρ

n
1
ρ′

.

Letting n→∞ and using (S2.9) yields

lim sup
t→∞

E (f(Xx0
(t))) ≤ lim

n→∞

∑
y∈An

f(y)π(y) =
∑
y∈S

f(y)π(y). (S2.10)
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Similarly one can show that

lim inf
t→∞

E (f(Xx0(t))) ≥
∑
y∈S

f(y)π(y). (S2.11)

Combining (S2.10) and (S2.11) proves (S2.4). The relation (S2.5) is just the law of large numbers for
ergodic processes (see [10]).

Using Proposition S2.2 we can prove convergence of moments of (Xx0(t))t≥0 to their stationary values.
For any positive integer r, let Πr denote the r-th moment of the stationary distribution π. Then Πr is
a tensor of rank r defined in the same way as Ψr(x0, t) (see (S1.16)), with px0

(t, y) replaced by π(y).

Theorem S2.3. (Moment Convergence) Assume that Condition DD holds. Let r be any positive
integer satisfying r < (rmax − 1). Then Πr is finite (componentwise) and Ψr(x0, t)→ Πr as t→∞.

Proof. Let r be any positive integer satisfying r < (rmax − 1). Pick any index (i1, . . . , ir) ∈ {1, . . . , d}r.
Let f : S → R be given by f(y) = yi1 . . . yir , where y = (y1, . . . , yd). If v = (v1, . . . , vd) then yi ≤ ‖y‖v/vi

for each i. Hence if C = 1/(

r∏
j=1

vij ) then for all y ∈ S we have

|f(y)| ≤ C(1 + ‖y‖rv).

Observe that

Ψr
i1,...,ir (x0, t) =

∑
y∈S

f(y)px0
(t, y)

and

Πr
i1,...,ir =

∑
y∈S

f(y)π(y).

To prove the result we have to show that Πr
i1,...,ir < ∞ and Ψr

i1,...,ir (x0, t) → Πr
i1,...,ir as t → ∞. The

proof is now immediate from Proposition S2.2.

From Proposition S2.2 we can also conclude that for any positive integer r < (rmax − 1) we have

lim
t→∞

∑
x∈S
‖y‖rvpx0

(t, y) =
∑
y∈S
‖y‖rvπ(y).

Using part (C) of Theorem S1.2 we get ∑
y∈S
‖y‖rvπ(y) ≤ Ĉr. (S2.12)

This allows us to prove the following result.

Theorem S2.4. (Light-Tailedness at stationarity) Suppose that Condition DD holds with c5 = 0.
Then there exists a γ > 0 such that ∑

y∈S
eγ‖y‖vπ(y) <∞.

Proof. Note that if c5 = 0 then rmax = ∞ and (S2.12) holds for all positive integers r. Let C be a
positive constant such that Ĉr ≤ r!Cr for all integers r ≥ 1. Such a constant exists due to Lemma S1.4.
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Let γ = 1/(2C). Due to (S2.12) we obtain

∑
y∈S

eγ‖y‖vπ(y) ≤ 1 +

∞∑
r=1

γr

r!

∑
y∈S
‖y‖rvπ(y)

≤ 1 +

∞∑
r=1

γr

r!
Ĉr

≤ 1 +

∞∑
r=1

(γC)r

≤ 1 +

∞∑
r=1

1

2r
<∞.

This proves the theorem.

Using the analytical tools developed in the previous sections, several general results can be stated for
the class of unimolecular reaction networks and bimolecular reaction networks. In what follows, when we
say that a moment is bounded, we mean that it is bounded uniformly in time. This can be established
using Theorem S1.2 once Condition DD is verified. Furthermore, when we say that a moment is globally
converging, we mean that it converges to its equilibrium value as time tends to infinity, irrespective of
the initial state x0. Once, Condition DD is verified, this can established using Theorem S2.3.

S3 Results on unimolecular reaction networks

We now discuss results on unimolecular reaction networks. As shown in the paper, these networks exhibit
certain interesting properties. For instance, the boundedness of the all the moments can be judged from
the feasibility of a linear program. Moreover this feasibility criterion also proves that the underlying
(irreducible) Markov process representing the reaction network is ergodic.

For unimolecular networks, condition (S1.4a) can be reformulated as

p(c1, c2, v, x) := xᵀ(A+ c2I)v + bT v − c1 ≤ 0 (S3.1)

for all x ∈ R
d
≥0. Here, the matrix A is Metzler2 and the vector b is nonnegative. Linearity of the

propensity functions implies that condition (S1.4b) can always be satisfied with c5 = 0, for a suitable
choice of positive constants c3 and c4. Hence we do not consider this condition further in this section.
The rest of this section is devoted to deriving theoretical and computational results for characterizing
the existence of v > 0 such that (S3.1) holds and, when this is the case, finding (sub)optimal values for
c1 and c2 in order to compute asymptotic moment bounds and infer ergodicity of the Markov process.

S3.1 Proof of Proposition 7 and extensions to uncertain networks

We prove here Proposition 7 in the main text, which is recalled below for convenience.

Proposition S3.1 (Nominal ergodicity). Let us consider the general unimolecular reaction network
(15) and assume that the state-space of the underlying Markov process is irreducible. Let the matrices
A ∈ Rd×d and b ∈ Rd≥0, ||b|| 6= 0, be further defined as

K∑
n=1

λn(x)〈v, ζn〉 = xᵀAv + bᵀv. (S3.2)

Then, the following statements are equivalent:

1. The matrix A is Hurwitz-stable, i.e. it has all its eigenvalues in the open left half-plane.

2. There exists a positive vector v ∈ Rd such that Av < 0.

2A square real matrix is Metlzer when all its off-diagonal elements are nonnegative.
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Moreover, when one of the above statements holds, the Markov process describing the reaction network
is exponentially ergodic and all the moments are bounded and globally converging. �

Proof. To prove the equivalence between statements 1) and 2), it is enough to note that the matrix A
is Metzler. Then, from linear positive systems theory [8], the result follows. If one of the statements
holds, then there exist v > 0 and c2 such that Av ≤ −c2v. Choosing then c1 = bᵀv shows exponential
ergodicity of the process. Noticing finally that the Condition DD holds with c5 = 0 proves that all the
moments are bounded and globally converging.

Now assume that the Metzler matrix A in (S3.1) depends on a vector δ ∈ [−1, 1]η where η ∈ N is the
number of distinct uncertain parameters. We write this matrix as A(δ). Several methods can be used in
order to deal with this case with uncertainities in the propensity functions.

Exact method Suppose that there exists a matrix A+ ∈ Rd×d satisfying the following properties:

1. A(δ) ≤ A+ (in the componentwise sense) for all δ ∈ [−1, 1]η

2. There exists a δ∗ ∈ [−1, 1]η such that A+ = A(δ∗).

Note that such a matrix A+ may not exist, especially when some entries are not independent. However,
when A+ exists we have the following result.

Theorem S3.2 (Robust ergodicity). Let us consider the general unimolecular reaction network (15)
described by the uncertain Metzler matrix A(δ) that we assume to admit the upper-bound A+ defined
above. Assume further that the state-space of the underlying Markov process is irreducible for all uncertain
parameter values δ ∈ [−1, 1]η. Then, the following statements are equivalent:

1. The matrix A(δ) is Hurwitz-stable for all δ ∈ [−1, 1]η.

2. The matrix A+ is Hurwitz-stable.

3. There exists a positive vector v ∈ Rd such that A+v < 0.

Moreover, when one of the above statements holds, the Markov process describing the reaction network
is robustly exponentially ergodic and and all the moments are bounded and globally converging. �

Proof. The proof relies on the fact that for two Metzler matrices M1,M2 ∈ Rn×n such that M2 ≥ M1

componentwise, we have that λF (M2) ≥ λF (M1) where λF (·) is the Frobenius eigenvalue [1]. Therefore,
assuming that A+ defined in the sense of (S3.3) exists, proving that A+ is Hurwitz-stable implies that
A(δ) is Hurwitz-stable for all δ ∈ [−1, 1]η. Conversely, having A(δ) Hurwitz-stable for all δ ∈ [−1, 1]η

implies that A+ is Hurwitz-stable as well since there exists at least one δ ∈ [−1, 1]η for which we have
A+ = A(δ).

