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Supplement Text S2: Global Sensitivity Analysis

For the global sensitivity analysis we ran 100,000 simulations for the 4 non-
cooperative and the 3 cooperative models. We varied 7 parameters simulta-
neously: the BiP association rate, the BiP disassociation rate, the aggrega-
tion rate, the unfolding rate, the misfolding rate, the folding rate, and the
sequestration rate. From the nominal values, each parameter was allowed to
vary one order of magnitude in either direction (i.e. one-tenth of the nominal
value to ten times). The folding efficiency and chaperone cost metrics were
recorded at t=100 seconds, a value by which time steady-state had been es-
tablished. We used a simple Monte Carlo approach to generate the random
values of the input parameters independently in MATLAB. There are many
more parameters in the model but we use identical values by assuming that
for example the BiP association rate doesn’t change whether the chaperone
binds to an unfolded protein, misfolded protein, or aggregate. While future
evidence may prove this not to be the case, it allowed us to test large models
while keeping the model complexity down.

We used the MATLAB toolbox GUI-HDMR [1]. This toolbox uses
variance-based sensitivity indices [2, 3] that quantify the relative contribu-
tion of each parameter to the uncertainties in the outputs. These methods
explore the parameter space thoroughly by sampling large numbers of sets of
inputs. GSA can be used to rank the importance of the various parameters
as well as to discover importance interactions between parameters.

We also varied the initial conditions, though there are only two of main
importance: BiP and unfolded proteins. That is because most of the large
number of states in the models consist of some combination of these com-
ponents and/or are derived from them. We allow those states to start at
zero concentration and let the system evolve their populations during the
simulation based on the reactions that occur.

Method: High Dimensional Model Representation (HDMR)

The high dimensional model representation (HDMR) is a set of tools in
order to express the input-output relationship of complex models with a
large number of input variables x1,...,xn. The output variables f(x) =
f(x1, ..., xn) in the domain Rn can be written in the following form:

f(x) = f0 +

n∑
i=1

fi(xi) +
∑

1≥i≥j≥n

fij(xi, xj) + ... + f12...n(x1, x2, ..., xn)

Here f0 denotes the mean effect (zeroth order), which is a constant. The
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function fi(xi) is a first-order term giving the effect of the variable xi acting
independently (although generally non-linearly) upon the output f(x). The
function fij(xi, xj) is a second-order term describing the interactive effects
of the variables xi and xj upon the output f(x). The higher-order terms
reflect the effects of increasing numbers of input variables acting together
to influence the output f(x). If there is no interaction between the input
variables, then only the zeroth-order term f0 and the first-order terms fi(xi)
will appear in the HDMR expansion.

This expansion will be computationally very efficient if higher-order in-
put variable correlations are weak and can therefore be neglected. For many
systems a HDMR expression up to second-order already provides satisfac-
tory results and a good approximation of f(x).

In the context of global sensitivity analysis, HDMR conceptually resem-
bles the method of Sobol [4]. In this case, the calculation is of the variance
expansion of the output given N random sets of n input parameters ob-
tained by various methods. The variance expansion function consists of
partial variances of the output related to first- and second-order influences
of the input parameters. That is, the total output variance of a model is
the sum of contributions obtained by varying the input variables.

The total variance V can be obtained by

V =

∫
f2(x) dx − f2

0

and the partial variances Vi1,...,is can be calculated from the HDMR expan-
sion given above.

Vi =

∫ 1

0
f2
i (xi) dxi

Vij =

∫ 1

0

∫ 1

0
f2
ij(xi, xj) dxi dxj

Once the partial variances are determined the sensitivity indices are cal-
culated as follows:

Si1,...,is =
Vi1,...,is

V

where 1 ≤ i1 < ... < is ≤ n so that all its terms add up to 1.

n∑
i=1

Si +
∑

1≤i≤j≤n

Sij + ... + S1,2,...,n = 1

The first-order sensitivity index Si measures the main effect of the input
variables xi on the output, or in other words the fractional contribution of
xi to the variance of f(x). The second-order sensitivity index Sij measures
the interaction effect of xi and xj on the output and so on.
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Results

The first-order sensitivity indices are presented in Tables G1 and G2 for
the output metrics folding efficiency and chaperone cost. Clearly the most
important parameters of the set of seven is the sequestration parameter.
This is due to the loss of chaperones due to entanglement in inclusion bodies
which are inert aggregates that cannot be folded. Another parameter that
is highly ranked is aggregation. The misfolding and unfolding kinetic rates
have the least effect on the output for nearly all models. Surprisingly, the
folding parameter has only a small effect on folding efficiency. The second-
order effects were much smaller and are omitted from the tables for brevity.

