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The Unified Model for Bacterial Taxis

In this supplementary section, we present the analytical details about our
unified model for bacterial taxis. As mentioned in the maintext, the internal
state of an individual cell, represented by the receptor-kinase activity (a),
can be described by the MWC model:

a(m,S) =
1

1 + exp[Nfa(m,S)]
. (S1)

where S(x) = {S1, S2, ...} represents the external condition and m denotes
the average (aggregate) methylation level of the receptor cluster. The recep-
tor methylation-demethylation process takes place in a slow time-scale, τa,
and restores the total activity, a, to the adapted level, a0. Such receptor-
modification reactions serves as the cell’s memory about the environment
and can be described by the following differential equation:

dm

dt
=
a0(S)− a(m,S)

τa(S)
(S2)

The receptor activity, a, regulates the level of the intracellular response reg-
ulator (CheY-P) which promotes the clockwise (CW) rotation of motors. A
swimming cell tumbles when its motors rotate clockwise or when it experi-
ences rotational diffusion (denoted by z0). The total tumbling rate is

z(a) = z0 + z1(a) = z0 + τ−1(a/K1/2)H . (S3)

Here, 1/τ sets the duration time of the tumbling state, K1/2 represents the
activity level at which the CW bias is 0.5, and H denote the Hill coefficient
of the motor response function, respectively. In the one-dimensional setup,
a cell moves toward either the right (+) or the left (−) direction with speed
v(S) and changes its direction randomly with the tumbling frequency z(a).

In response to the environmental stimuli, an ensemble of bacterial cells
will migrate in the physical space and also distribute in the internal state
space (due to memory). We define P±(x, a, t) as the probability density of
cells which is in state a and move in the “±” direction at (x, t). The master
equation governing P±(x, a, t) is

∂P+

∂t
= −∂[G+(a,S)P+]

∂a
− ∂[v(S)P+]

∂x
− z(a)

2
(P+ − P−), (S4)

∂P−

∂t
= −∂[G−(a,S)P−]

∂a
+
∂[v(S)P−]

∂x
+
z(a)

2
(P+ − P−), (S5)

where G±(a,S) are the rate functions for the internal state variable a as
the cell moves in the “±” direction. Since a is a function of m and S, its
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change over time is contributed by the local methylation changes and the cell
migration in space, i.e.,

da

dt
= G±(a,S) =

∂a

∂m

dm

dt
± ∂a

∂S

dS

dt
=

∂a

∂m

a0 − a
τa

± ∂a

∂S
· dS
dx
v. (S6)

We define the density (ρ) and the flux (J) of cells in the spatial coordinate:

ρ(x, t) =

∫ [
P+(x, a, t) + P−(x, a, t)

]
da (S7)

J(x, t) =

∫
v
[
P+(x, a, t)− P−(x, a, t)

]
da. (S8)

Summing Eqs. (S4) and (S5) and integrating over a leads to

∂ρ

∂t
= −∂J

∂x
. (S9)

Similarly, subtracting these two equations and integrating over a yields

1

v(S)

∂J

∂t
= −∂[v(S)ρ]

∂x
−
∫
z(a)(P+ − P−)da. (S10)

The system over a finite region [x0, x1] with reflecting boundaries should
satisfy the zero flux condition (i.e., J = 0) in steady state. Thus we should
have

∫
P+da =

∫
P−da = ρ(x)/2 in steady state and Eq. (S10) becomes

−∂[v(S)ρ]

∂x
=

∫
z(a)(P+ − P−)da =

[z+(x)− z−(x)]ρ

2
= ∆zρ. (S11)

where z±(x) =
∫
zP±da/

∫
P±da represents the average tumbling rate for

the right or left moving cells at position x. From Eq. (S11), one can easily
find the equilibrium cell density:

ρ(x, t→∞) =
Ω

v(x)
exp

[
−
∫ x

x0

∆z(x′)

v(x′)
dx′
]
. (S12)

For the simple case where both v and ∆z are (nonzero) constant, the steady-
state cell density takes an exponential profile in space. Here, the chemotactic
drift arises purely from the tumbling rate difference between the left and
right moving populations. Intuitively, if z+(x) < z−(x) for example, then
on average cells tend to move in the right (+) direction because it is more
difficult for cells to enter a region where they tend to tumble more frequently.
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The origin of ∆z is that the average activity over the left-moving cells