Approximate method When A+ is not defined, it is possible to derive a conservative criterion using
the matrix

A± := sup
δ∈[−1,1]η

{A(δ)} (S3.3)

where the supremum is again taken in the in the componentwise sense. Note that, in this case, the
matrix A± is always well-defined and we have that A± = A+ when A+ exists. The use of A± leads to
the following result.

Theorem S3.3 (Robust ergodicity). Let us consider the general unimolecular reaction network (15)
described by the uncertain Metzler matrix A(δ). Assume further that the state-space of the underly-
ing Markov process is irreducible for all uncertain parameter values δ ∈ [−1, 1]η. Then, the following
statements are equivalent:

1. The matrix A± is Hurwitz-stable.

2. There exists a positive vector v ∈ Rd such that A±v < 0. �
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Then, the matrix A(δ) is Hurwitz-stable for all δ ∈ [−1, 1]η and the stochastic reaction network is
exponentially ergodic and all the moments are bounded and globally converging.

Proof. The proof follows along the same lines as the first robustness result.

Note, however, that the Hurwitz-stability condition on A± is only sufficient. It is also possible to
merge these two approaches by first choosing a maximal subset of parameters for which A+ is well-defined

and then consider the remaining parameters δ′ ∈ [−1, 1]η
′
, η′ < η in a robust analysis setting by looking

for a constant vector v > 0 such that A+(δ′)v < 0. A parameter dependent v(δ′) may also be considered,
at the expense of computational complexity and poor scalability. Finally, the method of [3] can be used
as well in order to explicitly consider the structure of the parameter dependence of the matrix A(δ).

Example S3.4. Let us consider the Metzler matrix

A(δ) =

[
−1 0

2 + δ −3− δ

]
where δ ∈ [−1, 1]. This matrix does not admit an upper-bound A+ since the (2, 1) entry is maximum
when δ = 1 while the (2,2) entry is maximum when δ = −1. However, the corresponding A± matrix is
given by

A± =

[
−1 0
3 −2

]
.

Note that since the matrix A± is Hurwitz-stable, then A(δ) is also Hurwitz-stable for all δ ∈ [−1, 1].
If, however, we modify A(δ) so that the (1,2) entry is now equal to 1, then the matrix A(δ) is still
Hurwitz-stable for all δ ∈ [−1, 1] but A± is not.

S3.2 Computing an optimal value for Ĉ1 when the vector v is given

Assume now that we want to find the minimum value for the asymptotic first-order moment bound of
〈v,X(t)〉 given by Ĉ1 = c1/c2 in Theorem S1.2. Let v > 0 be given. In this case, finding an optimal
value for the ratio c1/c2 can be cast as the following optimization problem:

min
c1,c2

Ĉ1 :=
c1
c2

s.t.

c1, c2 > 0

p(c1, c2, v, x) ≤ 0, ∀x ∈ RN≥0.
(S3.4)

Since the polynomial p(c1, c2, v, x) is affine in x, the above optimization problem is equivalent to

min
(c1,c2)∈R2

Ĉ1 s.t.

c1, c2 > 0
(A+ c2I)v ≤ 0

bT v − c1 ≤ 0.

(S3.5)

The above optimization problem with rational cost can be equivalently turned into a linear program, as
presented below:

Theorem S3.5. The optimal solution z∗ of the linear program

max
z∈R

z s.t.

z > 0
(zI +A)v ≤ 0

(S3.6)

is related to the solution Ĉ∗1 of the program (S3.5) by Ĉ∗1 =
bᵀv

z∗
.
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Proof. The optimization problem (S3.4) is a linear fractional programming problem [2, pp. 151]. Using
the change of variables y1 = c1/c2, y2 = 1/c2 (see [2, pp. 151]), we can reformulate it as the following
equivalent linear programming problem

min
(y1,y2)∈R2

y1 s.t.

v +Avy2 ≤ 0
−y1 + y2b

ᵀv ≤ 0
y2 ≥ 0

(S3.7)

and we have y∗1 = Ĉ∗1 .
Noting that minimizing over y1 > 0 according to the second constraint is equivalent to saying that

y∗1 = bᵀvy∗2 , we obtain the optimization problem

min
y2∈R

y2 s.t.

(I + y2A)v ≤ 0
y2 ≥ 0

(S3.8)

and we have Ĉ∗1 = bᵀvy∗2 . The problem is obviously not feasible for y2 = 0 since v > 0 by assumption.
Therefore, letting z := 1/y2 yields the result.

Remark S3.6. The computational complexity of the optimization problem (S3.6) scales linearly with
respect to the number of species. The number of variables is 1 and the number of constraints is d + 1.
Note that the number of reactions does not have any impact on the complexity of the optimization problem.

S3.3 Computing an optimal value for Ĉ1 when the vector v contains some
decision variables

In this case, the problem involves bilinear constraints and a globally convergent bisection procedure can
be used to maximize c2 (but may not globally minimize c1/c2). In the following, the vector θ ∈ R`>0,
` ≤ d is used to denote the decision variables. In this case, we denote by v(θ) the vector v depending on
the decision vector θ.

S3.3.1 Some entries of v are fixed

We assume here that ` < d. The optimization problem that needs to be solved in this case is given by

max
(z,θ)∈R`+1

z s.t.

z > 0
vi(θ) > εi, i = 1, . . . , `
(zI +A)v(θ) ≤ 0

(S3.9)

where the εi’s are lower bounds on the vi(θ)’s in order to avoid 0 values (if required). This problem can
be solved using a bisection algorithm and we have

Ĉ∗1 ≤
bᵀv(θ∗)
z∗

. (S3.10)

In general equality does not hold in (S3.10). However when bᵀv(θ) does not depend on θ, the computed
optimum is global for the specific choice of v(θ) and constraints on θ.

Remark S3.7 (Complexity). In this optimization problem, the number of constraints is d+ `+ 1 while
the number of variables is ` + 1. The computational complexity therefore grows linearly with respect to
the number of species.
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S3.3.2 v has to be fully determined

When ` = d, the vector v = θ has to be fully determined. In this case, a problem may occur when the
matrix A is reducible3. If this happens, the optimal solution for v may contain 0 entries, and therefore
this solution cannot be used for our subsequent analysis. Nevertheless, such a solution gives some insights
on the optimal value c∗2 = z∗.

Perron-Frobenius Theorem Since A in (S3.1) is a Metzler matrix, Perron-Frobenius theory can be
applied to determine the suitable values for v and z such that (zI + A)v = 0 holds. Note that this
problem is an eigenvalue problem.

Theorem S3.8 (Perron-Frobenius Theorem). Let M ∈ Rn×n be an irreducible Metzler matrix and let
τ > 0 be such that τI +M is nonnegative and has spectral radius ρ. Then,

1. the number ρ is positive and is an eigenvalue of τI +M ;

2. the eigenvalue ρ is simple;

3. the matrix M + τI has a right-eigenvector with positive entries;

4. ρ is the only eigenvalue having a positive eigenvector.

In order to apply this result to our problem, set τ = −min{0, a11, . . . , add} ≥ 0 to have A + τI
nonnegative. The optimal value z∗ is then simply given by z∗ = τ − ρ and we have (z∗I + A)v∗ = 0
where v∗ is the positive right-eigenvector associated with the eigenvalue ρ of τI +A.

