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Text S1

Optimisation of log likelihoods

Maximum log likelihoods were verified by running multiple (at least 10) parallel optimisations until either
the top two maximum log likelihoods were identical to three decimal places or until the difference between
the top two maximum log likelihoods was substantially smaller than the BIC difference between the model
under consideration and the model with the smallest BIC.

Cases of multiple alleles at a single locus

Across the whole dataset, eleven cases from six animals were found in which three separate nucleotides
were observed at a single locus. However, none of the alleles in these cases were identified as potentially
non-neutral using the single-locus version of our method. In other datasets, where greater evidence of
non-neutrality was found for cases of multiple alleles at a locus, our method could be straightforwardly
extended to account for this.

Effect of mutation: inferring selection at multiple loci in Pig109

The inference of selection made for the viral population in Pig109 sheds particular light upon the im-
portance of mutation within our model. For example, a model in which the mutant G and A alleles at
the loci 696 and 914 are under selection (with respect to the consensus alleles A and G) significantly
outperforms a model in which only one of these two mutant alleles are selected for, despite the fact that
these alleles are fully linked, appearing only together on a sequence, or not at all. Under a model of
pure selection, this would not be the case; selection for either one allele would, via genetic hitchhiking,
completely explain changes in frequency of the other.

In this case, the inference of selection upon both loci relies upon mutation. Mutation, acting upon
the AG consensus, produces sequences with both the AA and GG two-locus haplotyes at these loci.
Assigning selection for an A at locus 914 would increase the frequency of both the observed GA, and the
unobserved AA haplotypes. In this system, the need for strong selection to increase the frequency of the
GA haplotype is opposed by the need to prevent the emergence, under the model, of the AA haplotype.
By contrast, in a case of additive selection for the two alleles, the double mutant GA haplotype can be
assigned sufficient selection to outcompete the AA haplotype, such that while the GA haplotype increases
in frequency, a much smaller increase in the AA haplotype frequency occurs as a result.

Effect of mutation: single- and multi-locus models of the population in Pig113

In the main text, we noted that, in the viral populations collected from Pig113, a very weak inference
of selection was made at three loci under a single-locus model (with a BIC difference between models
of 0.07 in each case), while a neutral model of evolution was preferred under a multi-locus model. This
highlights a general greater conservatism inherent to the multi-locus model arising from the presence of
mutation in the model.

In Pig113, sequences split between precisely two haplotypes, the consensus sequence having the alleles
C, A, and G at loci 447, 824, and 844, with a minority haplotype having the alleles T, G, and A at these
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loci. As such, the data in a model of three-locus haplotypes is very similar to that in the single-locus
model, having two observed haplotypes, with the remainder of haplotypes unobserved. We suppose we
are testing for selection acting upon the allele T at locus 447 under the single-locus, and the multi-locus
models. Within the single-locus model, mutation pushes sequences from the C and T alleles to the A
and G alleles, increasing their frequency, while selection acts purely on the T allele with respect to the
A, C, and G alleles. Within the multi-locus model, however, there is mutation out of the initial CAG
and TGA haplotypes to many other haplotypes, including those, such as TGG, and TAA, which have
the T allele at locus 447. Under selection each of these haplotypes will also grow in frequency over time,
yet these haplotypes are not observed in the data. This non-observation of selected haplotypes restricts
the magnitude of selection that can be assigned to the T allele, leading to a lower inferred selection
coefficient, a smaller difference between the likelihoods of the neutral and selected model, and a lower
probability of inferring selection at this locus. Thus, while the focus of discussion about our model is on
the importance of selection, in cases such as this and the above, mutation may have an impact, and it
cannot be excluded from the model.

Construction of figures

Error bars in Figure 3

The error bars shown in Figure 3 of the main text give an approximate representation of the uncertainty
inherent to each observation, the true values being multidimensional in form. Error bars were calculated
from marginal posterior probabilities for each allele frequency, given the observation. The prior distri-
bution for each of these was set as the beta distribution Beta(ε, ε), where ε = 0.01, reflecting a state in
which an allele is likely to be close to fixation. Where the alleles 1 and 0 were observed n1 and n0 times
respectively, this gives the posterior distribution Beta(n1 + ε, n0 + ε). Calculating this distribution on a
1% frequency interval grid, the error bar was defined as the minimum interval around the mode of this
distribution containing at least 95% of the distribution.

Visualisation of mutations in the HA structure

The protein structure in the PDB database with the closest sequence identity to the sequence of HA gene
of the influenza virus used in the study was identified via a BLAST search as 2WRH, with 86% sequence
identity [1]. The locations of apparently non-neutral mutations were mapped onto this structure, and are
displayed in Supporting Figure S3 using VMD, in conjunction with the SURF and STRIDE packages [2–4].

Calculation of the mutational spectrum

Within the data for each animal, occurrences of non-consensus alleles were counted. Where the same
non-consensus allele was observed more than once in a single animal, the assumption was made that the
allele had arisen through a single mutation event, being observed more than once in the population as a
result of selection and sampling effects. This approximation attempts to account for bias in the spectrum
caused by positive selection acting upon a few specific alleles. Details are shown in Supporting Figure
S5.