(a+ =
∫
aP+da∫
P+da

) differs from the average over the right-moving population

(a− =
∫
aP−da∫
P−da

). The average receptor activity in the steady state is

a(x) ≡ 1

ρ

∫
a(P+ + P−)da =

a+ + a−

2
. (S13)

We can estimate the activity difference (a+ − a−) ≡ ∆a by considering the
scenario in Fig. S1: If the representative cell is moving to the right at (x, t),
it may have swum all the way along the path (x− l+, t− δt+)→ (x, t) with
the initial activity a+(x − l+, t − δt+) = a(x, t); if the cell is moving to the
left at (x, t), it may have come from the path (x+ l−, t− δt−)→ (x, t) with
a−(x+ l−, t− δt−) = a(x, t). Let G±(a,S) = Gm(a,S) +G±S (a,S) where

Gm(a,S) =
∂a

∂m
· a0(S)− a(m,S)

τa(S)
, and G±S (a,S) = ± ∂a

∂S
· dS
dx
v(S). (S14)

Then, we have the following approximations along the two paths:

a+(x, t)− a+(x− l+, t− δt+) = a+(x, t)− a(x, t) ≈ G+(a(x, t),S(x− l+))δt+,

a−(x, t)− a+(x+ l−, t− δt−) = a−(x, t)− a(x, t) ≈ G−(a(x, t),S(x+ l−))δt−.

Let S(x)−S(x− l+) ≡ δS+ ≈ dS
dx
vδt+ and S(x+ l−)−S(x) ≡ δS− ≈ dS

dx
vδt−.

Since the direction of motion is randomized during each tumbling event, the
time scale of δt+ and δt− (durations of swimming without tumbling) is set
by the short run time 1/z(a). Then one can make Taylor expansions around
S(x) and derive the difference between a+ and a− at (x, t):

2∆a(x, t) ≡ a+ − a− ≈ G+(a,S(x)− δS+)−G−(a,S(x) + δS−)

z(a)

=
Gm(a,S(x)− δS+)−Gm(a,S(x) + δS−)

z(a)

+
G+
S (a,S(x)− δS+)−G−S (a,S(x) + δS−)

z(a)

≈ −
[
∂Gm

∂S
(a,S)

]
δS+ + δS−

z(a)
+
G+
S (a,S)−G−S (a,S)

z(a)

−
[
∂G+

S

∂S
(a,S)

]
δS+

z(a)
−
[
∂G−S
∂S

(a,S)

]
δS−
z(a)

≈ −2v(S)

z(a)

[
1

z(a)

∂Gm

∂S
(a,S)

]
dS

dx

+
2v(S)

z(a)

[
∂a

∂S
(a,S)

]
dS

dx
+O

(
dS

dx

)2

. (S15)
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It is worth remarking that the function Gm has a slow time scale set by the
intrinsic methylation time scale τa which is much longer than the average run
time z−1 ∼ 1s. This suggests that in the last line of Eq. (S15) we have

1

z

∂Gm

∂S
(a,S) ∝ z−1

τa
(S16)

which becomes negligible given τa � z−1. Therefore, we arrive at the follow-
ing key approximation for ∆a:

∆a ≈ v(S)

z(a)

dS

dx

(
∂a

∂S

)
a=a

(S17)

Then we can use the approximation ∆z ≈
(
∂z
∂a

)
a=a

∆a and Eq. (S17) to
rewrite Eq. (S12) as follows:

ρ(x) ≈ Ω

v(S)
exp

[
−
∫ x

x0

(
∂ ln z

∂a
· ∂a
∂S

)
a=a

dS

]
. (S18)

Eq. (S18) shows that the equilibrium distribution is ultimately shaped by
the two motility behaviors, tumbling (z) and swimming (v), both of which
directly or indirectly depend on the external conditions. To complete this
model, we still need the dynamic equation for a. First, we notice the following

∂(aρ)

∂t
=

∂

∂t

(
a+

∫
P+da+ a−

∫
P−da

)
=

∫
∂

∂t
(aP+ + aP−)da. (S19)