An example where v does not contain any 0 entry Let A and b be given by

A =

[
−2 1
1 −3

]
, b =

[
1
0

]
. (S3.11)

Clearly, A is irreducible. Choosing τ = 3, we get that ρ =
1 +
√

5

2
and therefore

z∗ =
5−
√

5

2
and v∗ =


(

1 +
√

5

2

)
1

 .
In this case, c1 = v1 =

1 +
√

5

2
and then we have

lim
t→∞

E

[
(1 +

√
5)X1(t) + 2X2(t)

]
≤ 1 +

3

5

√
5 (S3.12)

where (X1(t), X2(t))t≥0 is the Markov process describing the reaction network associated with the ma-
trices (S3.11). Let

E(t) :=

[
E[X1(t)]
E[X2(t)]

]
be the vector of first-order moments. Then, we have that

Ė(t) = AᵀE(t) + b, E(0) = E0. (S3.13)

The above dynamical system can be used to check the tightness of the bound in (S3.12). To this aim,
we compute the equilibrium point of the above system which is given by

E∗ = −A−ᵀb =
1

5

[
3
1

]
. (S3.14)

Substituting then the equilibrium solution (S3.14) in the left-hand side of (S3.12), we obtain that

(1 +
√

5)E∗1 + 2E∗2 = 1 +
3

5

√
5

which shows the exactness of the computed upper-bound in this case.

3A matrix is reducible if and only if it can be placed into a block upper-triangular form by simultaneous row/column
permutations. In addition, a matrix is reducible if and only if its associated digraph is not strongly connected.
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An example where v contains 0 entries When A is reducible, there may not be a positive v∗ such
that (z∗I +A)v∗ = 0 holds, as shown in the following example.

Example S3.9. Assume that A and b are given by

A =

[
−1 1
0 −2

]
, b =

[
1
0

]
.

Clearly, A is reducible and the optimal z is given by z∗ = 1 but the corresponding v is given by v∗ =[
1 0

]ᵀ
which contains a 0 entry.

In such case, there exist two possibilities: either pick a suboptimal z∗ and solve the problem in an
analytical way, or use an optimization algorithm. We describe both these approaches below.

Algorithmic solution A computational way to solve the ‘0-entry problem’ relies on the following
optimization problem where positive lower bounds εi are imposed on the components of v:

max
(z,v)∈Rd+1

z s.t.

z > 0
vi > εi, i = 1, . . . , d
(zI +A)v ≤ 0.

(S3.15)

This problem can be solved using a bisection algorithm and we have

Ĉ∗1 ≤
bᵀv∗

z∗
. (S3.16)

Analytical solution The idea here is to simply pick a small ε > 0 for which we have ((z∗−ε)I+A)vε ≤
0 for some vε > 0, and then solve the problem analytically. In the case of Example S3.9, if we pick a
small ε ∈ (0, 1), there will exist a corresponding vε such that ((z∗ − ε)I +A)vε ≤ 0 holds. A suitable vε
is given by vε =

[
ξ/ ε ξ

]
for some ξ > 0. The optimal choice for c1 is therefore c∗1 = ξ/ ε in this case.

Looking at the ratio c∗ := c∗1/c
∗
2, we find that

c∗ =
ξ

ε(1− ε)
(S3.17)

and therefore

lim
t→∞

E

[
ξ

ε
X1(t) + ξX2(t)

]
≤ 4ξ

ε(1− ε)
. (S3.18)

The right-hand side is minimum when ε = 1/2, and this yields

lim
t→∞

E[2ξX1(t) + ξX2(t)] ≤ 4ξ, (S3.19)

and hence
lim
t→∞

E[2X1(t) +X2(t)] ≤ 4. (S3.20)

Again, we can check the validity of the bound by looking at the stationary solution of the dynamical
system representing the dynamics of the first-order moments:

Ė(t) = AᵀE(t) + b, E(0) = E0 (S3.21)

given by

E∗ = −A−ᵀb =

[
1

1/2

]
. (S3.22)

Substituting the stationary solution in (S3.20), shows that the bound 4 is not tight since 2E∗1 + E∗2 =
2.5 < 4.

The take-away message here is that minimizing (S3.17) does not always minimize the gap between
the right-hand side and the left-hand side of (S3.18). This gap, moreover, clearly depends on the choice
of v. Note also that minimizing such a gap is generally not possible since the equilibrium values may not
be known (e.g. in the bimolecular case for instance).
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S4 Results on bimolecular reaction networks

When bimolecular networks are considered, the condition (S1.4a) can be reformulated as

p(c1, c2, v, x) = xᵀM(v)x+ xᵀ(A+ c2I)v + bᵀv − c1 ≤ 0, x ∈ Rd≥0. (S4.1)

The presence of the quadratic term xᵀM(v)x clearly complicates the analysis. Several approaches can
therefore be considered to take care of this term:

1. For some networks, the quadratic terms can be eliminated from the constraints through an ap-
propriate choice for v, simplifying the subsequent analysis. For these networks, boundedness of
all moments follows from the boundedness of the first-order moments. As in the previous section,
ergodicity can be proved using simple results from linear algebra or by solving linear programming
problems.

2. For some other networks, the quadratic terms cannot be eliminated but the condition (S4.1) can
be exactly cast as a linear programming problem. Ergodicity holds but boundedness of all the
moments does not hold in general.

3. In all the other cases, we will have to deal with a copositivity problem (NP-complete problem [12])
and will have to rely upon conservative LP and SDP relaxations, some of them being asymptotically
exact, yet very complex numerically. In this case, again, ergodicity will hold but boundedness of
all the moments is not guaranteed.

Only the two first cases are theoretically developed in the current paper. The latter one will only be
illustrated in Section S11 through an example. The full theory of the latter case will be addressed in a
future paper.

S4.1 Proof of Propositions 10 and 11

To address Case 1, it is convenient to define Sq as the restriction of the stoichiometry matrix S to
bimolecular reactions. Define

Nq :=
{
v ∈ Rd : v > 0, vᵀSq = 0

}
which consists of positive vectors in the left null-space of Sq. Then we have the following result (corre-
sponding to Proposition 10 in the paper).

Proposition S4.1 (Nominal ergodicity for bimolecular networks). Let us consider the general bimolecu-
lar reaction network (18) and assume that the state-space of the underlying Markov process is irreducible.
Assume further that there exists a vector v ∈ Nq such that Av < 0.

Then, the stochastic bimolecular reaction network (18) is ergodic and all the moments are bounded
and globally converging. �

Proof. The proof follows from the fact that if v ∈ Nq, then (S4.1) reduces to

p(c1, c2, v, x) = xᵀ(A+ c2I)v + bᵀv − c1 ≤ 0 (S4.2)

which is identical as in the unimolecular case. Then, the existence of v ∈ Nq, c1, c2 > 0 such that the
above inequality holds for all x ∈ Rd≥0 proves ergodicity. The boundedness and global convergence of all
the moments follows from Corollary S2.3 and the fact that c5 can be set to 0 in (S1.4b).

The critical role of the space Nq imposes a restriction on the number of bimolecular reactions. The
non-emptiness of Nq is equivalent to the existence of a conservation law for all the bimolecular reactions,
i.e. a linear combination of all the species whose value is preserved over time when considering only
bimolecular reactions. Note that this definition extends to more general mass-action kinetics as well. A
necessary condition for the non-emptiness of Nq is that Sq is not full-row rank. Note also that when the
number of bimolecular reactions increases, the dimension of the space Nq decreases. This progressively
restricts the possible choices for v, potentially disabling approach to yield conclusive results.

WhenNq is empty, we may ask whether it is possible to exactly verify (S4.1) using linear programming
techniques. First note that if M(v) in (S4.1) is such that xᵀM(v)x ≤ 0 holds for all x ≥ 0, then the
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condition (S4.1) will hold provided that Av < 0. Checking whether a symmetric matrix M(v) verifies
this property is known as the coposivity (or conegativity in this case) problem which is NP-complete
[12]. However, when the matrix M(v) exhibits a certain sparsity structure, then checking copositivity
exactly reduces to a tractable linear programming problem. This sparsity structure is defined below:

Definition S4.2. We say that a symmetric real matrix W = [wij ] is of class SI if wiiwijwjj = 0 for all
i, j = 1, . . . , d. A network is said to be a bimolecular SI network if its matrix M(v) defined in (S4.1) is
of class SI .