Inference of selection from simulated populations

The inference method was applied to data from simulated populations in order to estimate the accuracy
with which selection was inferred, and to evaluate the extent to which the multi-locus model outperformed
a model of evolution at individual loci.
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Selection acting upon a single allele

In the observed sequences, a total of 3005 non-consensus alleles were observed from a total of just over 2.4
million nucleotide reads, giving a mean frequency of polymorphism close to 0.125%. While potentially
non-neutral alleles in the study had higher mean frequencies than this, we conducted simulations under
the expectation that a population with initially low sequence diversity would evolve, subject to mutation
and selection. As such, a population was defined consisting of 106 sequences each with ten two-allele loci,
alleles being denoted 0 and 1. An initial population was created by assigning the allele 1 at each locus
to 2r% of randomly chosen sequences, where r was drawn independently for each locus from the uniform
distribution on the interval [0, 1]. The alternative allele at the first locus was given a fixed selective
advantage s, and the population was propagated using a Wright-Fisher model for 16 generations. Every
four generations, beginning at the fourth generation, a sample from the population of size 100 sequences
was taken, giving data from four time points; for the purposes of the inference, a generation was assumed
to last six hours. Fifty simulations were generated for each of twenty different values of s, giving one
thousand simulations in total.

For each simulation, the method described in the main text was applied to generate an inference of
selection. Firstly, a single-locus model was applied to each locus at which polymorphism was observed.
Models of allele dynamics in which the minority allele at the locus evolved neutrally, or was under con-
stant or time-dependent selection were evaluated using a binomial likelihood function (Equation 7 of the
main text), using the Bayesian Information Criterion (BIC) to compare models, and hence to identify
alleles that exhibited apparently non-neutral behaviour. Next, in cases for which more than one allele
was apparently non-neutral, a multi-locus model was applied so as to separate alleles which changed in
frequency due to inherent selection from those which changed in frequency due to interference from other
alleles. Inferred selection coefficients, and true and false positive rates of identifying loci with alleles
under selection, were than calculated.

In general, our method performed well in identifying alleles under selection. Above a selection coeffi-
cient of 0.5 (12h)−1, alleles under selection were identified as being such in more than 90% of simulations.
Further, at these selection coefficients, the mean inferred value of selection was very close to the real
value, sampling noise providing one explanation for deviation from the mean in particular inferences.
The mean error in the selection coefficient inferred for an allele under selection was 0.14 (12h)−1, treating
cases for which selection was not identified as having an inferred selection coefficient of zero.

Our simulations also highlighted the need for an account to be taken of interference effects between
alleles. Across the 1000 simulations, a total of 329 alleles were falsely identified to be significantly non-
neutral using a single-locus inference approach. When a multi-locus model was applied, this figure fell
substantially, to 47 false positive inferences. Results are shown in Supporting Figure S6.

Selection acting upon alleles at two loci

Further simulations were conducted for a system identical to that above in which alleles at two loci were
under additive selection, with selection coefficients σ1 and σ2 chosen to be uniform random variables
between 0 and 2 (12h)−1. Again, potentially non-neutral alleles were identified using a single-locus model,
before applying a multi-locus model to infer selection coefficients. Given inferred selection coefficients
σ̃1 and σ̃2, the error in the inference E was calculated as the Euclidean distance between the real and
inferred coefficients:

E =
√

(σ1 − σ̃1)2 + (σ2 − σ̃2)2 (1)

A total of 100 populations were simulated with additive two-locus selection. Real and inferred se-
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lection coefficients, and error values E are shown in Supporting Figure S7. Across the simulations, the
mean value of E was 0.26 (12h)−1, about one quarter of the mean strength of selection acting upon a
selected allele. The worst error values arose when selection was incorrectly assigned to the wrong locus.
The true positive rate of identifying alleles under selection was 85%.

Errors in our inferences can generally be attributed to sampling noise. At the lowest selection co-
efficients, selection does not change the allele frequencies enough to be observed at the given depth of
sampling, such that sampling noise becomes the main determinant of any inferred selection coefficient.
At higher selection coefficients, sampling also becomes an issue; by the time of the first sampling point,
the selected allele frequency has already reached a substantial value, while the allele is usually fixed by
the time of the second sampling point; the time-resolution at which samples are collected is too long to
obtain accurate results. In the inferences of selection at a single locus, we thus observe a sweet-spot at a
coefficient of around 1 per 12 hours, where the variance in inferred selection is at its smallest.

We note one limitation to our simulation approach. Whereas in the simulated data, the population
structure and the mechanisms by which it evolves mirror those used in the inference, the actual structure
of a viral population evolving within an animal may be more complex. Our inferences from simulated
populations should therefore be considered as illustrative of the performance of the method, rather than
strict benchmark calculations.

Inference of selection from randomised sequence data

In a further test, we applied our method to random permutations of sequence data. Sequences were
chosen from the pigs for which selection was detected in the original analysis. For each pig, sequence
data were shuffled in time, preserving the number of sequences assigned to each time point, but assigning
individual sequences to random time-points. Two hundred random sets of sequence data were generated
in each case. Next, for each polymorphic locus in each randomly-generated set for which at least two
mutant alleles were observed at a given time-point, a single-locus inference of selection was conducted,
calculating BIC scores for a neutral model, and for models of constant and time-dependent selection.
The largest BIC score difference for each random set of data was then compared to the corresponding
BIC difference inferred for the real sequence data. This bootstrapping provides an additional test for the
veracity of the inference of selection, additional to the use of BIC itself.

In three out of the six animals, Pig104, Pig109, and Pig412, the maximum BIC difference collected
from the random data was substantially lower than the corresponding value obtained from the real se-
quence data (Supporting Figure S2). In the remaining animals, the BIC difference was lower than the
great majority of random sets, with eight, one, and three random sets respectively obtaining higher BIC
differences than the result obtained for the real data for Pig115, Pig405, and Pig410. These results sup-
port the idea that the selection we identify in the viral populations is caused by real frequency changes,
rather than stochastic fluctuations in the data.
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