Parameter Sens NC1 NC2 NC3 NC4 C2 C3 C4

BiPassoc S1 0.1229 0.0970 0.1013 0.1132 0.0430 0.0371 0.0296
BiPdisassoc S2 0.0199 0.0769 0.1301 0.1199 0,035 0,0245 0.0115

agg S3 0.1876 0.1530 0.1831 0.2086 0.042 0.0452 0.0341
unfold S4 0.0282 0.0134 0.023 0.0002 0.0210 0.0088 0.0032
misfold S5 0.0058 0.029 0.038 0.006 0.0200 0.001 0.0039

fold S6 0.033 0.0493 0.0610 0.0702 0.0812 0.1083 0.0993
seq S7 0.5607 0.5034 0.4561 0.3736 0.6871 0.7622 0.8111

sum
∑

Si 0.9581 0.9220 0.9926 0.8917 0.9293 0.9871 0.9927

Table G1. First-order sensitivity indices for all models (folding efficiency).

Parameter Sens NC1 NC2 NC3 NC4 C2 C3 C4

BiPassoc S1 0.0465 0.2070 0.0760 0.1141 0.0612 0.0569 0.0249
BiPdisassoc S2 0.0222 0.1248 0.2299 0.1166 0.058 0.1010 0.0130

agg S3 0.2692 0.0837 0.0942 0.2080 0.1581 0.0648 0.0349
unfold S4 0.0013 0.0001 0.0110 0.008 0.033 0.0002 0.0125
misfold S5 0.0009 0.0002 0.009 0.012 0.012 0.001 0.001

fold S6 0.012 0.0003 0.0356 0.0632 0.021 0.0054 0.1013
seq S7 0.5849 0.4799 0.4737 0.4214 0.6417 0.7655 0.809

sum
∑

Si 0.937 0.896 0.9294 0.9433 0.9825 0.9948 0.9966

Table G2. First-order sensitivity indices for all models (chaperone cost).

Global sensitivity analysis does not measure the absolute size of the
output variance, just the relative contributions to it. Thus, we examined
the means and variances of all models for the metrics of chaperone cost and
folding efficiency.

Means and variances of the output due to varying input parame-
ters

The means of the folding efficiency metric for the non-cooperative scenarios
confirm that the single binding site model produces the most folding (Ta-
ble G3). This is due to the coverage effect as there are fewer binding sites
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to saturate on unfolded proteins and prevent them from misfolding. How-
ever, the cooperativity of multiple BiPs acting in concert through entropic
pulling increases the amount of folding over the single binding site model.
Thus, our large parameter study confirms our basic findings. In terms of
chaperone cost, the non-cooperative models take a larger fraction of total
chaperones per unit time to do their folding work. However, when coopera-
tivity is introduced into the model, the chaperone cost of the higher binding
site models drops below the single binding site model (Table G4). More
chaperones are still bound to unfolded, misfolded, and aggregated proteins,
but with the higher kinetic rate introduced by cooperativity, the speed of
their action lowers the effective chaperone cost. Thus, our findings with the
nominal parameters were confirmed by the large set of parameter values.

model NC1 NC2 NC3 NC4 C2 C3 C4

mean 0.1904 0.1031 0.0766 0.0795 0.3188 0.2831 0.2649

variance 0.0159 0.0056 0.0042 0.0037 0.0291 0.0253 0.0265

Table G3. Mean and variance for all models for the folding efficiency
metric.

model NC1 NC2 NC3 NC4 C2 C3 C4

mean 1.211 1.675 1.746 1.842 0.203 .245 0.3021

variance 0.0042 0.0162 0.0172 0.0218 0.0208 0.0322 0.0158

Table G4. Mean and variance for all models for the chaperone cost
metric.

In fact, the variance tells a very important story. Over 700 thousand
parameter sets, the output is quite invariant to changes in these inputs. In-
stead the results are a consequence of model structure. For each parameter,
we rescaled the values from 0 to 1 and divided the input space into tenths
(We call this the input percentile). From that restructuring, we calculated
the mean of the outputs for the simulations for each of the 10 bins (folding
efficiency and chaperone cost). We found that regardless of the region of the
single parameter input space, the mean output metric was nearly constant.
This was remarkable because one would think that the gulf from the 10th
to the 90th percentile with a parameter like sequestration would produce
different outputs. But the output was quite invariant. This was true for
all seven parameters tested; the small variance in the output metrics for all
models validates this.
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Folding Efficiency Metric for All Models

Figures G1-G7 show the folding efficiency for the cooperative and non-
cooperative models.We defined the input percentile as the folding efficiency
mean of each of ten bins. The basic results for folding efficiency were not
different from the nominal parameters, but it did show that these results did
not depend on parameters at all. We suspect that the number of binding
sites (model structure), the coverage effect, and the cooperativity were the
main causes of the different folding efficiencies in line with the main results.
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Figure G1. Folding efficiency of model NC1 as a function of input
parameters.