For a matrix exhibiting such a sparsity structure, we have the following result:

Lemma S4.3. Let us consider a real symmetric matrix W = [wij ] ∈ R
d×d is of class SI . Then, the

following statements are equivalent:

1. The matrix W is copositive, i.e. xTWx ≥ 0 for all x ≥ 0.

2. The matrix W is nonnegative.

Proof. The proof that W nonnegative implies that the quadratic form is copositive is straightforward.
The converse is less obvious. Assume that the matrix W is copositive and of class SI , then the quadratic
polynomial q(x) := xTWx does not have terms of the form wiix

2
i + 2wijxixj + wjjx

2
j . Letting xi > 0

and xj = 0 for all j 6= i, we get that q(x) = wiix
2
i . Copositivity then implies that wii ≥ 0.

What remains to be proved now is the nonnegativity of the wij ’s. To show this, assume w.l.o.g.
that xi and xj are involved as wiix

2
i + 2wijxixj and set all the other entries of x to zero. Then q(x) =

wiix
2
i + 2wijxixj . It is clear that since xi and xj are independent, then x2i and xixj are independent as

well and thus copositivity of W implies that wij ≥ 0. This argument can be repeated for all the terms
in q(x), thereby proving the result.

The above result gives a way to efficiently check whether the matrix M(v) is conegative.

Proposition S4.4 (Nominal ergodicity for bimolecular networks). Let us consider the general bimolecu-
lar reaction network (18) and assume that the state-space of the underlying Markov process is irreducible.
Assume further that there exists a vector v > 0 such that Av < 0 and M(v) is conegative.

Then, the stochastic bimolecular reaction network (18) is ergodic and all the moments up to order
b1 + 2c2/c5c − 2 are bounded and globally converging. �

Proof. As before, the goal is to show that (S4.1) holds for some c1, c2 > 0. It is immediate to see that the
under the assumptions of the theorem, we have the existence of c2 > 0 such that xᵀ(A+c2I)v+xᵀM(v)x ≤
0 for all x ≥ 0, and therefore ergodicity holds. Moreover, since the reaction network is bimolecular the
term c5 in (S1.4b) is nonzero, from Theorem (2) and formula (S1.11), we can state that all the moments
up to b1 + 2c2/c5c − 2 are bounded and globally converging.

In case, one can find a vector v > 0 such that M(v) is negative definite, then the constraint on the
stability of the matrix A can be relaxed, as demonstrated by the following proposition:

Proposition S4.5 (Nominal ergodicity for bimolecular networks). Let us consider the general bimolecu-
lar reaction network (18) and assume that the state-space of the underlying Markov process is irreducible.
Assume further that there exists a vector v > 0 such that M(v) is negative-definite.

Then, the stochastic bimolecular reaction network is ergodic and all the moments up to order b1 +
2c2/c5c − 2 are bounded and globally converging. �

Proof. First note that we have the following equality

bT v + xᵀAv + xᵀM(v)x =

(
x+

1

2
M(v)−1Av

)ᵀ

M(v)

(
x+

1

2
M(v)−1Av

)
−1

4
vᵀAᵀM(v)−1Av + bT v.

(S4.3)

The condition (S1.4a) can hence be reformulated as(
x+

1

2
M(v)−1Ãv

)ᵀ

M(v)

(
x+

1

2
M(v)−1Ãv

)
− 1

4
vᵀÃᵀM(v)−1Ãv ≤ 0 (S4.4)
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where Ã = A+ c2I and we have set that c1 = bT v. Clearly, the inequality is not satisfied for all x ∈ Nd0
but is satisfied for all x ∈ Nd0 outside the set

E :=

{
x ∈ Rd :

(
x+

1

2
M(v)−1Ãv

)ᵀ

M(v)

(
x+

1

2
M(v)−1Ãv

)
≥ 1

4
vᵀÃᵀM(v)−1Ãv

}
. (S4.5)

This implies that c1 can be adapted to such that the inequality (S1.4a) is satisfied for all x ∈ Nd0.

S4.2 Optimization problem corresponding to Proposition S4.1

When v contains 0 < ` ≤ d distinct decision variables, denoted by θ ∈ R`, the following program can be
used to check the conditions of Proposition S4.1:

max
(z,θ)∈R`+1

z

s.t. z > 0
vi(θ) > ε, i = 1, . . . , `
(zI +A)v(θ) ≤ 0
v(θ)ᵀSq = 0.

(S4.6)

Moreover, when the optimization problem is feasible, we have that

Ĉ∗1 ≤ bᵀ
v(θ∗)
z∗

(S4.7)

where (z∗, v∗) is a global minimizer of the problem. Note that the additional equality constraint
v(θ)ᵀSq = 0 imposes that v(θ) ∈ Nq.

S4.3 Details on the example about the non-ergodic process with unbounded
moments

Let us consider now the following reaction network with mass-action kinetics:

∅ 1−−⇀ S1

∅ 1−−⇀ S2

S1 + S2
1−−⇀ ∅.

(S4.8)

Let κ ∈ R2
≥0 be the vector of concentrations that denotes the state for the deterministic model. Then

we have that
κ̇1(t) = 1− κ1(t)κ2(t)
κ̇2(t) = 1− κ1(t)κ2(t).

(S4.9)

Assume that κ2(0)− κ1(0) = α, for some α ∈ R, then clearly κ2(t)− κ1(t) = α for all t ≥ 0. Moreover,
the unique positive equilibrium point for this class of initial conditions is given by

κ∗1 =
1

2

(
−α+

√
α2 + 4

)
and κ∗2 =

1

2

(
α+

√
α2 + 4

)
. (S4.10)

To show that this equilibrium point is globally exponentially stable let

σ := (κ1 − κ∗1)2 + (κ2 − κ∗2)2. (S4.11)

Since κ2(t) = κ1(t) + α for all t ≥ 0, we get that

σ = 2(κ1 − κ∗1)2. (S4.12)

Differentiating σ yields

σ̇ = −2

[
κ1 +

1

2

(
α+

√
α2 + 4

)]
σ

≤ −
(
α+

√
α2 + 4

)
σ

(S4.13)
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where the last inequality has been obtained using the fact that κ1(t) ≥ 0. This relation shows that
σ(t)→ 0 exponentially fast as t→∞, which proves global exponential stability of the unique fixed point
of the system in the deterministic setting.

We now examine the stochastic model for the reaction network. Let X(t) = (X1(t), X2(t)) be the state
at time t of the Markov process describing the reaction network (S4.8). Assume that X1(0)−X2(0) = α
for some α ∈ Z. Let A be the generator of the Markov process and let F1(x) = x1 − x2 for x = (x1, x2).
Then

AF1(x) = 0 (S4.14)

for all x ∈ N0, which shows that E[X1(t) − X2(t)] = X1(0) − X2(0) = α for all t ≥ 0. Therefore the
difference between the first-order moments remains constant over time. However, we now show that the
trajectories of E[X1(t)] and E[X2(t)] grow unboundedly with time.