Then by using Eqs. (S4) and (S5), we find that

∂(aρ)

∂t
= − ∂

∂x

∫
va(P+ − P−)da−

∫
a
∂

∂a
(G+P+ +G−P−)da

≈ − ∂

∂x
(aJ + ρv∆a) +

∫
(G+P+ +G−P−)da. (S20)

Using Eq. (S17), one can see that a(x) in steady state (J = 0) should satisfy:

∂

∂x

[
ρv2

z(a)

dS

dx

(
∂a

∂S

)
a=a

]
=

∫
(G+P+ +G−P−)da, (S21)

where, to the first order approximation in the shallow gradients, we have∫
(G+P+ +G−P−)da =

∫
∂a

∂m

a0 − a
τa

(P+ + P−)da+

∫
∂a

∂S

dS

dx
v(P+ − P−)da

≈
(
∂a

∂m

a0 − a
τa

ρ

)
a=a

.

5



Thus, Eq. (S21) is equivalent to

∂

∂x

[
v2

z(a)

dS

dx

(
∂a

∂S

)
a=a

]
+
∂ ln ρ

∂x

[
v2

z(a)

dS

dx

(
∂a

∂S

)
a=a

]
≈
(
∂a

∂m

a0 − a
τa

)
a=a

.

(S22)
Since ∂ ln ρ

∂x
∝ dS

dx
and ∂

∂x
= dS

dx
∂
∂S

, Eq. (S22) implies that(
∂a

∂m

a0 − a
τa

)
a=a

≈ 0 +O
(
dS

dx

)2

. (S23)

Given ∂a
∂m
6= 0, Eq. (S23) indicates that a(x) ≈ a0 in shallow gradients. If

one keeps the second-order term in Eq. (S22), one will see that the average
activity a(x) tends to increase with the gradient steepness.

Application to Bacterial Chemotaxis under Dual

Chemical Gradients

In the natural environment, cells are often exposed to multiple chemical
stimuli. Here we extend our analysis to the case where bacterial cells respond
to two opposing chemoattractant gradients (aspartate: d[L]1

dx
> 0 and serine:

d[L]2
dx

< 0 ) that are sensed by the two most abundant E. coli receptors, Tar
and Tsr, respectively. The free energy energy for the receptor-kinase activity
in the MWC model is given by:

fa(m, [L]1, [L]2) = fm(m) + r1fL1([L]1) + r2fL2([L]2)

= −Em(m−m0) + r1 ln
1 + [L]1/K

I
1

1 + [L]1/KA
1

+ r2 ln
1 + [L]2/K

I
2

1 + [L]2/KA
2

. (S24)

The steady-state cell density is found to be

ρ(x) ≈ Ωeη(r1fL1+r2fL2), (S25)

Clearly, the density profile ρ depends on the Tar/Tsr ratio (r1/r2). When
Tar (or Tsr) dominates in the receptor complex, cells are expected to respond
mainly to aspartate (or serine) gradient. For intermediate values of r1/r2,
the competition between Tar and Tsr may lead to the accumulation of cells
around some position x∗. This position x∗ can be determined by the first-
order condition V ′eff(x∗) = 0, where Veff = −η(r1fL1 + r2fL2). Define G1,2 =
|d[L]1,2/dx|. Then, in the logarithmic sensing regime, the first order condition
suggests that r1G1/[L]1(x∗) ≈ r2G2/[L]2(x∗). If the solution of x∗ exists
within the interval [x0, x1], then it is given by

x∗ ≈ G1r1[L]2(x0)− G2r2[L]1(x0)

G1G2(r1 + r2)
= r1

[L]2(x0)

G2

− r2
[L]1(x0)

G1

. (S26)
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Application to Bacterial pH Taxis

In this supplementary section, we consider the case of bacterial pH taxis.
The free energy for the total receptor-kinase activity is

fa(m, pH) = fm+r1f1(pH)+r2f2(pH) = fm+
∑
q=1,2

rq ln
1 + 10K

I
q−pH

1 + 10K
A
q −pH

. (S27)

The steady-state cell distribution in a pH gradient: ρ(x) ≈ Ω exp[−Veff(x)],
with the effective potential Veff = −η(r1f1 + r2f2). We can use the first-
order condition, V ′eff(pH∗) = −η[r1f