6

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Folding Efficiency, Model NC2

F
o

ld
in

g
 E

ff
ic

ie
n

cy
 (

%
)

Input Percentile

 

 

BiPassoc
BiPdisassoc
agg
unfold
misfold
fold
seq

Figure G2. Folding efficiency of model NC2 as a function of input
parameters.
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Figure G3. Folding efficiency of model NC3 as a function of input
parameters.
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Figure G4. Folding efficiency of model NC4 as a function of input
parameters.
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Figure G5. Folding efficiency of model C2 as a function of input
parameters.



8

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Folding Efficiency, Model C3

F
o

ld
in

g
 E

ff
ic

ie
n

cy
 (

%
)

Input Percentile

 

 

BiPassoc
BiPdisassoc
agg
unfold
misfold
fold
seq

Figure G6. Folding efficiency of model C3 as a function of input
parameters.
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Figure G7. Folding efficiency of model C4 as a function of input
parameters.
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Cooperative Effects on Folding Efficiencies

Figures G8-G10 show the ratio of folding efficiencies for a cooperative model
compared to its non-cooperative counterpart for cooperativity parameter
C = 10. As the figures demonstrate, there is a several fold increase in
folding efficiency, with very little variance in the findings across input space.
The effect is even greater for models 3 and 4 compared 2, because their
non-cooperative versions have a lower folding efficiency due to the coverage
effect. This confirms our original findings that cooperativity through the
concerted action of multiple BiPs is a major effect of our simulations.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10
Cooperative Ratio: Model 2

Input Percentile

R
at

io
 o

f 
F

o
ld

in
g

 E
ff

ic
ie

n
ci

es

 

 

BiPassoc
BiPdisassoc
agg
unfold
misfold
fold
seq

Figure G8. Effect of cooperativity on model 2 folding efficiencies as a
function of input parameters.



10

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10
Cooperative Ratio: Model 3

Input Percentile

R
at

io
 o

f 
F

o
ld

in
g

 E
ff

ic
ie

n
ci

es

 

 

BiPassoc
BiPdisassoc
agg
unfold
misfold
fold
seq

Figure G9. Effect of cooperativity on model 3 folding efficiencies as a
function of input parameters.
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Figure G10. Effect of cooperativity on model 4 folding efficiencies as a
function of input parameters.
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Effect on Chaperone Cost Ratio of Varying Input Parameters

Figures G11-G13 (referring to models 2, 3, and 4, respectively) confirm
our findings that chaperone cost drastically decreases when cooperativity is
introduced into the model. In fact, the metric is less than a tenth of the
cost for the comparative non-cooperative model. This ratio is quite invariant
across the space of the 7 parameter values tested.
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Figure G11. Effect of cooperativity on model 2 chaperone costs as a
function of input parameters with a cooperativitiy parameter of 10.
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Figure G12. Effect of cooperativity on model 3 chaperone costs as a
function of input parameters with a cooperativitiy parameter of 10.
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Figure G13. Effect of cooperativity on model 4 chaperone costs as a
function of input parameters with a cooperativitiy parameter of 10.
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Variation of the Amount of BiP and U Initial Conditions and Its
Effect on Folding Efficiency

We also varied the amount of BiP and U molecules in the simulations’ ini-
tial conditions simultaneously. Each species had a range of 100, 000 − 106

(equivalent concentrations), incremented by 100,000 molecules for a total
number of 100 simulations for each of the seven models. We measured the
folding efficiency metric as a function of the two initial conditions. Figure
G14 shows heatmap plots for each of the 7 models. For the non-cooperative
models, the single binding site case produced the most folding over the range
compared to models 2,3, and 4. This confirms our previous finding that the
coverage effect caused the binding sites to be more saturated for model 1,
leading to more folding and prevention of misfolding and aggregation.

Folding Efficiency for BiP and U
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Figure G14. Effect of varying BiP and U simultaneously on folding
efficiency for all models.
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