Let Z(t) = X1(t)−X2(t). For any M > 0, Markov’s inequality and X2(t) ≥ 0 imply that

E[X1(t)] ≥MP(X1(t) ≥M)

≥MP(X1(t) ≥M +X2(t))

= MP(Z(t) ≥M) (S4.15)

Note that the process (Z(t))t≥0 starts at α and it remains unaffected by the third reaction in (S4.8).
From the random time-change representation of Kurtz (see Chapter 4 in [6]) it is immediate that the
process (Z(t))t≥0 can be represented as

Z(t) = α+ Y1(t)− Y2(t),

where Y1 and Y2 are independent, unit rate Poisson processes. Using the property of independent and
stationary increments of a Poisson process, and the Central Limit Theorem we can conlcude that for
i = 1, 2 (

Yi(t)− t√
t

)
converges in distribution to a standard normal random variable as t → ∞. This fact along with the
independence of Y1(t) and Y2(t) implies that as t→∞

Z(t)√
t

=
α√
t

+

(
Y1(t)− t√

t

)
−
(
Y2(t)− t√

t

)
,

converges in distribution to a normal random variable with mean 0 and variance 2. Hence

lim
t→∞

P(Z(t) ≥M) = lim
t→∞

P

(
Z(t)√
t
≥ M√

t

)
=

1

2
. (S4.16)

Therefore from (S4.15) we obtain

lim inf
t→∞

E[X1(t)] ≥ M

2
.

Since M is arbitrary, we can conclude that E[X1(t)] → ∞ as t → ∞. Furthermore, Jensen’s inequality
shows that all the moments of X1(t) grow unboundedly with time. From the symmetry of the reaction
network (S4.8) it is immediate that the same conclusions hold for X2(t).

Perhaps interestingly, the variance of Z(t) has a simple closed-form expression. To see this observe
that for the function F2(x) := (x1 − x2)2 we have

AF2(x) = (x1 − x2 + 1)2 − (x1 − x2)2 + (x1 − x2 − 1)2 − (x1 − x2)2

= 2.
(S4.17)

Therefore Dynkin’s theorem implies that E[Z(t)2] = 2t + α2 and hence the variance of Z(t) is just 2t,
showing explicitly that it grows unboundedly with time.

Note that unbounded growth of all the moments does not necessarily imply that the process is non-
ergodic. However for this example we show that this is indeed the case and the Markov process is
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non-ergodic. We argue by contradiction. Suppose that the process is ergodic and let π be the unique
stationary distribution. For any ε ∈ (0, 1/2) there exists a M > 0 large enough such that

π
(
{(x1, x2) ∈ N2

0 : x1 < M}
)
≥ 1− ε .

Since the process is ergodic, then we must have

1− ε ≤ π
(
{(x1, x2) ∈ N2

0 : x1 < M}
)

= lim
t→∞

P(X1(t) < M) = 1− lim
t→∞

P(X1(t) ≥M). (S4.18)

However, X1(t) ≥ Z(t) for any t and hence using (S4.16) we get

lim
t→∞

P(X1(t) ≥M) ≥ lim
t→∞

P(Z(t) ≥M) =
1

2
.

Substituting this inequality in (S4.18) we obtain 1− ε ≤ 1/2 which is a contradiction since ε ∈ (0, 1/2).
Hence the process is non-ergodic.

S4.4 Details on the attractive compact set calculation

Let us consider the stochastic bimolecular chemical reaction network

∅ k−→ S1

S1
γ1−→ ∅

S1 + S1
b−→ S2

S2
u−→ S1 + S1

S2
γ2−→ ∅

(S4.19)

which is easily seen to be represented by an irreducible Markov process. In this case, the condition
(S1.4a) becomes

kv1 − c1 +

(
−γ1v1 + c2v1 −

b

2
(v2 − 2v1)

)
x1 +

b

2
(v2 − 2v1)x21

+ (u(2v1 − v2) + c2v2 − γ2v2)x2 ≤ 0.
(S4.20)

Noting that Sq =

[
−2
1

]
, and hence setting v =

[
1
2

]
∈ Nq the above inequality becomes

k − c1 + (−γ1 + c2)x1 + 2 (c2 − γ2)x2 ≤ 0, x ∈ R2
≥0. (S4.21)

Condition (S4.21) is affine in x and therefore easy to verify. Choosing c1 = k and c2 = min{γ1, γ2}
implies that Ĉ1 = c1/c2 and that

lim
t→∞

(E[X1(t)] + 2E[X2(t)]) ≤ k

min{γ1, γ2}
. (S4.22)

Letting, for instance, k = 10, γ1 = 2, b = 10, u = 1 and γ2 = 2 as well as v =
[
1 2

]T
, we get the

optimal cost of 5 meaning that for X1(0) = X2(0) = 0 we have

lim
t→∞

E[X1(t)] + 2E[X2(t)] ≤ 5. (S4.23)

Monte-Carlo simulations yield the values E1 = 1.17± 0.01 and E2 = 1.927± 0.02 for the equilibrium
values of the average number of species S1 and S2. Inserting these values in the equation (S4.23) yields

E1 + 2E2 = 5.024± 0.05 (S4.24)

showing that the compact set agrees very well with the equilibrium values (although this is a necessary
condition only). As a by-product, this also proves that the stochastic chemical reaction network is ergodic
and that all the moments are bounded and globally converging.
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S5 Details on the feedback loop example

The case of dimerization is considered first and is later generalized to the multimerization case.

S5.1 Dimerization

Let us consider the feedback network with dimerization

∅ f(S3)−−⇀ S1

S1
k2−−⇀ S1 + S2

S2 + S2 
 S3

Si
γi−−⇀ ∅, i = 1, 2, 3.

(S5.1)

where the function f : R≥0 → R≥0 is bounded, e.g. an inhibiting Hill function. Above, S1, S2 and S3

are the mRNA, protein and dimer, respectively. Such a network is represented in Fig. 1. We have the
following result:

Result S5.1. For any positive values of the rate parameters and any bounded nonnegative function
f , the feedback loop network with dimerization (S5.1) is ergodic and all the moments are bounded and
globally converging.

Proof. The matrix Sq is given, in this case, by

Sq =

 0
−2
1

 (S5.2)

and therefore we have that

Nq = Span>0

1 0
0 1
0 2

 (S5.3)

where Span>0 denotes the positive span, i.e. all possible linear combinations of the columns resulting in
positive vectors. The left-hand side of Condition DD can be upper-bounded by the expression xᵀAv+bᵀv
where

A =

−γ1 k2 0
0 −γ2 0
0 0 −γ3

 , b =

sup
y≥0
{f(y)}

0
0

 . (S5.4)

From Proposition S4.1, the ergodicity of the Markov process is ensured if there exist θ1, θ2 > 0 such that−γ1 k2 0
0 −γ2 0
0 0 −γ3

 θ1θ2
2θ2

 < 0. (S5.5)

This is equivalent to the existence of θ1, θ2 > 0 such that[
−γ1 k2

0 −γ2

] [
θ1
θ2

]
< 0. (S5.6)

From positive system theory [8], for all γ1, γ2 > 0 and k2 > 0, there exist θ1, θ2 > 0 such that Condition
(S5.6) is satisfied since the matrix on the left-hand side is Hurwitz-stable. Therefore, using Proposition
S4.1, we can conclude that the feedback loop with dimerization is ergodic. Suitable choice for c1 and c2
are given by c1 = θ1 · supy≥0{f(y)} and c2 can be set arbitrarily close to min

i
{γi} through an appropriate

choice for θ1, θ2 > 0. To show that all the moments exist, then it is enough to show that the Condition
DD holds with c5 = 0. From the fact that v ∈ Nq and the boundedness of the function f , we can then
conclude that the condition indeed holds with c5 = 0. The conclusion follows.
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Figure 1: Feedback loop with arbitrary feedback rule.

S5.2 Multimerization with full degradation

Let us consider now the case where a multimerization of order N takes place before acting back on gene
expression. In this case, we have the following reaction network

∅ f(SN )−−⇀ S0

S0
k1−−⇀ S0 + S1

S1 + S1+i 
 S2+i, i = 0, . . . , N − 2

Si
γi−−⇀ ∅, i = 0, . . . , N.

(S5.7)

involving N + 1 species and N − 1 bimolecular reactions. Again the function f : R≥0 → R≥0 is bounded
on its domain.

We have the following result:

Result S5.2. For any positive values of the rate parameters and any bounded nonnegative function f ,
the feedback loop network (S5.7) is ergodic and all the moments are bounded and globally converging.