′
1(pH∗) + r2f

′
2(pH∗)] = 0, to determine

the preferred pH. Let w∗ ≡ 10pH∗
, wAq ≡ 10K

A
q and wIq ≡ 10K

I
q for q = 1, 2,

we find that

r1

r2

= −f
′
2(pH∗)

f ′1(pH∗)
=
wA2 − wI2
wI1 − wA1

· (w∗ + wA1 )(w∗ + wI1)

(w∗ + wA2 )(w∗ + wI2)
, (S28)

which is simply a quadratic equation of w∗. The observed opposite responses
to pH changes indicate that KA

1 < KI
1 for Tar and KA

2 > KI
2 for Tsr. Thus,

we expect that wI1 � wA1 , wA2 � wI2, and wI1 � w∗ � wI2, which together
simplify Eq. (S28) as

r1

r2

≈ wA2
wI1
· (w∗ + wA1 )

(w∗ + wA2 )
· w

I
1

w∗
=
wA2
w∗
· (w∗ + wA1 )

(w∗ + wA2 )
, (S29)

Therefore, for a given Tar/Tsr ratio (r1/r2), the preferred pH is mostly de-
termined by the values of wA1 and wA2 (i.e., KA

1 and KA
2 ). The exact solution

to Eq. (S29) is given by

w∗ =
wA2

(
1− r1

r2

)
+ wA2

√(
1− r1

r2

)2

+ 4
r1wA

1

r2wA
2

2(r1/r2)
. (S30)

For the special case that r1 = r2, Eq. (S29) has a simple solution, w∗ =√
wA1 w

A
2 , which means pH∗ = (KA

1 + KA
2 )/2 at r1/r2 = 1. Considering the

simple scenario where KI
1 > KA

1 = KA
2 > KI

2 (i.e., wI1 � wA1 = wA2 � wI2),
we can obtain from Eq. (S29) that w∗ ≈ wA2 r2/r1 and correspondingly the
preferred pH level is

pH∗ = KA
2 − log10(r1/r2). (S31)

Thus, we can conjecture an empirical relationship between pH∗ and r1/r2:

pH∗ ≈ KA
1 +KA

2

2
− λ log10

(
r1

r2

)
, (S32)
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where λ represents the sensitivity of pH∗ to the change of the Tar/Tsr ratio.
The parameter λ depends on the relative values of KA

1 and KA
2 , and can be

calculated numerically. The empirical Eq. (S32) has been tested through
extensive numerical experiments and turns to be useful for our data analysis.

Application to Bacterial Thermotaxis

In this supplementary section, we apply our unified model to bacterial ther-
motaxis. The free energy for the Tar receptor activity is assumed to be

fa(m,T ) ≈ −Em(m−m0)− (m−mc) · g(T ). (S33)

Here, g(T ) satisfies g′(T ) > 0 and g(T0) = 0 at a reference temperature T0

where Em is determined (−∂fa
∂m
|T=T0 = Em). By Eq. (S33), one can find that

∂a

∂T
= −Na(1− a)

∂fa
∂T

= Na(1− a)(m−mc)
dg(T )

dT
. (S34)

Thus, consistent with the experiment, the Tar receptor in our model acts as
a warm sensor ( ∂a

∂T
< 0) when m < mc and as a cold sensor ( ∂a

∂T
> 0) sensor

when m > mc. The (steady-state) adapted activity depends on temperature
and can be modeled as:

a0(T ) =
kR(T )

kR(T ) + kB(T )
≈ 1

1 + exp[−β(T − T0)]
. (S35)

It is observed that a0 ≈ 1/3 at room temperature T = 22◦C and a0 ≈ 1/2
at T0 = 32◦C, from which we estimate that β ≈ 0.07/◦C. The critical tem-
perature Tc at which the Tar receptors invert response is set by ∂a

∂T
|T=Tc = 0

which is equivalent to m(Tc) = mc by Eq. (S34). The steady state methy-
lation level m(T ) can be determined by dm/dt = 0 or a(m,T ) = a0(T ). It
amounts to solve Nfa(m,T ) = −β(T − T0) which yields

m(T ) =
mcg(T ) + β(T − T0)/N + Emm0

g(T ) + Em
. (S36)

Thus, using Eq. (S36) in the condition m(Tc) = mc, one can find

Tc = T0 +
NEm(mc −m0)

β
, (S37)

which shows how the critical temperature is encoded in the signaling pathway.
Combining Eq. (S36) and Eq. (S37), one can show that

m(T )−mc =
β(T − T0)/N + Em(m0 −mc)

g(T ) + Em
=

β(T − Tc)
N [g(T ) + Em]

, (S38)
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which changes sign at Tc given that g(T ) + Em > 0 holds for the range of
temperature under consideration.

