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Text S2

MPF objective

Ising model

In this section we review the derivation of the MPF objective for an Ising model, where the objective
function consists of terms connecting the data states to all states which differ by a single bit flip. The
general MPF objective function is given by

K (Θ) =
∑
x∈D

∑
x′ /∈D

g (x,x′) exp

(
1

2
[E(x; Θ)− E(x′; Θ)]

)
, (1)

where g (x,x′) = g (x′,x) ∈ {0, 1} is the connectivity function, E(x; Θ) is an energy function parameter-
ized by Θ, and D is the list of data states. We consider the case where the connectivity function g (x,x′)
is set to connect all states which differ by a single bit flip,

g (x,x′) =

{
1 x and x′ differ by a single bit flip,

∑
n |xn − x′n| = 1

0 otherwise
(2)

The MPF objective function in this case is

K (Θ) =
∑
x∈D

N∑
n=1

exp

(
1

2
[E(x; Θ)− E(x + d(x, n); Θ)]

)
(3)

where the sum over n is a sum over all data dimensions, and the bit flipping function d(x, n) ∈ {−1, 0, 1}N
is

d(x, n)i =

{
0 i 6= n

−(2xi − 1) i = n
(4)

For the Ising model, the energy function is

E = xTJx (5)

where x ∈ {0, 1}N , J ∈ RN×N , and J is symmetric (J = JT ). The bias terms have been absorbed into
the diagonal of the matrix J which is possible since x2 = x holds for binary x.

Substituting this energy into the MPF objective function, it becomes

K =
∑
x∈D

∑
n

exp

(
1

2

[
xTJx− (x + d(x, n))TJ(x + d(x, n))

])
(6)

=
∑
x∈D

∑
n

exp

(
1

2

[
xTJx−

(
xTJx + 2xTJd(x, n) + d(x, n)TJd(x, n)

)])
(7)

=
∑
x∈D

∑
n

exp

(
−1

2

[
2xTJd(x, n) + d(x, n)TJd(x, n)

])
(8)

=
∑
x∈D

∑
n

exp

(
−1

2

[
2
∑
i

xiJin (1− 2xn) + Jnn

])
(9)

=
∑
x∈D

∑
n

exp

([
(2xn − 1)

∑
i

xiJin −
1

2
Jnn

])
. (10)
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Assume the symmetry constraint on J is enforced by writing it in terms of a another possibly asym-
metric matrix J′ ∈ RN×N ,

J =
1

2
J′ +

1

2
J′

T
. (11)

The derivative of the MPF objective function with respect to J′ is

∂K

∂J ′lm
=

1

2

∑
x∈D

exp

([
(2xm − 1)

∑
i

xiJim −
1

2
Jmm

])[
(2xm − 1)xl − δlm

1

2

]

+
1

2

∑
x∈D

exp

([
(2xl − 1)

∑
i

xiJil −
1

2
Jll

])[
(2xl − 1)xm − δml

1

2

]
, (12)

where the second term is simply the first term with indices l and m reversed.

RBM

After marginalizing out the hidden units, the energy function over the visible units for an RBM is given
by:

E(x) = −
∑
i

log(1 + e−Wix) (13)

where Wi is a vector of coupling parameters and x is the binary input vector. Bias terms have been
omitted for readability.

As previously, we substitute into the objective function Eq. 3 to obtain

K =
∑
x∈D

∑
n

exp

(
1

2

[
−
∑
i

log
(
1 + e−Wix

)
+
∑
i

log
(

1 + e−Wix+Wid(x,n)
)])

. (14)

Unlike for the Ising model there is no cancellation of data and non-data energy terms, so evaluating
the function and derivative requires looping over all bit flips for the data set.

sRBM

The energy function over the visible units for an sRBM obtained by marginalizing out the conditionally
independent hidden units is

E(x; J,W) = xTJx−
∑
i

log(1 + e−W
T
i x) (15)

where x ∈ {0, 1}N is the visible state, J = JT ∈ RN×N is a symmetric coupling matrix, and W ∈ RM×N

is a weight matrix to M hidden units. Equation 15 consists of a term capturing connections between
visible units (an Ising model), and a term capturing connections to hidden units (an RBM).

The MPF objective we use again consists of energy differences between data and non-data states
differing by a single bit. For the RBM this energy difference with the nth bit flipped is

dER
n =−

∑
i

[
log(1 + e−w

T
i x)− log(1 + e−w

T
i (x+d(x,n)))

]
(16)

=−
∑
i

[
log(1 + ezi)− log(ezi + ewinbn)

]
(17)
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where for notational simplicity we have defined zi = wT
i x and b = 2x − 1. The energy difference

contributed by connections between visible units (the Ising model) is

dEI
n = 2bnyn −

1

2
Jnn (18)

where we define the shorthand y = Jx for simplicity. The total objective function is then given by a sum
over samples and bit flips as

K =
∑
x∈D

∑
n

exp

[
1

2
(dEI

n + dER
n )

]
(19)

To compute the gradient of this objective w.r.t. the parameters W and J we not that

∂K

∂J
=
∑
x∈D

∑
n

Kn
∂

∂J
dEI

n (20)

∂K

∂W
=
∑
x∈D

∑
n

Kn
∂

∂W
dER

n (21)

these terms are computed as

∂

∂J
dEI

n =
∂

∂J

(
2bnyn −

1

2
Jnn

)
= 2bnxn −

1

2
(22)

for the pairwise terms, and

∂

∂Wab
dER

n =− ∂

∂Wab

∑
i

[
log(1 + ezi)− log(ezi + ewinbn)

]
(23)

=
1

2

∑
n

eza

1 + eza
xb (24)

+
1

2

∑
n

eza

eza + ewanbn
xb (25)

+
1

2

∑
j

1

1 + eza−wabbb
bb (26)

for the higher order terms.