Proof. The stoichiometry matrix restricted to bimolecular reactions is given by

Sq =

S11
q S12

q

S21
q S22

q

0 S32
q

 (S5.8)

where S11
q =

[
0
−2

]
, S12

q =

[
01×(N−2)
−11×(N−2)

]
, S21

q =

[
1

0(N−3)×1

]
, S32

q =
[
01×(N−3) 1

]
and S22

q is a (N −

2) × (N − 2) lower bidiagonal matrix with -1 entries on the main diagonal and 1 entries on the lower
one. For this network, we have

Nq = Span>0


1 0
0 1
0 2
...

...
0 N

 (S5.9)
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and ergodicity holds if there exist θ1, θ2 > 0 such that the inequality
−γ0 k1 0 . . . 0

0 −γ1 0 . . . 0
0 0 −γ2 . . . 0

0 0 0
. . .

...
0 0 0 0 −γN




θ1
θ2
2θ2

...
Nθ2

 < 0 (S5.10)

is satisfied. This problem equivalently reduces to[
−γ0 k1

0 −γ1

] [
θ1
θ2

]
< 0 (S5.11)

which is obviously feasible from the stability of the matrix and positive system theory. Therefore, we
can conclude from Proposition S4.1 and the boundedness of the function f that the system is ergodic
and that all the moments are bounded and globally converging. Moreover, c2 can be made arbitrarily
close to min

i
{γi} and c1 is given by θ1 · supy≥0{f(y)}.

S5.3 Multimerization with partial degradation

Let us consider now the case where a multimerization of order N takes place before acting on the gene
expression and that multimers degrade in the multimer of lower order:

∅ f(SN)−−⇀ S0

S0
k1−−⇀ S0 + S1

S1 + S1+i 
 S2+i, i = 0, . . . , N − 2

S0
γ0−−⇀ ∅

S1
γ1−−⇀ ∅

Si
ρiγ1−−⇀ Si−1, i = 2, . . . , N

(S5.12)

where ρi’s are positive parameters and f : R≥0 → R≥0 is again a bounded function on its domain. We
then have the following result:

Result S5.3. For any positive values of the rate parameters and any bounded nonnegative function f(·),
the feedback loop (S5.12) is ergodic and all the moments are bounded and globally converging.

Proof. The matrix Sq is the same as in the previous example and ergodicity holds if there exist θ1, θ2 > 0
such that 

−γ0 k1 0 . . . 0
0 −γ1 0 . . . 0
0 ρ2γ1 −ρ2γ1 . . . 0

0 0 0
. . .

...
0 0 0 ρNγ1 −ρNγ1




θ1
θ2
2θ2

...
Nθ2

 < 0. (S5.13)

Using the same arguments as in the previous examples, we can conclude from Proposition S4.1 and the
boundedness of the function f that the reaction network is ergodic and that all the moments are bounded
and globally converging. Moreover, c2 can be made arbitrarily close to min{γ0, γ1, ρ2γ1, . . . , ρNγ1} and
c1 = θ1 · supy≥0{f(y)}.
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S6 Details on the stochastic switch example

S6.1 Stochastic switch with direct interaction

Let us consider the stochastic switch of [14] described by following network

∅ f1(S
1
2)−−⇀ S0

1

S0
1

k1−−⇀ S0
1 + S1

1

∅ f2(S
1
1)−−⇀ S0

2

S0
2

k2−−⇀ S0
2 + S1

2

Sj
i

γi,j−−⇀ ∅, i, j = 1, 2.

(S6.1)

where the functions f1 and f2 are inhibiting Hill functions (but can be generalized to any bounded
functions). Above, for each gene i, the species S0

i and S1
i represent mRNAs and proteins, respectively.

We then have the following result:

Result S6.1. For any values of the rate parameters and any bounded functions f1(·) and f2(·), the
stochastic switch (S6.1) is ergodic and all the moments are bounded and globally converging.

Proof. First note that for the network (S6.1), we have that

6∑
k=1

λk(x)〈v, ζk〉 ≤ xᵀAv + b, x ∈ N4
0 (S6.2)

where

A =


−γ1,0 k1 0 0

0 −γ1,1 0 0
0 0 −γ2,0 k2
0 0 0 −γ2,1

 , b =


sup
y≥0

f1(y)

0
sup
y≥0

f2(y)

0

 . (S6.3)

Since the matrix A is Hurwitz-stable and Metzler, then for all possible rate parameters, there exists a v >
0 such that Av < 0. From Proposition S3.1, we can then conclude that the stochastic reaction network is
ergodic. Moreover, c2 can be set arbitrarily close to min

i,j
{γi,j} and c1 = v1 supy≥0 f1(y)+v3 supy≥0 f2(y).

To show that all the moments exist, we need to prove that Condition DD holds with c5 = 0. Noting
then that the functions f1 and f2 are bounded from above, we can bound the left-hand side of (S1.4b)
by an affine function of x, showing therefore that c5 can be set to 0. The proof is complete.

S6.2 Stochastic switch with interaction by multimerization

Consider now a switch whose genes interact through multimers of their respective proteins as

∅
f1(S

N2
2 )

−−⇀ S0
1

S0
1

k11−−⇀ S0
1 + S1

1

S1
1 + Si

1

bi1−−⇀ Si+1
1 , i = 1, . . . , N1 − 1

∅
f2(S

N1
1 )

−−⇀ S0
2

S0
2

k2−−⇀ S0
2 + S1

2

S1
2 + Si

2

bi2−−⇀ Si+1
2 , i = 1, . . . , N2 − 1

Sj
1

γi,j−−⇀ ∅, j = 1, . . . , N1

S2
1

γi,j−−⇀ ∅, j = 1, . . . , N2

(S6.4)

where N1 and N2 are the multimerization orders of the proteins of gene 1 and 2, respectively. This
network involves N1 +N2− 2 bimolecular reactions while the number of different species is N1 +N2 + 2.
The functions f1 and f2 are again inhibiting Hill functions. We then have the following result:
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Result S6.2. For any values of the rate parameters and any bounded functions f1(·) and f2(·), the
reaction network (S6.4) is ergodic and all the moments are bounded and globally converging.

Proof. The matrix Sq is given by

Sq =

[
S1
q 0

0 S2
q

]
(S6.5)

where

Siq =

M i
11 M i

12

M i
21 M i

22

0 M i
32

 (S6.6)

where M i
11 =

[
0
−2

]
, M i

12 =

[
01×(Ni−2)
−11×(Ni−2)

]
, M i

21 =

[
1

0(Ni−3)×1

]
, M i

32 =
[
01×(Ni−3) 1

]
and M i

22 is a

(Ni − 2) × (Ni − 2) lower bidiagonal matrix with -1 entries on the main diagonal and 1 entries on the
lower one.

Therefore, the set Nq is given in this case by

Nq = Span>0

[
N 1 0
0 N 2

]
(S6.7)

where

N i :=


1 0
0 1
0 2
...

...
0 Ni

 . (S6.8)

Thus, the network is ergodic if there exist θi > 0, i = 1, . . . , 4 such that
−γ01 k21 0 . . . 0

0 −γ11 0 . . . 0
0 0 −γ21 . . . 0

0 0 0
. . .

...

0 0 0 0 −γN1
1




θ1
θ2
2θ2

...
N1θ2

 < 0 (S6.9)

and 
−γ02 k11 0 . . . 0

0 −γ12 0 . . . 0
0 0 −γ22 . . . 0

0 0 0
. . .

...