By Eq. (S18), the steady-state cell distribution in a linear temperature
gradient over the physiological range [T−, T+] can be calculated as follows

ρ(T ) ≈ Ω

v(T )
exp

[
−
∫ T

T−

(
∂ ln z

∂T̂

)
a=a

dT̂

]
=

Ω

v(T )
exp

{
−
∫ T

T−

η(T̂ )[m(T̂ )−mc]g
′(T̂ )dT̂

}
=

Ω

v(T )
exp

{
− β
N

∫ T

T−

(T̂ − Tc)η(T̂ )g′(T̂ )

g(T̂ ) + Em
dT̂

}
. (S39)

In deriving Eq. (S39), we have used Eq. (S34) and Eq. (S38). The ex-
pression of ρ(T ) is composed of two parts: the temperature-dependent swim
speed v(T ) and the temperature-dependent effect from the tumbling behav-
ior. From Eq. (S39), we can see that cells are able to accumulate near the
critical temperature Tc as long as β > 0, g′(T ) > 0, and g(T ) +Em > 0. The
first condition β > 0 reflects the temperature-dependent imperfect adap-
tation kinetics for E. coli and is required for the existence of the critical
temperature; see Eq. (S37). The second condition g′(T ) > 0 ensures that
Tar acts as a warm sensor when its methylation level m is below mc and
switches to a cold sensor when m > mc; see Eq. (S34). The third condition
g(T ) + Em > 0 means that an increase of the methylation level will always
reduce the free energy in Eq. (S33) and ensures that the methylation level
m(T ) increases with the temperature near Tc; see Eq. (S38).

For convenience, we can define a general temperature-dependent function:

θ(T ) =
g′(T )

g(T ) + Em
, (S40)

Since g′(T0) = 0, the above equation determines the following transformation

g(T ) = Em

[
exp

(∫ T

T0

θ(T̂ )dT̂

)
− 1

]
, (S41)

which allows us to rewrite the free energy Eq. (S33) as follows

fa(m,T ) = −Em(mc −m0)− Em(m−mc) exp

[∫ T

T0

θ(T̂ )dT̂

]
. (S42)

Thus, θ(T ) determines g(T ) and contains all the information about how the
receptor activity depends on temperature. We further introduce

Z(T ) ≡ exp

{
β

N

∫ T

T−

(T̂ − Tc)η(T̂ )θ(T̂ )dT̂

}
, (S43)
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which represents the accumulative effect of the tumbling rate difference ∆z
on the cell migration. Using Eqs. (S40) and (S43), we rewrite Eq. (S39) as

ρ(T ) ≈ Ω

v(T )
exp

{
− β
N

∫ T

T−

(T̂ − Tc)η(T̂ )θ(T̂ )dT̂

}
=

Ω

v(T )Z(T )
. (S44)

Thus, the effective potential function for bacterial thermotaxis is

Veff(T ) = ln v(T ) +
β

N

∫ T

T−

(T̂ − Tc)η(T̂ )θ(T̂ )dT̂ . (S45)

From the condition V ′eff(T ∗) = 0, we can find the preferred temperature

T ∗ = Tc −
N

βη(T ∗)θ(T ∗)

(
∂ ln v

∂T

)
T=T ∗

. (S46)

Thus, if v is constant, the first-order condition gives that T ∗ = Tc and the
second-order condition, V ′′eff(T ∗) = β

N
η(T ∗)θ(T ∗), indicates that T ∗ = Tc is

the preferred temperature only if θ(T ) > 0. If, however, the swimming speed
v increases with T , then Eq. (S46) suggests that T ∗ < Tc. Last, for mutant
cells lacking all receptors (θ(T ) = 0), the density becomes ρ(T ) = Ω/v(T )
and T ∗ corresponds to the temperature where v(T ∗) reaches its minimum.