0 0 0 0 −γN2
2




θ3
θ4
2θ4

...
N1θ4

 < 0 (S6.10)

hold. Similar to the previous examples, we can conclude from Proposition S4.1 and the boundedness of
the functions fi’s that, for all positive values for the reaction rates, the reaction network is ergodic and
that all the moments are bounded and globally converging. Moreover, c2 can be made arbitrarily close
to min

i,j
{γji } and c1 = θ1 supy≥0{f1(y)}+ θ3 supy≥0{f2(y)}.
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S7 Details on the repressilator example

Let us consider the following N -gene repressilator [5] (see also Fig. 2):

∅ f1(S
1
N )−−⇀ S1

1

∅ f2(S
1
1)−−⇀ S1

2

∅ f3(S
1
2)−−⇀ S1

3
...

...
...

∅
fN (S1

N−1)−−⇀ S1
N

S1
1

k1−−⇀ S1
1 + S2

1

S1
2

k2−−⇀ S1
2 + S2

2

S1
3

k3−−⇀ S1
3 + S2

3
...

...
...

S1
N

kn−−⇀ S1
N + S2

N

S1
i

γi−−⇀ ∅, i = 1, . . . , N

S2
i

δi−−⇀ ∅, i = 1, . . . , N

(S7.1)

where fi(x) = αi+βi/(1+xn), αi, βi, n > 0. Above, S1
i and S2

i are the mRNA and protein corresponding
to gene i. We then have the following result:

Result S7.1. For all positive values of the parameters, the reaction network (S7.1) is ergodic and all
the moments are bounded and globally converging.

Proof. Similar to the previous example, we can use an upper-bound on the left-hand side of Condition
DD. Then, from Proposition S3.1 and the boundedness of the functions fi’s, we can conclude that the
network is ergodic and that all the moments are bounded and globally converging. Moreover, c2 can be
made arbitrarily close to min

i
{γi, δi} and c1 =

∑N
i=1(αi + βi)vi.

Figure 2: N -gene repressilator.

It is important to stress that multimerization with full or partial degradation can be easily incorpo-
rated in the model in the same way as for the feedback loop or the stochastic switch. It is therefore
possible to state that the N -gene repressilator with an arbitrary degree of multimerization is ergodic and
all the moments are bounded and globally converging.
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S8 Details on the SIR model example

Let us consider the following open stochastic SIR-model

∅ ks−−⇀ S

∅ ki−−⇀ I

S
γs−−⇀ ∅

I
γi−−⇀ ∅

R
γr−−⇀ ∅

S + I −−⇀ 2I

I
kir−−⇀ R

R
krs−−⇀ S.

(S8.1)

where S, I and R represent the population of susceptible, infectious and recovered people. Birth and
death reactions represent people entering and leaving the process, respectively. The only bimolecular
reaction is contamination which transforms one susceptible person into an infectious one. The two last
reactions represent infectious people recovering and, then, becoming susceptible again.

We then have the following result:

Result S8.1. For all positive values of the rate parameters, the stochastic SIR-model (S8.1) is ergodic
and that all the moments are bounded and globally converging.

Proof. The restriction of the stoichiometric matrix to bimolecular reactions is given by

Sq =

−1
1
0

 (S8.2)

and hence we have that

Nq = Span>0

1 0
1 0
0 1

 . (S8.3)

The matrices A and b defined in (S4.1) for this network are given by

A =

−γs 0 0
0 −γi − kir kir
krs 0 −γr − krs

 , b =

kski
0

 . (S8.4)

Using Proposition S4.1 we can conclude that the network is ergodic and all the moments are bounded
and globally converging if there exist θ1, θ2 > 0 such that−γs 0 0

0 −γi − kir kir
krs 0 −γr − krs

θ1θ1
θ2

 < 0. (S8.5)

This can be equivalently reformulated as[
−γi − kir kir

krs −γr − krs

] [
θ1
θ2

]
< 0. (S8.6)

Since the matrix in the above inequality is Hurwitz-stable for all positive values of the parameters,
there exist θ1, θ2 > 0 such that the inequality holds. Moreover, c2 can be made arbitrarily close to the
additive inverse of the Frobenius eigenvalue of the matrix in (S8.5) and c1 = (ks + ki)θ1. Therefore we
can conclude from Proposition S4.1 that the SIR-model (S8.1) is structurally ergodic and that all the
moments are bounded and globally converging.
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S9 Details on the circadian clock example

We consider here a more complex example, the circadian clock model of [15] described by the following
set of reactions:

R1 : S1 + S4
γA−−⇀ S2

R2 : S2
θA−−⇀ S1 + S4

R3 : S5 + S4
γR−−⇀ S6

R4 : S6
θR−−⇀ S5 + S4

R5 : S2
α′
A−−⇀ S2 + S3

R6 : S1
αA−−⇀ S1 + S3

R7 : S3

δMA−−⇀ ∅
R8 : S3

βA−−⇀ S3 + S4

R9 : S4
δA−−⇀ ∅

R10 : S6
α′
R−−⇀ S6 + S7

R11 : S5
αR−−⇀ S5 + S7

R12 : S7

δMR−−⇀ ∅
R13 : S7

βR−−⇀ S7 + S8

R14 : S8
δR−−⇀ ∅

R15 : S4 + S8
γC−−⇀ S9

R16 : S9
δA−−⇀ S8

where S1 = DA, S2 = D′A, S3 = MA, S4 = A, S5 = DR, S6 = D′R, S7 = MR, S8 = R and S9 = C,
according to the notations of [15]; see also Fig. 3. The above network, moreover, admits the conservation
of mass relations X1(t) + X2(t) = 1 and X5(t) + X6(t) = 1 where Xi(t) denotes the random variable
associated with species Si. Using, for instance, the numerical values of [15], we obtain the oscillatory
trajectories depicted in Fig. 4.

We then have the following result:

Result S9.1. For all positive values of the rate parameters, the circadian-clock model is ergodic and all
the moments are bounded and converging.

Proof. The circadian model contains bimolecular reactions corresponding to gene activation (R1 and R3)
and protein binding (R15). This system contains some species in finite number, i.e. S1,S2,S5,S6, which
correspond to genes, and potentially infinite ones corresponding to mRNA and proteins. Let f(x, v) be
given by

f(x, v) :=

16∑
i=1

λk(x)〈v, ζk〉. (S9.1)

This yields

f(x, v) = γAx1x4(v2 − v1 − v4) + θAx2(v4 + v1 − v2) + γRx5x4(v6 − v4 − v5)
+ θRx6(v4 + v5 − v6) + α′Ax2v3 + αAx1v3 − δMA

x3v3 − δAx4v4
+ βAx3v4 + α′Rx6v7 + αRx5v7 − δMR

x7v7 + βRx7v8
+ γCx4x8(v9 − v4 − v8) + δAx9(v8 − v9)− δRx8v8.

(S9.2)

Gathering the terms that are bounded into b̄(v, x) we obtain

f(x, v) = b̄(x, v) + x3(−δMA
v3 + βAv4)− δAx4v4 + γCx4x8(v9 − v4 − v8)

+ x7 [−δMR
v7 + βRv8]− δRv8x8 + δA(v8 − v9)x9

+ γAx1x4(v2 − v1 − v4) + γRx4x5(v6 − v5 − v4)
b̄(x, v) = θA(v4 + v1 − v2) + θR(v4 + v5 − v6) + α′Av3 + α′Rv7

+ x1 [−θA(v4 + v1 − v2)− α′Av3 + αAv3]
+ x5 [−θR(v4 + v5 − v6)− α′Rv7 + αRv7]

(S9.3)
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Figure 3: Circadian clock model of [15].

where we have used the change of variables x2 = 1 − x1 and x6 = 1 − x5. Since the term b̄(x, v) is
bounded, then the only bimolecular reaction we have to take care of is reaction R15 since this is the only
one that may lead to unbounded trajectories and unbounded moments. The corresponding stoichiometry
vector is given by

Sq =



0
0
0
−1
0
0
0
−1
1


. (S9.4)

Then, we have

Nq = Span>0



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1


. (S9.5)
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Figure 4: Sample-path of the species of the circadian clock model.