Bacterial Taxis under Both Chemical and Non-

Chemical Stimuli

Our unified model can be applied to study bacterial taxis in more complex
environments. As a final example, we investigate the bacterial response to
an integration of both chemical and nonchemical stimuli. Specifically, we
consider the decision-making process of the Tar-only mutant cells under two
opposing linear gradients over the interval [x0, x1]: a temperature gradient

(dT
dx

= GT > 0) and a chemoattractant gradient (d[L]
dx

= −GL < 0). Both
signals are sensed by Tar whose receptor-kinase activity is given by a =
1/
[
1 + eNfa(m,[L],T )

]
, with the free energy difference between two states,

fa(m, [L], T ) ≈ −Em(m−m0)− (m−mc) · g(T ) + fL. (S47)

Here, fL(x) ≡ ln 1+[L](x)/KI

1+[L](x)/KA
represents the ligand-dependent free energy

which increases with [L] and hence decreases with x. The steady-state methy-
lation level is determined by dm/dt = 0 or a(m, [L], T ) = a0(T ). This is
equivalent to Nfa(m, [L], T ) = −β(T − T0), from which one can solve

m([L], T ) =
mcg(T ) + β(T − T0)/N + Emm0 + fL([L])

g(T ) + Em
= m(x), (S48)
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In the presence of a chemical gradient, the critical temperature at which
Tar inverts response is no longer defined intrinsically because it depends on
the external chemical condition. However, we can still use Eq. (S37) which
defines Tc as an intrinsic parameter (solely encoded by the signal transduction
pathway). To avoid confusion, Tc in this section always refers to Eq. (S37)
and is not necessarily the critical temperature for Tar to change its sensing
mode. Then we can use Eq. (S37) to rewrite Eq. (S48) as follows

m(x)−mc =
β[T (x)− Tc]/N + fL(x)

g(T (x)) + Em
. (S49)

Since fL decreases with x, it is possible that the steady-state methylation
level m also decreases with x if the chemical gradient is strong enough. For
appropriate gradient profiles of [L](x) and T (x), there may exist a particular
position xc satisfying m(xc) = mc. Then, by Eq. (S49) we find that

T (xc) = Tc −
NfL(xc)

β
, (S50)

from which xc can be determined, although the solution may be out of the
interval [x0, x1] where cells are constrained.

Again, we use Eq. (S18) to derive the steady-state cell distribution:

ρ(x) ≈ Ω

v(T )
exp

[
−
∫ x

x0

dT

dx′

(
∂ ln z

∂T

)
a=a0

dx′ −
∫ x

x0

d[L]

dx′

(
∂ ln z

∂[L]

)
a=a0

dx′

]

=
Ω

v(T )
exp

{
−
∫ x

x0

η(x′)

[
GT [m(x′)−mc]

dg

dT
(x′) + GL

dfL
d[L]

(x′)

]
dx′
}

=
Ω

v · Z
exp

{
−
∫ x

x0

η(x′)

[
GTfL(x′)θ(T (x′)) + GL

dfL
d[L]

(x′)

]
dx′
}
.(S51)

Clearly, without any chemical interference (i.e., fL = 0), Eq. (S51) recovers
our earlier result Eq. (S44) for thermotaxis. For uniform chemical back-
ground (fL > 0 and dfL/dx = 0), Eq. (S51) becomes

ρ(T ) ≈ Ω

v(T )Z(T )
exp

[
−fL

∫ T

T−

η(T̂ )θ(T̂ )dT̂

]
. (S52)

Compared to Eq. (S44), the extra exponential term in Eq. (S52) is a decreas-
ing function of T if θ(T ) > 0. This will suppress the accumulation of cells at
high temperatures. For constant v, it is easy to verify that the presence of
a uniform chemoattractant background can shift the preferred temperature
from T ∗ = Tc to a lower temperature T ∗ = Tc − NfL/β, in agreement with
Eq. (S50). Now, if we increase the chemical gradient (dfL/dx < 0) against
the temperature gradient, more and more cells will be lured away to chase
the chemoattractant.
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