From (S9.3) and Proposition S4.1, ergodicity holds if the inequality
−δMA

+ c2 βA 0 0 0
0 −δA + c2 0 0 0
0 0 −δMR

+ c2 βR 0
0 0 0 −δR + c2 0
0 0 0 δA −δA + c2



v3
v4
v7
v8
v9

 ≤ 0 (S9.6)

holds for some v ∈ Nq and c2 > 0. From (S9.5), we have
v3
v4
v7
v8
v9

 =


θ3
θ4
θ7
θ8

θ4 + θ8

 . (S9.7)

It is clear that the matrix on the left-hand side of (S9.6) is Hurwitz-stable and Metzler when c2 = 0.
Moreover, expanding the last inequality yields the condition 0 < c2 ≤ δAθ4/(θ4 + θ8). Condition (S9.6)
then reduces to 

−δMA
+ c2 βA 0 0

0 −δA + c2 0 0
0 0 −δMR

+ c2 βR
0 0 0 −δR + c2



θ3
θ4
θ7
θ8

 ≤ 0 (S9.8)

which is obviously feasible from the fact that the matrix is Metzler, Hurwitz-stable when c2 = 0 and
the fact that the θi’s are independent. Therefore, there exists c2 > 0 and θ3, θ4, θ7, θ8 > 0 such that the
above inequality holds. Moreover, Condition DD holds with the same c2 and

c1 = sup
(x1,x5)∈{0,1}2

{b̄(x, v)}.

We can therefore conclude, from Proposition S4.1, that the circadian clock model of [15] is ergodic and
that all the moments are bounded and globally converging.
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S10 Details on the analysis of the p53 model

Let us consider the following stochastic model for p53, see [7]:

∅ k1−−⇀ S1

S1
k2−−⇀ ∅

S1
f(S1,S3)−−⇀ ∅

S1
k4−−⇀ S1 + S2

S2
k5−−⇀ S3

S3
k6−−⇀ ∅.

(S10.1)

where S1 is the p53 protein, S2 is the Mdm2 precursor and S3 is the Mdm2 protein. The rate function
f(x, y) = k3y

x+k7
implements a nonlinear feedback on the degradation rate of p53. This example shows

that non mass-action kinetics can also be considered using the proposed approach.
We then have the following result:

Result S10.1. For any values of the rate parameters, the oscillatory p53 model (S10.1) is ergodic and
all the moments are bounded and globally converging.

Proof. For this model, we indeed have that

6∑
k=1

λk(x)〈v, ζk〉 ≤ k1v1 − k2x1v1 + k4x1v2 + k5x2(v3 − v2)− k6x3v3

= xT

−k2 k4 0
0 −k5 k5
0 0 −k6

 v +

k10
0

T v (S10.2)

It is clear that the above matrix is Hurwitz-stable and thus that there exists a positive vector v > 0
such that Av < 0 holds. Hence, we can conclude from Proposition S3.1 that the system is exponentially
ergodic. To show that all the moments exist, we need to prove that Condition DD holds with c5 = 0.

Noting that
k3xy

x+ k7
≤ k3y for all x, y ≥ 0, then the left-hand side of (S1.4b) can be bounded from

above by an affine polynomial in x1, x2 and x3, showing therefore that c5 can be set to 0. The proof is
complete.

S11 Details on the analysis of the Lotka-Volterra model

The key idea in this section to obtain a similar result as in [4], but in a stochastic setting. We consider
here a stochastic analogue of the deterministic model

ṅi(t) =

ri −∑
j

bijnj(t)

ni(t) (S11.1)

where ni is the population of the ith species and ri, bij are model parameters representing birth and
competition among species. However, the stochastic analogue of the above deterministic model does
not behave nicely since species may go extinct (ergodicity may also not hold). Moreover, the proposed
framework is not really devoted to the analysis of closed population models since, for these models,
ergodicity can easily be checked from the generator of the Markov chain, which is a finite-dimensional
matrix. To avoid this issue, we consider the open stochastic Lotka-Volterra model given by the following
reaction network.

∅ αi−−⇀ Si

Si
βi−−⇀ Si + Si

Si + Sj
γij−−⇀ Sj

Si
δi−−⇀ ∅

(S11.2)
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where i = 1, . . . , N . The first set of reactions represent immigration/pure birth, the second one is
reproduction, the third one is competition due to overpopulation and the last one are deaths/migrations.
The difference with the direct stochastic analogue of (S11.1) lies in the presence of immigration and pure
death or migration reactions.

We then have the following result which is a stochastic analogue of [4].

Theorem S11.1. Let Γ(v) = [viγij ] and assume that one of the following conditions hold:

1. there exists v > 0 such that the Γ(v)ᵀ + Γ(v) is copositive and βi − δi < 0 for all i = 1, . . . , N ;

2. there exists v > 0 such that the matrix Γ(v)ᵀ + Γ(v) is positive definite.

Then the stochastic reaction network (S11.2) is ergodic and all the moments up to order b1 +
c2
c5
c − 2

are bounded and globally converging.

Proof. Let us first define the following quantities

M(v) = −1

2
(Γ(v)ᵀ + Γ(v))

A = diag
i

((βi − δi)vi)

b =
[
α1 . . . αn

]ᵀ
.

(S11.3)

The condition (S1.4a) can be rewritten as

bᵀv + xᵀAv + xᵀM(v)x ≤ c1 − c2〈v, x〉. (S11.4)

Case 1: Assume that δi − βi < 0 and −M(v) is copositive, then c1 and c2 can be chosen as
c1 =

∑n
i=1 αivi and c2 can be set arbitrarily close to min

i
{δi − βi}. Ergodicity then follows.

Case 2: This follows from Proposition S4.5.

S12 Details on the analysis of the Schlögl model

Let us consider the Schlögl model [13]:

A + 2S
k1−−⇀ 3S

k2−−⇀ A + 2S

B
k3−−⇀ S

k4−−⇀ B.
(S12.1)

Let XA, XB and XS denote the number of molecules of species A, B and S respectively. We can see that
this model is closed since the quantity XA +XB +XS is preserved over time. Therefore, the state-space
is finite since we have XA(t) + XB(t) + XS(t) = XA(0) + XB(0) + XS(0) < ∞ for all t ≥ 0. When the
populations of the species A and B are very large in number, then we can assume that they are constant
over time (as it is often the case in the literature) and the network (S12.1) becomes

2S
k1XA−−⇀ 3S

k2−−⇀ 2S

∅ k3XB−−⇀ S
k4−−⇀ ∅.

(S12.2)

Note that in the form presented above, the network is now open and has state-space N0, which is infinite.
The network also involves a single trimolecular reaction. We have the following result:
Theorem S12.1. For any positive value of the rate parameters k1, k2, k3, k4 and any positive value for
XA and XB, the Schlögl model (S12.2) is exponentially ergodic.

Proof. The drift-condition DD1 with V (x) = x is given by

k1XA

2
x(x− 1)− k2

6
x(x− 1)(x− 2) + k3XB − k4x ≤ c1 − c2x, ∀x ∈ Nd0. (S12.3)
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Let us denote the left-hand side by p(x) and rewrite it as

p(x) = −k2
6
x3 + x2

k1XA + k2
2

− x
(
k4 +

k2
3

+
k1XA

2

)
+ k3XB . (S12.4)

Now pick a c2 > 0 and observe that the condition becomes

p(x) + c2x ≤ c1,∀x ∈ N0. (S12.5)

Since the term of higher degree is negative, then clearly the function p(x) + c2x admits an upper bound
over x ∈ N0. Picking then c1 ≥ 0 such that

c1 = sup
x≥0
{p(x) + c2x} ≥ max

x∈N0

{p(x) + c2x} (S12.6)

show that for any c2 > 0, we can find a c1 ≥ 0 such the drift-condition DD1 holds.
Finally observe that due to the presence of the birth and death reactions, the state-space of the

system is irreducible. Hence the result follows.
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